倒立摆的自动控制原理课程设计
- 格式:doc
- 大小:913.59 KB
- 文档页数:29
固高科技《倒立摆与自动控制原理实验》《倒立摆与自动控制原理实验》是一个固高科技开展的实验项目,旨在培养学生对自动控制原理的理解和应用能力。
该实验通过搭建倒立摆的物理模型,利用自动控制原理来实现倒立摆的平衡控制。
以下是对该实验项目的介绍,包括实验目的、原理以及实验步骤。
实验目的:1.理解自动控制原理的基本概念和应用。
2.掌握使用固高科技控制系统进行实验的方法。
3.了解倒立摆的特性和控制方法。
4.通过实验,提高学生的动手实践能力和创新思维。
实验原理:倒立摆是一个经典的自动控制系统,由一个摆杆和一个旋转关节组成。
摆杆可以沿着旋转关节旋转,目标是使摆杆保持直立状态。
倒立摆系统可以看作是一个负反馈控制系统,输入为倒立摆的角度和角速度,输出为控制摆杆旋转的力矩。
通过调节输入和输出之间的关系,可以实现倒立摆的平衡控制。
实验步骤:1.准备实验所需的材料和仪器,包括固高科技控制系统、倒立摆模型、电源等。
2.搭建倒立摆的物理模型,将摆杆固定在旋转关节上,并与驱动电机相连。
3.将摆杆的角度和角速度传感器与固高科技控制系统相连。
4.将固高科技控制系统通过USB接口连接到计算机上,并打开控制系统控制软件。
5.运行控制软件,配置摆杆的初始角度和目标角度,并设置控制参数。
6.开始实验,观察摆杆的运动状态,尝试调节控制参数以实现倒立摆的平衡控制。
7.记录实验结果,分析控制参数对倒立摆平衡控制的影响。
通过以上步骤,可以实现对倒立摆的平衡控制。
学生通过实际操作和观察,加深对自动控制原理的理解和应用。
此外,他们还可以探索倒立摆系统的多种控制方法和策略,提高自己的创新能力。
总结:《倒立摆与自动控制原理实验》是一个很有意义的实验项目,旨在培养学生对自动控制原理的理解和应用能力。
通过实际操作和观察,学生可以深入了解倒立摆的特性和控制方法,并通过调节控制参数实现倒立摆的平衡控制。
通过这个实验,学生不仅可以提高动手实践能力,还可以培养创新思维,为将来的研究和工作打下坚实的基础。
1 引言支点在下,重心在上,恒不稳定的系统或装置的叫倒立摆。
倒立摆控制系统是一个复杂的、不稳定的、非线性系统,是进行控制理论教学及开展各种控制实验的理想实验平台。
1.1 问题的提出倒立摆系统按摆杆数量的不同,可分为一级,二级,三级倒立摆等,多级摆的摆杆之间属于自有连接(即无电动机或其他驱动设备)。
对倒立摆系统的研究能有效的反映控制中的许多典型问题:如非线性问题、鲁棒性问题、镇定问题、随动问题以及跟踪问题等。
通过对倒立摆的控制,用来检验新的控制方法是否有较强的处理非线性和不稳定性问题的能力。
倒立摆的控制问题就是使摆杆尽快地达到一个平衡位置,并且使之没有大的振荡和过大的角度和速度。
当摆杆到达期望的位置后,系统能克服随机扰动而保持稳定的位置。
1.2 倒立摆的控制方法倒立摆系统的输入来自传感器的小车与摆杆的实际位置信号,与期望值进行比较后,通过控制算法得到控制量,再经数模转换驱动直流电机实现倒立摆的实时控制。
直流电机通过皮带带动小车在固定的轨道上运动,摆杆的一端安装在小车上,能以此点为轴心使摆杆能在垂直的平面上自由地摆动。
作用力u平行于铁轨的方向作用于小车,使杆绕小车上的轴在竖直平面内旋转,小车沿着水平铁轨运动。
当没有作用力时,摆杆处于垂直的稳定的平衡位置(竖直向下)。
为了使杆子摆动或者达到竖直向上的稳定,需要给小车一个控制力,使其在轨道上被往前或朝后拉动。
本次设计中我们采用其中的牛顿-欧拉方法建立直线型一级倒立摆系统的数学模型,然后通过开环响应分析对该模型进行分析,并利用学习的古典控制理论和Matlab /Simulink仿真软件对系统进行控制器的设计,主要采用根轨迹法,频域法以及PID(比例-积分-微分)控制器进行模拟控制矫正。
2 直线倒立摆数学模型的建立直线一级倒立摆由直线运动模块和一级摆体组件组成,是最常见的倒立摆之一,直线倒立摆是在直线运动模块上装有摆体组件,直线运动模块有一个自由度,小车可以沿导轨水平运动,在小车上装载不同的摆体组件。
