编码器的脉冲计数、高速计数器小总结
- 格式:doc
- 大小:1.04 MB
- 文档页数:11
光电编码器输出脉冲的几种计数方法1.总脉冲计数法:总脉冲计数法是最简单的计数方法,即直接对光电编码器输出的每个脉冲进行计数。
计数器工作于计数模式,每次接收到一个脉冲信号,计数器就增加1、通过读取计数器的数值,可以获取到物体的具体位置。
这种方法适用于需要获取绝对位置信息的应用。
2.方向计数法:有些应用场景需要获取旋转运动物体的旋转方向,因此采用方向计数法。
方向计数法在总脉冲计数法的基础上增加了方向信号的判断。
方向信号通常通过一个相位差可调的霍尔元件或光电传感器来实现。
当物体顺时针旋转时,方向信号为高电平,计数器加1;当物体逆时针旋转时,方向信号为低电平,计数器减1、通过方向信号,可以准确识别旋转方向。
3.增量计数法:增量计数法是通过计算每次脉冲的增量来进行计数。
在这种方法中,光电编码器输出的脉冲信号被输入到一个脉冲传感器中,脉冲传感器将脉冲信号转换为固定周期的方波信号。
然后,方波信号经过一个计数器进行计数,每次计数都代表一个固定增量。
通过对增量计数进行累加,可以获取物体的位置信息。
增量计数法适用于需要获取相对位置变化的应用。
4.平均计数法:平均计数法是一种改进的计数方法,通过采用平均值来减小误差。
光电编码器输出的脉冲信号经过一个滤波器进行滤波,去除噪声和波动。
然后,滤波后的信号经过计数器进行计数。
由于滤波的作用,计数器只计数滤波后的信号,而不计数噪声和波动。
这样可以更准确地获取位置信息。
平均计数法适用于对测量精度要求较高的应用。
总结:光电编码器输出脉冲的计数方法有总脉冲计数法、方向计数法、增量计数法和平均计数法。
每种计数方法根据应用场景的需求选择不同的方法。
总脉冲计数法适用于需要获取绝对位置信息的应用;方向计数法适用于需要获取旋转方向的应用;增量计数法适用于需要获取相对位置变化的应用;平均计数法适用于对测量精度要求较高的应用。
编码器计数原理一、编码器的概念编码器是一种用于将某种物理量转换为数字信号的设备,常见的编码器有光电编码器、磁性编码器等。
在计数方面,我们通常使用的是旋转编码器,它可以将旋转角度转换为数字信号输出。
二、旋转编码器的结构旋转编码器通常由一个固定部分和一个可旋转部分组成。
固定部分包括一个光源和两个光电检测器,可旋转部分则是一个带有刻度盘的轴。
刻度盘上通常会有许多等距离的刻度线,并且每个刻度线都会与一个透明窗口相对应。
三、工作原理当轴旋转时,刻度盘上的透明窗口会依次经过两个光电检测器,在经过第一个光电检测器时会产生一次脉冲信号,在经过第二个光电检测器时又会产生一次脉冲信号。
这样就可以通过计算脉冲数量来确定轴所旋转的角度。
四、单通道编码与双通道编码在实际应用中,我们通常使用单通道或双通道编码方式来实现计数。
单通道编码器只有一个光电检测器,每次旋转时只会产生一个脉冲信号。
而双通道编码器则有两个光电检测器,每次旋转时会产生两个脉冲信号。
这样可以更准确地确定轴所旋转的角度。
五、编码器的分辨率编码器的分辨率是指它所能测量的最小角度变化量。
通常来说,分辨率越高,精度越高。
在实际应用中,我们需要根据具体需求选择合适的编码器。
六、应用领域编码器广泛应用于机械加工、自动化控制等领域。
例如,在机床上使用编码器可以实现数控加工;在机器人上使用编码器可以实现精确定位和运动控制。
七、总结通过以上介绍,我们了解了编码器计数原理及其应用领域。
在实际应用中,我们需要根据具体需求选择合适的编码器,并注意其分辨率和精度等参数。
1200高速计数器和编码器编程实例计数器和编码器是数字电路中常用的组件,用于计算和编码数据。
在本文中,我们将介绍如何使用1200高速计数器和编码器进行编程实例。
