ARM位置无关代码设计规范

  • 格式:doc
  • 大小:42.50 KB
  • 文档页数:5

下载文档原格式

  / 5
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

位置无关可执行文件PIE包括位置无关代码PIC和位置无关数据PID两部分。

通常情况下,将bootloader程序下载到ROM的0x0地址进行启动(比如固化到NorFlash 中)。然而在很多的设计中,比如将bootloader固化在NAND中,在系统复位后S3C2440A 中NAND控制器自动读取NAND中存储的前4K的代码到s3c2440a中称之为steppingstone的RAM中,steppingstone中的代码用进行一些非核心的硬件初始化,再将NAND中剩下的bootloader代码拷贝到RAM中运行。一般境况下两者的地址并不相同,程序在SDRAM中的地址重定位过程必须由程序员来完成。这样就有了位置无关代码的概念,指代码不在连接时制定的运行地址空间,也可以执行,它一段加载到任意地址空间都能执行的特殊代码。这样在steppingstone设计的代码要用位置无关设计。

位置无关代码可以用于以下场合:

1. 程序在运行期间动态加载到内存;

2. 程序在不同场合与不同程序组合后加载到内存(共享的动态链接库);

3. 在运行期间不同地址相互之间的映射(如bootloader)

ARM位置无关程序设计要点

PID 主要针对可读写数据段(.data 段),其中保存已赋初值的全局变量。为实现其位置无关性,通常使用寄存器R9作为静态基址寄存器,使其指向该可读写段的首地址,并使用相对于基址寄存器的偏移量来对该段的变量进行寻址。这种方法常用于为可重入程序的多个实例产生多个独立的数据段。在程序设计中,一般不必考虑可读写段的位置无关性,这主要是因为可读写数据主要分配在SDRAM 中。

PIC包括程序中的代码和只读数据(.text段),为了保证程序能在ROM和SDRAM空间中能真确的运行,必须采用位置无关代码程序设计。PIC 遵循只读段位置无关

ROPI(Read-Only PositionIndependence)的ATPCS(ARM2Thumb Procedure Call Standard)的程序设计规范:

1. 程序设计规范

引用同一ROPI 段或相对位置固定的另一ROPI 段中的符号时,必须是基于PC 的符号引用,即使用相对于当前PC 的偏移量来实现跳转或进行常量访问。

位置无关的程序跳转。

在ARM 汇编程序中,使用相对跳转指令B/BL 实现程序跳转。指令中所跳转的目标地址用基于当前PC 的偏移量来表示,与链接时分配给地址标号的绝对地址值无关,因而代码可以在任何位置进行跳转,实现位置无关性。

另外,还可使用ADR 或ADRL 伪指令将地址标号值读取到PC 中实现程序跳转。这是因为ADR或ADRL等伪指令会被编译器替换为对基于PC 的地址值进行操作,但这种方式所能读取的地址范围较小,并且会因地址值是否为字对齐而异。

但在ARM 程序中,使用LDR 等指令直接将地址标号值读取到PC 中实现程序跳转不是位置无关的。

例如:

可见, 虽然LDR 是把基于PC 的一个存储单元LPOOL 的内容加载到PC 中,但该存储单元中保存的却是链接时所决定的main 函数入口的绝对地址,所以main函数实际所在的段不是位置无关。

位置无关常量访问

在应用程序中,经常要读写相关寄存器以完成必要的硬件初始化。为增强程序的可读性,利用EQU 伪指令对一些常量进行赋值,但在访问过程中, 必须实现位置无关性。下面以U-boot 的

SDRAM初始化介绍位置无关的常量访问方法。

由此可以得出如下结论:

使用LDR 伪指令将一个常量读取到非PC 的其他通用寄存器中可实现位置无关的常量访问;但将一个地址值读取到PC 中进行程序跳转时,跳转目标则是位置相关的。

其他被ROPI 段中的代码引用的必须是绝对地址,或者是基于可读写位置无关( RWPI) 段的静态基址寄存器的可写数据。使用绝对地址只能引用被重定位到特定位置的代码段中的符号,通过在位置无关代码中引入绝对地址,可以让程序跳转到指定位置。例如,假设Bootloader 的阶段1将其自身代码拷贝到链接时所指定的SDRAM 地址空间后,当要跳转到阶段2 的C 程序入口时,可以使用指令“LDR PC, = main”跳转到程序在SDRAM 中的main 函数入口地址开始执行。这是因为程序在编译链接时给main 函数分派绝对地址,系统通过将main 函数的绝对地址直接赋给PC 实现程序跳转。如果使用相对跳转指令“B main”,那么只会跳转到启动ROM 内部的main 函数入口。

bootloadr、内核等程序刚开始执行的时候,他们所处的地址通常不等于运行地址。在程序的开头,先使用b、bl、mov等“位置无关”的指令将代码从flash等设备中复制到内存的“运行地址”处,然后再跳到“运行地址”去执行。

U-Boot位置无关分析举例来自100ask,我做了以下修改

当映像文件在nor flash中时,adr r0, _start 就想当于sub r0, pc, #offset,假设_start 在映像文件的0位置出,nor flash地址从0开始,那么这时r0中的值就是0。

当映像文件被加载到RAM后,adr r0, _start 还是相当于sub r0, pc, #offset,但这里的pc值已经是基于RAM加载地址的了。所以结果r0中的值就是0x33f80000,等于

_TEXT_BASE。判断这两个值是否相等,就可以确定映像是否已经加载到内存中了。

u-boot的连接地址是0x33f80000,意味着它“最后”将被复制到0x33f80000的内存中。

但是“刚开始时”肯定不在内存中,而是在NOR FLASH中──而NOR FLASH的起始地址是0。

为什么本应该在0x33f80000运行的指令,在0地址也可以运行?

答:u-boot中第一个执行的文件是start.S,它都是使用b、bl等等指令写成的,它们是“位置无关的”,就是说它们可以在任何位置运行,而不是非要在“0x33f80000那段地址”运行。

start.S完成什么功能呢?初始化、复制代码到SDRAM,然后跳到SDRAM去运行。

上面的NorFlash你可以理解成S3C2440A中的steppingstone