课程设计指导教师评定成绩表指导教师评定成绩:指导教师签名:年月日重庆大学本科学生课程设计任务书目录1 前言 (5)1.1 倒立摆简介 (5)1.2 倒立摆分类 (6)1.3 倒立摆的特性 (6)2 直线倒立摆数学模型的建立 (7)2.1 微分方程的推导(牛顿力学方法) (8)2.2 系统的物理参数和实际系统模型 (11)3 开环系统的时域分析 (11)4 利用根轨迹法设置控制器 (12)4.1 根轨迹分析 (12)4.2 根轨迹校正及仿真 (13)4.2.1 确定希望的主导极点的位置 (13)4.2.2 确定串入的超前校正网络产生的超前幅角 (14)4.2.3 设计超前校正装置 (15)4.2.4 MATLAB 计算仿真 (16)5 直线一级倒立摆频率响应控制实验 (20)5.1 原系统的频率响应分析 (20)5.2频率响应的设计 (21)5.3 在MA TLAB Simulink中对系统进行仿真 (26)5.4 系统频域法校正的改进 (26)5.5 系统频域法校正改进后的Simulink的仿真 (28)6总结 (29)6.1 结果分析 (29)6.2 设计体会 (29)8 参考资料 (30)1 前言1.1 倒立摆简介倒立摆是进行控制理论研究的典型实验平台。
由于倒立摆系统的控制策略和杂技运动员顶杆平衡表演的技巧有异曲同工之处,极富趣味性,而且许多抽象的控制理论概念如系统稳定性、可控性和系统抗干扰能力等等,都可以通过倒立摆系统实验直观的表现出来,因此在欧美发达国家的高等院校,它已成为必备的控制理论教学实验设备。
学习自动控制理论的学生通过倒立摆系统实验来验证所学的控制理论和算法,非常的直观、简便,在轻松的实验中对所学课程加深了理解。
倒立摆不仅仅是一种优秀的教学实验仪器,同时也是进行控制理论研究的理想实验平台。
由于倒立摆系统本身所具有的高阶次、不稳定、多变量、非线性和强耦合特性,许多现代控制理论的研究人员一直将它视为典型的研究对象,不断从中发掘出新的控制策略和控制方法,相关的科研成果在航天科技和机器人学方面获得了广阔的应用。
南京航空航天大学课程名称:自动化控制原理课程设计专业:探测制导与控制技术时间:2016.6.20-2016.6.25一、实验目的1、 学会用SIMULINK 软件分析复杂的控制系统。
2、 会用状态反馈进行控制系统设计。
3、 了解状态观测器的实现。
二、实验设备1、 计算机和打印机。
2、 实际倒立摆系统。
三、实验原理假设原系统的状态空间模型为BU AX X+= ,若系统是完全能控的,则引入状态反馈调节器KX R U -=这时,闭环系统的状态空间模型为⎩⎨⎧=+-=CXY BR X BK A X)(设计任务是要计算反馈K ,使A-BK 的特征值和期望的极点P 相同。
通过将倒立摆线性数学模型输入到MATLAB 中,使用K=place(A,B,P)函数算出反馈矩阵反馈增,K 和期望极点向量P 应与状态变量X 具有相同的维数。
本系统可令输入R=0,即只讨论初始值对系统的作用。
倒立摆系统模型如下:1、倒立摆线性模型:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----=3444.16254.42122.822122.822760.07062.38751.168751.6510000100A ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=5125.62184.500B ⎥⎦⎤⎢⎣⎡=00100001C ⎥⎦⎤⎢⎣⎡=00D 2、倒立摆非线性模型:)(cos 00144.00061.0212001θθθ--+=⋅⋅B A2121121222)sin(2.1)cos(2.1sin 2.61⋅⋅⋅⋅⋅⋅⋅-----=θθθθθθθθθθ其中:⋅⋅---++=11212110]0168.0)cos()sin(00144.0[sin 2979.00236.0θθθθθθθu A 2221212210])sin()[cos(0012.0sin )cos(0734.0⋅⋅---+--=θθθθθθθθθB四、实验内容1、根据给出的倒立摆的线性数学模型,讨论系统的稳定性,可控性和可观性。
H a r b i n I n s t i t u t e o f T e c h n o l o g y课程设计说明书(论文)课程名称:自动控制理论课程设计设计题目:直线一级倒立摆控制器设计院系:电气工程及其自动化学院班级:设计者:学号:指导教师:**哈尔滨工业大学哈尔滨工业大学课程设计任务书*注:此任务书由课程设计指导教师填写。
1、理论模型建立和分析1.1直线一级倒立摆数学模型的推导对于忽略空气阻力和各种摩擦之后,直线一级倒立摆系统抽象为小车和匀质杆组成的系统。
xbp图1-1 倒立摆系统小车和摆杆的受力分析本系统参数定义如下:M——小车质量;m——摆杆质量。