首先,让我们了解一下1200高速计数器和编码器的基本原理。
1200高速计数器是一种用于计算脉冲信号的设备,它可以根据输入的脉冲信号进行计数,并将计数结果输出。
编码器是一种将输入的数据转换为特定编码形式的设备,它可以将输入的数据转换为二进制或其他编码形式。
在本例中,我们将使用1200高速计数器和编码器来计算一个旋转物体的转速,并将转速以二进制形式输出。
首先,我们需要连接1200高速计数器和编码器到我们的电路中。
将计数器的输入引脚连接到旋转物体的传感器上,以接收脉冲信号。
将编码器的输入引脚连接到计数器的输出引脚上,以接收计数结果。
将编码器的输出引脚连接到我们的显示设备上,以显示转速。
接下来,我们需要编写程序来控制1200高速计数器和编码器。
我们可以使用C语言或其他编程语言来实现这个程序。
首先,我们需要初始化计数器和编码器,并设置计数器的初始值为0。
然后,我们需要设置计数器的计数模式为自动计数,并设置计数器的计数速度为1200次/秒。
接下来,我们需要设置编码器的编码模式为二进制,并设置编码器的输出格式为二进制。
然后,我们需要编写一个循环来不断读取计数器的计数结果,并将结果转换为二进制形式。
我们可以使用位运算符来实现这个转换。
然后,我们将转换后的结果输出到显示设备上。
最后,我们需要添加一些延时来控制程序的运行速度。
我们可以使用延时函数或其他方法来实现延时。
通过以上步骤,我们可以实现一个简单的1200高速计数器和编码器的编程实例。
这个实例可以用于计算旋转物体的转速,并将转速以二进制形式输出。
总结起来,1200高速计数器和编码器是数字电路中常用的组件,用于计算和编码数据。
通过编写程序来控制这些组件,我们可以实现各种应用,如计算旋转物体的转速。
希望本文对您理解和应用1200高速计数器和编码器有所帮助。
编码器使用分析近期在使用欧姆龙E6B2-CWZ6C型编码器做正反转计数时碰到一些问题,现将出现的问题及注意事项总结如下:一、编码器的接线:编码器分为NPN 和PNP型,这两种编码器与在PLC的COM端子上接线存在一定的差别,即NPN 输出增量型PLC 的COM 接电源正极,而PNP 输出增量型PLC 的COM 接电源负极,以NPN型为例具体接线如下图:二、编码器与S7-200编程使用时注意事项:1、S7-200普通计数器是在每个扫描周期中,对计数脉冲只能进行一次累加,受 CPU 扫描速度的影响,编码器如果采用普通计数器必然会丢失输入脉冲信号,且程序段越大、编码器输出频率越大丢失越严重。
西门子200系列的CPU中高速计数器HC0~HC3最大输入频率只有30kHz,HC4和HC5最大输入频率才有2000kHz,旋转合适的高高速计数器和适宜的编码器分辨率相当重要。
2、高速计数器编程要点及注意事项归纳:2.1、高速计数器的指令包括:定义高速计数器指令为HDEF,执行高速计数指令为HSC,每个高速计数器在使用前,都要用 HDEF 指令来定义工作模式,并且每个高速计数器只能用一次。
2.2、高速计数器的输入端是由系统指定的输入点输入信脉冲信号、方向控制、复位和启动等,我们无法修改;2.3、外部复位会将当前值复位到0值而不是初始值;内部复位则将当前值复位到初始值。
如果你设定了可更新初始值,但在中断中未给初始值特殊寄存器赋新值,则在执行HSC 指令后,它将按初始化时设定的初始值赋值。
2.4、读取当前值直接调用高数计数器编号(HC0~HC5),而不是调用当前值寄存器或设定值寄存器。
2.5、在程序中要使用初次扫描存储器位SM0.1(首次扫描为1,以后为0)来调用HDEF指令,而且只能调用一次。
如果用SM0.0(始终接通)调用或者会出现第二次接通的M点调用,在第二次执行HDEF 指令会引起运行错误。