b——小车摩擦系数;l——摆杆转动轴心到杆质心的长度;I——摆杆惯量;F——加在小车上的力;x——小车位置;φ——摆杆与垂直向上方向的夹角。
θ——摆杆与垂直向下方向的夹角方程为:Mx F bx N=--(1-1)因此主动控制力可近似线性化地表示为:()22sin d N m x l dtθ=+ (1-2)即:2cos sin N mx ml ml θθθθ=+- (1-3)代入前面式子:()2cos sin M m x bx ml ml F θθθθ+++-= (1-4)垂直方向上:()22cos d P mg m l dt θ-=- (1-5)即:2sin cos P mg ml ml θθθθ-=+ (1-6) 力矩平衡方程:sin cos Pl Nl I θθθ--= (1-7)注意等式前面的负号,由于,cos cos ,sin sin θπφφθφθ=+=-=-()22sin cos I ml mgl mlxθθθ++=- (1-8)1.微分方程模型 设θπφ=+,近似处理:2cos 1,sin ,()0d dtθθθφ=-=-= 设u=F ,则:()()2M m x bx ml u I ml mgl mlx φφφ⎧++-=⎪⎨+-=⎪⎩ (1-9)2.传递函数模型对上式拉氏变换处理,设初始条件为0,则:()()22222()()()()()()()M m X s s bX s ml s s U s I ml s s mgl s mlX s s ⎧++-Φ=⎪⎨+Φ-Φ=⎪⎩(1-10) 输出为角度为φ,由第二式得到()22()()I ml g X s s ml s ⎡⎤+⎢⎥=-Φ⎢⎥⎣⎦ (1-11)或者()222()()s mls X s I ml s mglΦ=+- (1-12)如果令x ν=,则有()22()()s mlV s I ml s mglΦ=+- (1-13)把上式代入10式,则有:()()()22222()()()()I ml I ml g g M m s s b s s ml s s U s ml s ml s ⎡⎤⎡⎤++⎢⎥⎢⎥+-Φ++Φ-Φ=⎢⎥⎢⎥⎣⎦⎣⎦(1-14)整理:()()212432()()()ml s s q G s U s b I ml M m mgl bmgl s s s sqqqΦ==+++--(1-15)其中()()()22q M m I ml ml ⎡⎤=++-⎣⎦从而,有()()()()()222222432222432()()()()()X s s G s s U s ml s I ml s mglq mlsb I ml M m mgl bmgl s s s s qqqI ml mgls q q b I ml M m mgl bmgl s s s sqqqΦ=⨯Φ+-=⨯+++--+-=+++--(1-16)3.状态空间数学模型X AX BuY CX Du=+=+,可得状态方程()()()()()()()()()2222222222x x I ml b I ml m gl x x u I M m Mml I M m Mml I M m Mml mgl M m mlb ml x u I M m Mml I M m Mml I M m Mml φφφφφ=⎧⎪-++⎪=++⎪++++++⎪⎨=⎪⎪+-⎪=++⎪++++++⎩()()()()()()()()()22222222220100000000100010000010x x I ml b I ml m gl x x I M m Mml I M m Mml I M m Mml u mlb mgl M m ml I M m Mml I M m Mml I M m Mmlx y φφφφφ-++++++++=+-+++++++==⎡⎤⎡⎤⎢⎥⎢⎥⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤⎡⎤⎢⎥⎢⎣⎦⎣⎦00x x uφφ+⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎡⎤⎪⎢⎥⎡⎤⎪⎢⎥⎥⎢⎥⎪⎢⎥⎣⎦⎪⎢⎥⎩⎣⎦1.2系统阶跃响应分析1.2.1、阶跃响应源程序:参考模型 %实际系统参数M=0.5; m=0.2; b=0.1; l=0.3; I=0.006; g=9.8; T=0.005;%求传递函数gs(输出为摆杆角度)和gspo(输出为小车位置)q=(M+m)*(I+m*l^2)-(m*l)^2; num=[m*l/q 0];den=[1 b*(I+m*l^2)/q -(M+m)*m*g*l/q -b*m*g*l/q]; gs=tf(num,den);numpo=[(I+m*l^2)/q 0 -m*g*l/q];denpo=[1 b*(I+m*l^2)/q -(M+m)*m*g*l/q -b*m*g*l/q 0]; gspo=tf(numpo,denpo);%求状态空间sys(A,B,C,D)p=I*(M+m)+M*m*l^2;A=[0 1 0 0;0 -(I+m*l^2)*b/p m^2*g*l^2/p 0;0 0 0 1;0 -m*b*l/p m*g*l*(M+m)/p 0]; B=[0;(I+m*l^2)/p;0;m*l/p]; C=[1 0 0 0;0 0 1 0]; D=0;sys=ss(A,B,C,D);%通过传递函数求系统(摆杆角度和小车位置)的开环阶越响应t=0:T:5; y1=step(gs,t); y2=step(gspo,t); figure(1);plot(t,y2,'b',t,y1,'r'); axis([0 2.5 0 80]);legend('Car Position','Pendulum Angle'); 1.2.2、仿真结果:通过传递函数求系统(摆杆角度和小车位置)的开环阶越响应01020304050607080图1-2 摆杆和小车位置的开环阶跃响应注:左边红色代表小车位置,右边蓝色代表摆杆角度响应。
全校通识课课程考核科目:倒立摆的自动控制原理课程设计教师:姓名:学号: 2010专业: 2010级自动化 5班上课时间:2013年3月至2013年5月学生成绩:教师 (签名)重庆大学制目录1引言 (3)2数学模型的建立 (4)2.1 倒立摆数学模型的建立 (4)3 未校正前系统的时域分析 (7)4 根轨迹校正 (9)4.1 原系统的根轨迹分析 (9)4.2串连超前系统的设计 (10)4.2.1确定闭环期望极点的位置 (10)4.2.2 超前校正传递函数设计 (11)4.2.3 校正参数计算 (11)4.2.4 超前校正控制器 (12)4.2.5 matlab环境下串联超前校正后的根轨迹图 (12)5倒立摆系统频域分析 (14)6 频域法校正 (16)6.1频域法控制器设计 (16)6.1.1控制器的选择 (17)6.1.2系统开环增益的计算 (17)6.1.3画bode图和Nyquist图 (17)6.1.4计算 和T求解校正装置 (19)6.1.6 matlab下作校正后系统的Bode图和Nyquist图 (20)6.1.7校正后系统的单位阶跃曲线 (21)6.2 串联滞后-超前校正装置设计 (21)6.2.1 控制器设计 (21)6.2.2 matlab环境下的bode图和nyquist图 (22)7 PID控制器设计 (24)7.1控制器设计过程 (24)8 课程设计总结 (28)9参考资料 (29)倒立摆的自动控制原理课程设计1引言倒立摆是进行控制理论研究的典型实验平台,它在机器人技术、控制理论、计算机控制等自动控制领域,对多种技术的进行了有机结合。
它具有高阶次、不稳定、多变量、非线性和强耦合特性,在经典控制理论学习理解以及现代科技方面,诸如半导体及精密仪器加工、机器人控制技术、人工智能、导弹拦截控制系统、航空对接控制技术、火箭发射中的垂直度控制、卫星飞行等有广泛的应用。
平面倒立摆可以比较真实的模拟火箭的飞行控制和步行机器人的稳定控制。
固高科技《倒立摆与自动控制原理实验》《倒立摆与自动控制原理实验》是固高科技中一门重要的实验课程。
倒立摆是一种常见的动力学系统模型,可以应用于机器人控制、姿态稳定控制、飞行器控制等领域。
自动控制原理是掌握电路、机器、仪器等系统控制的基础,对于机械、电子、自动化等专业的学生来说都是必学的课程。
此实验旨在通过实践操作,帮助学生理解倒立摆的原理和自动控制原理,并培养他们的实验操作能力和问题解决能力。
下面将简要介绍实验的目的、原理和步骤。
实验目的:1.理解倒立摆的原理和动力学方程;2.学习掌握自动控制原理;3.掌握实验操作技巧;4.提高问题解决能力和团队合作意识。
实验原理:倒立摆是一个不稳定的系统,需要通过控制来保持平衡。
实验中,用电机驱动倒立摆杆旋转,通过两个位置传感器检测倒立摆杆的角度和角速度,并将这些信号经过控制器进行处理后控制电机。
通过调整电机输出的力矩,使倒立摆保持在垂直位置。
自动控制原理是实现倒立摆控制的基础。
对于这个系统来讲,可以采用经典的PID控制算法。