例如未设定中断而采用SM0.0调用会导致高速机计数器在初始设定值±1变动,而设定了中断的会导致高速计数器出现不计数等问题。
编码器的脉冲计数、高速计数器小总结1、PLC高速输出需要晶体管输出,继电器属于机械动作,反应缓慢,而且易坏2、以三菱PLC为例,高速输出口采用Y0 、Y13、高速输出指令常用的有PLSY 脉冲输出PLSR 带加减速PLSV……可变速的脉冲输出ZRN……原点回归DRVI……相对定位DRVA……绝对定位4、脉冲结束标志位M80295、D8140D8141 为Y0总输出脉冲数6、在同一个程序里面Y0做为脉冲输出,程序可以存在一次,当需要多次使用的时候,可以采用变址V进行数据的切换,频率,脉冲在不同的动作模式中,改变数据正对上述讲解的内容:我们用一个程序来表示若我们以后可能接触步进。
伺服这一块,上述内容,大家一定要熟练掌握!23、PLC编程实现编码器的脉冲计数在高速计数器与编码器配合使用之前,我们首先要知道是单向计数,还是双向计数,需要记录记录的数据,需要多少个编码器,在PLC中也需要多少个高速输入点,我们先要确认清楚。
当我们了解上面的问题以后,参照上题的寄存器分配表得知我们该选择什么高速计数器如:现在需要测量升降机上升和下降的高度,那么我们需要采用双向编码器,即可加可减的,AB相编码器,PLC需要两个IO点,查表得知,X0 X1为一路采用C251高速计数器那么我们可以这样编程,如图开机即启动计数,上升时(方向),C251加计数下降时(方向),C251减计数我们要求编码器转动的数据达到多少时,就表示判断实际升降机到达的位置注意:在整个程序中没有出现X0、X1这个两个软元件?是因为C251为X0、X1的内置高速计数器,他们是一一对应的,只要见到c251,X0 X1就在里面了,当然,用了C251以后,X0 、X1不能在程序里面再当做开关量使用了接线参照下图21、我们对高速计数器的理解及编程相对11题定时器和计数器来说,本题目主要是告诉大家学习高数处理的功能 PLC内部高速计时器是计数器功能的扩展,高速计数器指令与定位指令使PLC 的应用范围从逻辑控制、模拟量控制扩展到了运动控制领域。
1200编码器和高速计数器的使用实验报告实验目的:1. 理解1200编码器和高速计数器的原理和使用方法;2. 掌握使用1200编码器和高速计数器进行实时测速的技术。
实验仪器和设备:1. 1200编码器;2. 高速计数器;3. 示波器;4. 信号发生器。
实验原理:1200编码器是一种用于测量转速和角度的传感器,它通过感应传入的旋转物体上的光脉冲信号来确定转速和角度。
光脉冲信号由1200编码器内部的光电传感器产生,传感器会将转动的物体上的刻痕影响转化为脉冲信号。
高速计数器是一种用于计数信号脉冲的仪器,可以实时统计输入的信号脉冲数量。
通过统计信号脉冲的数量可以计算出转速和角度。
实验步骤:1. 将1200编码器的输出接口与高速计数器的输入端连接,确保连接稳固可靠。
2. 设置信号发生器产生一定频率和脉冲宽度的脉冲信号作为输入信号。
3. 打开高速计数器和示波器,设置示波器参数以监测输入信号和计数器的输出信号。
4. 开始实时测速,在示波器上观察输入信号和计数器的输出信号。
5. 根据计数器的输出信号,可以计算出转速和角度。
实验结果:根据实时测速的实验数据,可以获得转速和角度的相关结果。
根据实验需求,进行相应的数据处理和分析。
实验注意事项:1. 确保实验中连接的电路和设备稳定可靠,以避免测量误差。
2. 操作实验仪器时需要注意安全,避免电路短路或其他意外情况发生。
3. 在实验过程中,注意记录实验数据和结果。
结论:通过实验可以发现,1200编码器和高速计数器可以实现对旋转物体的实时测速和角度的测量。