PID控制器根据当前倒立摆的角度误差、角速度误差和积分误差来计算控制信号,实时调整电机输出的力矩,使倒立摆保持在稳定的位置。
实验步骤:1.搭建倒立摆实验平台:根据实验材料提供的装配手册,按图纸要求完成倒立摆的搭建。
注意调整杆件位置,使倒立摆保持平衡。
2.连接传感器和控制器:将位置传感器和角速度传感器连接到控制器,确保信号传输的可靠性。
3.设置控制参数:在控制器上设置PID控制器的参数,包括比例系数Kp、积分系数Ki和微分系数Kd。
根据实验要求,调整参数值。
4.进行控制实验:启动电机,观察倒立摆的运动情况。
根据实际情况,调整控制器的参数,使倒立摆保持在平衡位置。
5.实验数据处理:记录实验过程中的数据,包括控制器的输出信号、倒立摆的角度和角速度等数据。
通过数据分析,评估控制效果和控制器参数的优化方法。
总结:《倒立摆与自动控制原理实验》是一门理论与实践相结合的课程,通过实验操作,学生能够深入理解倒立摆和自动控制原理,并培养他们的实验操作能力和问题解决能力。
倒立摆与自动控制原理实验
一、倒立摆的实验目的
1、了解理论上倒立摆的物理原理;
2、研究倒立摆系统的动态行为;
3、熟悉控制算法应用在倒立摆系统的原理;
4、验证控制算法的实际可行性。
二、倒立摆的实验原理
倒立摆是一个三自由度的双自由度动力系统,也可以看出是一个有重
力的质点的非线性系统,同时受到杆子上关节传动对其施加的力矩作用。
这个系统的控制有着独特的乐趣:由于其非线性特性,以及受到外部环境
影响,通过改变其动力学参数,就可以实现控制目标的设定。
倒立摆系统的动力学是由系统的摆锤和杆子的控制组成的,为了保持
倒立摆系统的稳定,必须使得其杆子位置尽量接近原点,即摆锤与杆子垂
直的位置,在此基础上,通过改变系统的动力学参数来实现特定的控制目标,如让倒立摆系统停止在原点位置,实现倒立摆的输出模式控制;或者
使摆锤在指定的摆锤角度范围内波动,实现倒立摆的非线性控制。
三、倒立摆的实验设计
倒立摆系统实验的初始准备:
1、准备所需的仪器仪表:主要有摆锤、杆子、测力传感器、控制板、控制软件等等;
2、编写实验程序:根据实验目的,根据不同的实验需求。
《自动控制原理》课程设计之二基于状态空间法单级倒立摆的控制系统设计一、单级倒立摆介绍倒立摆系统具有高阶次、不稳定、多变量、非线性和强耦合等特性,是控制理论的典型研究对象。
如机器人行走过程中的平衡控制、火箭发射中垂直度控制和卫星飞行中的姿态控制等均涉及到倒置问题对倒立摆系统的研究在理论上和方法论上均有着深远意义。
单级倒立摆系统的原理图,如图1所示。
假设已知摆的长度为2l ,质量为m ,用铰链安装在质量为M 的小车上。
小车由一台直流电动机拖动,在水平方向对小车施加控制力u ,相对参考系差生的位移s 。
若不给小车实施控制力,则倒置摆会向左或向右倾倒,因此,它是个不稳定的系统。
控制的目的是通过控制力u 的变化,使小车在水平方向上运动,达到设定的位置,并将倒置摆保持在垂直位置上。
已知单级倒立摆的各项数据如下所示:,5.0,1.0,2m l kg m kg M ===g m g kgm I /8.9,025.02==图1 单级倒立摆模型二、 控制系统设计任务1、 查阅文献,建立单级倒立摆的状态空间数学模型。
取状态变量[]T ss x θθ =。
测试系统的开环特性。
2、 用Matlab 分析系统能控性,能观性及稳定性。
3、 通过状态反馈配置改变闭环系统极点。
闭环极点自行决定。
采用极点配置后,闭环系统的响应指标满足如下要求为:● 摆杆角度和小车位移的稳定时间小于5秒 ● 位移的上升时间小于1秒 ● 角度的超调量小于20度 ● 位移的稳态误差小于2%。
4、 假设系统的状态[]T s s x θθ =均无法测量,为实现上述控制方案建立系统的全维观测器,观测器极点自行决定。
采用带有观察器极点配置后,闭环系统的响应指标满足如下要求为:● 摆杆角度和小车位移的稳定时间小于5秒 ● 位移的上升时间小于1秒 ● 角度的超调量小于20度 ● 位移的稳态误差小于2%。
5、 假设系统的状态[]T ss x θθ =中,只用位移s 可以测量,其他状态变量均无法测量,为实现极点配置,建立系统的降维观测器,观测器极点自行决定。
自动化-课程设计Final Project 倒立摆与自动控制原理课程设计学院:物理与光电信息科技学院专业:电子信息工程专业年级:2009级姓名:王雪、陈一淳、林嘉莹学号:106032009122目录1摘要1.1 倒立摆系统稳定性研究的背景和意义 ....................................1.2 倒立摆系统控制的研究历史及现状 .......................................1.3 倒立摆涉及领域........................................................2倒立摆系统2.1倒立摆的工作原理 .....................................................2.2倒立摆系统特性分析 .....................................................3一级倒立摆的物理建模3.1微分方程的推导 .......................................................3.2传递函数的推导 .......................................................3.3状态空间方程的推导 ...................................................3.4 一级倒立摆系统的定性分析 .............................................4倒立摆的稳定性控制及仿真4.1 频率响应分析..........................................................4.2 频率响应设计及仿真....................................................4.3 MATLAB仿真............................................................摘要对于倒立摆系统的控制研究长期以来被认为是控制领域里引起人们极大兴趣的问题。
全校通识课课程考核科目:倒立摆的自动控制原理课程设计教师:姓名:学号: 2010专业: 2010级自动化 5班上课时间:2013年3月至2013年5月学生成绩:教师 (签名)重庆大学制目录1引言 (3)2数学模型的建立 (4)2.1 倒立摆数学模型的建立 (4)3 未校正前系统的时域分析 (7)4 根轨迹校正 (9)4.1 原系统的根轨迹分析 (9)4.2串连超前系统的设计 (10)4.2.1确定闭环期望极点的位置 (10)4.2.2 超前校正传递函数设计 (11)4.2.3 校正参数计算 (11)4.2.4 超前校正控制器 (12)4.2.5 matlab环境下串联超前校正后的根轨迹图 (12)5倒立摆系统频域分析 (14)6 频域法校正 (16)6.1频域法控制器设计 (16)6.1.1控制器的选择 (17)6.1.2系统开环增益的计算 (17)6.1.3画bode图和Nyquist图 (17)6.1.4计算 和T求解校正装置 (19)6.1.6 matlab下作校正后系统的Bode图和Nyquist图 (20)6.1.7校正后系统的单位阶跃曲线 (21)6.2 串联滞后-超前校正装置设计 (21)6.2.1 控制器设计 (21)6.2.2 matlab环境下的bode图和nyquist图 (22)7 PID控制器设计 (24)7.1控制器设计过程 (24)8 课程设计总结 (28)9参考资料 (29)倒立摆的自动控制原理课程设计1引言倒立摆是进行控制理论研究的典型实验平台,它在机器人技术、控制理论、计算机控制等自动控制领域,对多种技术的进行了有机结合。
它具有高阶次、不稳定、多变量、非线性和强耦合特性,在经典控制理论学习理解以及现代科技方面,诸如半导体及精密仪器加工、机器人控制技术、人工智能、导弹拦截控制系统、航空对接控制技术、火箭发射中的垂直度控制、卫星飞行等有广泛的应用。
平面倒立摆可以比较真实的模拟火箭的飞行控制和步行机器人的稳定控制。
通过本次简单的倒立摆系统实验来验证所学的控制理论和算法,非常直观,简便。
它可以在轻松的氛围下提高学生学习热情,充分调动学生积极性,达到理论与实践的有机统一,更好的学习知识!同时在设计的过程中多次用到了matlab中的simulink模块,可以让我们更好的学习计算机在控制系统中的巨大作用,更好的学习自动控制知识。
倒立摆已经扩展出很多种类,典型的有直线倒立摆,环形倒立摆,平面倒立摆和复合倒立摆等,倒立摆系统是在运动模块上装有倒立摆装置。