实验数据可以用于对控制系统、机械系统等的分析和优化。
光电编码器输出脉冲的几种计数方法光电编码器是一种常用的传感器,可以将物理运动转换成电信号输出。
它通常用于测量旋转角度、线性位移或速度等物理量。
光电编码器的输出通常是脉冲信号,而这些脉冲信号的计数方法对于准确获取物理量的数值至关重要。
在本文中,我们将探讨光电编码器输出脉冲的几种计数方法,并进一步分析其适用范围和优缺点。
1. 简单计数法在简单计数法中,我们直接对光电编码器输出的脉冲信号进行计数。
当脉冲数量达到预定值时,即可得到相应的物理量数值。
这种计数方法简单直接,适用于对物理量精度要求不高的场合,如简单的位置控制系统中。
然而,由于简单计数法无法处理脉冲信号的突变和误码,其适用范围受到一定限制。
2. 相位计数法相位计数法是以脉冲信号的相位变化进行计数。
通过检测脉冲信号的相位变化,可以实现对物理量的准确计数。
相位计数法适用于对脉冲信号变化频率较高的情况,能够有效避免误码和突变信号的影响。
然而,相位计数法对于频率较低的脉冲信号则无法有效计数,因此在选用相位计数法时需谨慎考虑其适用范围。
3. 光电编码器作为位置传感器时的计数方法对于光电编码器作为位置传感器的计数方法,通常采用增量式和绝对式两种方式。
增量式计数方法是基于光电编码器输出的增量脉冲进行计数,适用于需要连续监测位置变化的应用场合,如机械运动控制系统中。
而绝对式计数方法则是直接读取光电编码器输出的位置信息,能够精确获取物理量的绝对数值,适用于对位置精度要求较高的场合。
光电编码器输出脉冲的计数方法多种多样,各有适用范围和优缺点。
在实际应用中,我们需根据具体的物理量测量需求和系统性能要求来选择合适的计数方法。
通过深入理解和灵活运用这些计数方法,我们能够更好地实现对物理量的精确测量与控制。
在本主题中,我深入研究了光电编码器输出脉冲的几种计数方法,通过对比和分析,我对其中的优缺点有了更深入的理解。
我认为在实际应用中,选择合适的计数方法需要综合考虑物理量测量需求、系统性能和可靠性要求等多方面因素,以便更好地实现精确的测量与控制。
我们一般采用高速输出信号控制步进电机和伺服电机做位置,角度和速度的控制,比如定位,要实现这个目的,我们要知道这几个条件:1、PLC高速输出需要晶体管输出,继电器属于机械动作,反应缓慢,而且易坏
2、以三菱PLC为例,高速输出口采用Y0 、Y1
3、高速输出指令常用的有
PLSY 脉冲输出
PLSR 带加减速
PLSV……可变速的脉冲输出
ZRN……原点回归
DRVI……相对定位
DRVA……绝对定位
4、脉冲结束标志位M8029
5、D8140 D8141 为Y0总输出脉冲数
6、在同一个程序里面Y0做为脉冲输出,程序可以存在一次,当需要多次使用的时候,可以采用变址V进行数据的切换,频率,脉冲在不同的动作模式中,改变数据
正对上述讲解的容:我们用一个程序来表示若我们以后可能接触步进。
伺服这一块,上述容,大家一定要熟练掌握!
23、PLC编程实现编码器的脉冲计数
在高速计数器与编码器配合使用之前,我们首先要知道是单向计数,还是双向计数,需要记录记录的数据,需要多少个编码器,在PLC中也需要多少个高速输入点,我们先要确认清楚。
当我们了解上面的问题以后,参照上题的寄存器分配表得知我们该选择什么高速计数器
如:现在需要测量升降机上升和下降的高度,那么我们需要采用双向编码器,即可加可减的,AB相编码器,PLC需要两个IO点,查表得
知,X0 X1为一路采用C251高速计数器那么我们可以这样编程,如图
开机即启动计数,上升时(方向),C251加计数
下降时(方向),C251减计数
我们要求编码器转动的数据达到多少时,就表示判断实际升降机到达的位置
注意:在整个程序中没有出现X0、X1这个两个软元件?
是因为C251为X0、X1的置高速计数器,他们是一一对应的,只要见到c251,X0 X1就在里面了,当然,用了C251以后,X0 、X1不能在程序里面再当做开关量使用了
接线参照下图
21、我们对高速计数器的理解及编程
相对11题定时器和计数器来说,本题目主要是告诉大家学习高数处理的功能
PLC部高速计时器是计数器功能的扩展,高速计数器指令与定位指令使PLC的应用围从逻辑控制、模拟量控制扩展到了运动控制领域。
特点:其最大的特点就是执行的过程中不受PLC的扫描周期影响,而是按照中断方式工作,并且立即输出。
之前的题目中,我们说过部信号计数器,它可以对编程元件X、Y、M、S、T、C信号进行计数。
当X信号计数时,要求X的断开和接通一次时间应大于PLC的扫描周期,否则会出现丢步的现象,如果PLC的扫描周期为40ms,则一秒里X的信号频率最高位25HZ。
这么低的速度限制了PLC的高速应用围,如编码器,可以达到10000HZ。
(编码器后面会讲到)
我们看高速计数器,可以先参照下面表格
图片出处:三菱FX编程手册
U:增计数输入;D:减计数输入;A:A相输入;B:B相输入;R:复位输入;S:启动输入;
一般不同型号的PLC,可能对应高速计数器的点位控制不一样,首先满足硬件功能。
然后在软件上进行实现,两者缺一不可
图片出处:三菱编程手册
我们现在说说高速计数器与普通计数器的区别:
1、高速计数器相对于普通计数器,不受扫描周期的影响,但是,速度还是有限制的。
2、多个高速计数输入口,和对应的高速计数器不是任意选择的,由上表得知,他们是一一对应的
3、所有高速计数器均为停电保持型,题当前值和出点状态在停电时都会保持停电前的状态,也可以利用参数设定为非停电保持型。
4、作为高速计数器的高速输入信号,建议使用电子开关信号,而不要使用机械开关触点信号,由于机械触点的振动会引起信号输入误差,从而影响到正确计数。
考考大家的理解能力
看了上图,再看后面的容,我们会不会对高速计数器又一步加深理解
22、编码器的原理、与PLC的接线方式
编码器是产生脉冲反馈给PLC的检测装置,一般用来检测外围设备走的距离和速度,我们常见的检测位置的元件有:
光电编码器、光栅编码器;(最常用)
感应同步器、磁栅编码器、容栅编码器;(10年前的产品)
电位器;(30多年前的产品)
激光干涉仪、机器视觉系统。
(高精度、高成本)
旋转式光电编码器
原理:光电编码器,是通过光电转换将输入轴上机械几何位移量转换
成脉冲数字量的传感器。
光电编码器是有码盘和光电检测装置组成。
码盘是在一定直
径的透明圆板上等分的印制了若干个细长线,如图,经发光二极管等
电子元件组成的检测装置
检测脉冲输出信号,即可测量编码器输入轴的转角。
通过计算单位时间编码器输出脉冲的个数就能计算出输入轴的转速。
增量式编码器:
增量式编码器是直接利用光电转换原理输出三组方波脉冲: A、B和Z;A 位差90度,以判断旋转方向,如下图所示。
增量式编码器特点:
l 构造简单,
l 机械寿命长,
l 抗干扰能力强,可靠性高;
l 缺点是无法输出轴转动角的绝对位置。
绝对式编码器:
绝对编码器是直接输出数字量的传感器,在它的圆形码盘上沿径向有若干同心码道,每条道上由透光和不透光的扇形区相间组成,相邻码道的扇区数目是双倍关系,码盘上的码道数就是它的二进制数码的位数,在码盘的一侧是光源,另一侧对应每一码道有一光敏元件;当码盘处于不同位置时,各光敏元件根据受光照与否转换出相应的电平信号,形成二进制数。
这种编码器的特点是不要计数器,在转轴的任意位置
都可读出一个固定的与位置相对应的数字码。
显然,码道越多,分辨率就越高,对于一个具有N位二进制分辨率的编码器,其码盘必须有N条码道。
特点:
1.可以直接读出角度坐标的绝对值;
2.没有累积误差;
3.电源切除后位置信息不会丢失。
4.有10位、14位、16位等品种。
. .。