对于倒立摆系统,由于其本身是自不稳定的系统,实验建模存在一定的困难。
但是忽略掉一些次要的因素后,倒立摆系统就是一个典型的运动的刚体系统,可以在惯性坐标系内应用经典力学理论建立系统的动力学方程。
本文是基于固高倒立摆系统已经建立好的传递函数,根据参数要求,通过根轨迹分析和频域分析等控制算法设计控制器,并通过实际检测,最后得到参数要求的控制器并且倒立后能承受一定的干扰。
2数学模型的建立2.1 倒立摆数学模型的建立直线一级倒立摆由直线运动模块和一级摆体组件组成,是最常见的倒立摆之一,直线倒立摆是在直线运动模块上装有摆体组件,直线运动模块有一个自由度,小车可以沿导轨水平运动,在小车上装载不同的摆体组件。
系统建模可以分为两种:机理建模和实验建模。
对于倒立摆系统,由于其本身是自不稳定的系统,实验建模存在一定的困难。
机理建模就是在了解研究对象的运动规律基础上,通过物理、化学等学科的知识和数学手段建立起系统内部变量、输入变量以及输出变量之间的数学关系。
本文用机理建模的方法求取小车的传递函数(设实验环境器材等均处于理想状态)如图:M 小车质量1.096 Kgm 摆杆质量0.109 Kgb 小车摩擦系数0.1N/m/secl 摆杆转动轴心到质心长度0.25mI 摆杆惯量0.0034 kg·m2F 加在小车上的力x 小车位置φ摆杆与垂直向上方向的夹角θ摆杆与垂直向下方向的夹角图1 直线一级倒立摆模型N 和P 为小车与摆杆相互作用力的水平和垂直方向的分量图2 小车及摆杆受力分析小车水平方向的合力:N x b F x M --=∙∙∙ (2.1)摆杆水平方向的合力:()22s i n d x l N md t θ+= (2.2)化简得:θθθθsin cos 2∙∙∙∙∙-+=ml ml x m N (2.3)水平方向的运动方程:()22s i n d x l N m d t θ+= (2.4)对摆杆垂直方向上的受力进行分析,可得垂直方向的运动方程:()22c o sd l P m g md t θ-=(2.5)即:θθθθcos sin 2∙∙∙--=-ml ml mg P (2.6)力矩平衡方程如下:∙∙=--θθθI Nl Pl cos sin (2.7)合并式(6)和(7).,消去P 和N 得到第二个运动方程:θθθcos sin )(∙∙∙∙-=++x ml mgl ml I 2(2.8)设θπφ=+,假设φ与1(单位均是)相比很小,即1φ<<,则可以进行如下近似:2c o s 1,s i n ,0dd t θθθφ⎛⎫=-=-= ⎪⎝⎭ (2.9)用u 来代表被控对象的输入力F ,线性化后两个运动方程如下:⎪⎩⎪⎨⎧=-++=-+∙∙∙∙∙∙∙∙∙uml x b x m M xml mgl ml I φφφ)()(2(2.10) 假设φ、x 和它们的各阶导数的初始值均为零。
对上式进行拉普拉斯变换,得到:()()()()()()()()()22222I m l s s m g l s m l X s s M m X s s b X s sm l s s U S ⎧+Φ-Φ=⎪⎨++-Φ=⎪⎩ (2.11)由于角度φ为输出量,求解方程组的第一个方程,可以得到摆杆角度和小车位移的传递函数:()()()222s m l sX s I m l s m g lΦ=+- (2.12)如果令∙∙=x v ,则摆杆角度和小车加速度之间的传递函数为:()()()22s m lV s I ml s m g l Φ=+- (2.13)把上式代入方程组的第二个方程,得到:22222()()()()()()()I m l g I m l g M m s s b s s m l s sU s m l s m l s ⎡⎤⎡⎤+++-Φ++Φ-Φ=⎢⎥⎢⎥⎣⎦⎣⎦(2.14) 整理后得到式称为摆杆角度与外加作用力间的传递函数:22432()()()()m l ss qbI m l M m m g l b m g l U s s s s sq q q Φ=+++-- (2.15)带入实际参数: M=1.096Kg m=0.109Kg b=0.1N/m/sec l=0.25mI=0.0034 kg ·m2 最后得到的最终表达式: 摆杆角度和小车位移的传递函数:22()0.02725()0.01021250.26705s sX s s Φ=- (2.16)摆杆角度和小车加速度之间的传递函数为:2()0.02725()0.01021250.26705s V s s Φ=- (2.17) 摆杆角度和小车所受外界作用力的传递函数:32()2.35655()0.088316727.91692.30942s sU s s s s Φ=+-- (2.18) 小车位置和加速度的传递函数2()1()X s V s s =(2.19)3 未校正前系统的时域分析本系统采用以小车的加速度作为系统的输入,摆杆角度为输出响应,此时的传递函数为:26705.00102125.002725.0)()()(222-=-+=Φs mgl s ml I ml s V s (3.1)图3.1摆杆角度的单位阶跃响应曲线图采用以小车的加速度作为系统的输入,小车位置为响应,则此时的传递函数为2()1()X s V s s =(3.1)图3.2小车位置的单位阶跃响应曲线图由于以上时域分析中所有的传递函数的响应图都是发散的,说明系统不稳定,需加控制器进行校正4 根轨迹校正4.1 原系统的根轨迹分析以小车的加速度为系统输入,摆杆角度为输出。
前面已得到系统传递函数为:26705.00102125.002725.0)()()(222-=-+=Φs mgl s ml I ml s V s (4.1)4.1 原系统根轨迹曲线图其中:z = 0,0 p = 5.1136,-5.1136可以很直观地看出,系统有两个零点,有两个极点,并且有一个极点为正。
画出系统闭环传递函数的根轨迹如图 3-6,可以看出闭环传递函数的一个极点位于右半平面,并且有一条根轨迹起始于该极点,并沿着实轴向左跑到位于原点的零点处,这意味着无论增益如何变化,这条根轨迹总是位于右半平面,即系统不稳定。
4.2串连超前系统的设计设计后的参数要求:调整时间: 0.5(2%)s t s = 最大超调量: 4.2.1确定闭环期望极点的位置由最大超调量 2(/1)10%p e ζζπσ--=≤ (4.2)4.2 闭环主导极点所在的极坐标图在此我们对超调量留有一定余量,令 %6%=p δ 可以得到:8379.0=ζ由cos ζθ=可以得到:5806.0=θ (弧度)其中θ为位于第二象限的极点和O 点的连线与实轴负方向的夹角。
又由:40.5s nt sςω=≤其中β为位于第二象限的极点和O 点的连线与实轴负方向的夹角。
又由:40.5s nt sςω=≤%10%≤p σ对调节时间留有一定余量,令40.5s nt sςω=≤ (±2%的误差带)取其为0.3s ,可以得到:9299.15=n ω,于是可以得到期望的闭环主导极点为:(c o s s i n)nj ωθθ-+代入数据后,可得期望的闭环主导极点为:13.3589±j8.67604.2.2 超前校正传递函数设计未校正系统的根轨迹在实轴和虚轴上,不通过闭环期望极点,因此需要对系统进行超前校正,设控制器为:1()(1)1cc s z T s K s T s s p ααα++==≤++ (4.3)4.2.3 校正参数计算计算超前校正装置应提供的相角,已知期望的闭环主导极点和系统原来的极点的相角和为:7898.41-=--=∑=i i i s p s G d (4.4)因此校正装置提供的相角为:6498.1)7898.4(14.3=---=φ (4.5) 又已知5806.0=θ对于最大的α值的γ角度可由下式计算得到:5456.0)(21=--=θφπγ (4.6)j ωS错误!未找到引用源。
γθ σp ZcZ图4.3直线一级倒立摆根轨迹计算图由于角度都已求出,线段SO 的长度即为自然频率的大小,故可用正弦定理计算,求出超前校正装置的零点和极点(正弦定理) 分别为: 8758.69-=P Z7885.13-=C Z (计算程序见附录4) 4.2.4 超前校正控制器 校正后系统的开环传递函数为: ()8758.69)7885.13(*26705.00102125.002725.02++-=s s K s s G (4.7)由幅值条件()()1d d G s H s =,并设反馈为单位反馈,所以有2598.797=K对相应参数保留五位有效值,于是我们得到了系统的控制器:8758.69)7885.13(2598.797)(++=s s s G c (4.8)4.2.5 matlab 环境下串联超前校正后的根轨迹图对系统进行仿真,运行即可以得到以上的计算结果,校正后系统的跟轨迹如下图所示:图4.4 串联超前校正后系统的根轨迹图图4.5 串联超前校正simulink流程图图4.6 串联超前校正后的阶跃响应曲线(为便于观察,阶跃信号设置了1s的延时)小结:在课程设计期间,根轨迹法由于时间较紧,而且看放到计算量很大,我们有没有数学软件,很复杂。