大学物理下计算题
- 格式:docx
- 大小:4.48 MB
- 文档页数:11
大学物理考卷(下学期)一、选择题(每题4分,共40分)A. 速度B. 力C. 位移D. 加速度2. 在国际单位制中,下列哪个单位属于电学基本单位?A. 安培B. 伏特C. 欧姆D. 瓦特A. 物体不受力时,运动状态不会改变B. 物体受平衡力时,运动状态会改变C. 物体受非平衡力时,运动状态不变D. 物体运动时,必定受到力的作用A. 功B. 动能C. 势能D. 路程A. 速度大小B. 速度方向C. 动能D. 动量6. 下列哪个现象属于光的衍射?A. 彩虹B. 海市蜃楼C. 水中倒影D. 光照射在单缝上产生的条纹A. 恢复力与位移成正比B. 恢复力与位移成反比C. 恢复力与位移的平方成正比D. 恢复力与位移的平方成反比8. 一个电路元件的电压u与电流i的关系为u=2i+3,该元件是:A. 电阻B. 电容C. 电感D. 非线性元件A. 电磁波在真空中传播速度小于光速B. 电磁波在介质中传播速度大于光速C. 电磁波在真空中传播速度等于光速D. 电磁波在介质中传播速度等于光速10. 一个理想变压器的初级线圈匝数为1000匝,次级线圈匝数为200匝,若初级线圈电压为220V,则次级线圈电压为:A. 110VB. 220VC. 440VD. 880V二、填空题(每题4分,共40分)1. 在自由落体运动中,物体的加速度为______。
2. 一个物体做匀速圆周运动,其线速度的大小不变,但方向______。
3. 惠更斯原理是研究______现象的重要原理。
4. 一个电阻的电压为10V,电流为2A,则该电阻的功率为______。
5. 根据电磁感应定律,当磁通量发生变化时,会在导体中产生______。
6. 在交流电路中,电阻、电感和电容元件的阻抗分别为______、______和______。
7. 一个单摆在位移为0时速度最大,此时摆球所受回复力为______。
8. 光的折射率与光的传播速度成______比。
9. 一个电子在电场中受到的电势能变化量为______。
第9章9-4 直角三角形ABC 如题图9-4所示,AB 为斜边,A 点上有一点荷91 1.810C q -=⨯,B 点上有一点电荷92 4.810C q -=-⨯,已知0.04m BC =,0.03m AC =,求C 点电场强度E ρ的大小和方向(cos370.8︒≈,sin370.6︒≈).解:如解图9-4所示C 点的电场强度为12E E E =+r r rC 点电场强度E ρ的大小方向为即方向与BC 边成33.7°。
9-5 两个点电荷6612410C,810C q q --=⨯=⨯的间距为0.1m ,求距离它们都是0.1m 处的电场强度E ρ。
解:如解图9-5所示1E ρ,2E ρ沿x 、y 轴分解 电场强度为9-12.一均匀带电球壳内半径16cm R =,外半径210cm R =,电荷体密度为53210m C ρ--=⨯⋅,求:到球心距离r 分别为5cm 8cm 12cm 、、处场点的场强. 解: 根据高斯定理0d ε∑⎰=⋅q S E sϖϖ得解图9-5解图9-4当5=r cm 时,0=∑q ,得8=r cm 时,∑q 3π4p=3(r )31R - ()20313π43π4rR r E ερ-=41048.3⨯≈1C N -⋅, 方向沿半径向外. 12=r cm 时,3π4∑=ρq -32(R )31R ()42031321010.4π43π4⨯≈-=rR R E ερ1C N -⋅ 沿半径向外. 9-13 两平行无限大均匀带电平面上的面电荷密度分别为+б和-2б,如题图9-13所示,(1)求图中三个区域的场强1E ρ,2E ρ,3E ρ的表达式; (2)若624.4310C m σ--=⨯⋅,那么,1E ρ,2E ρ,3E ρ各多大解:(1)无限大均匀带电平板周围一点的场强大小为在Ⅰ区域Ⅱ区域Ⅲ区域(2)若624.4310C m σ--=⨯⋅则9-17 如题图9-17所示,已知2810m a -=⨯,2610m b -=⨯,81310C q -=⨯,82310C q -=-⨯,D 为12q q 连线中点,求: (1)D 点和B 点的电势;(2) A 点和C 点的电势;(3)将电量为9210C -⨯的点电荷q 0由A 点移到C 点,电场力所做的功;(4)将q 0由B 点移到D 点,电场力所做的功。
【例题】火车驶过车站时,站台边上观察者测得火车鸣笛声的频率由1200 Hz 变为1000 Hz ,已知空气中声速为330 米/ 秒,求火车的速度。
【例题】在地球大气层外测得太阳辐射谱,它的极值波长为490 nm,设太阳为黑体,求太阳表面温度T 。
【例题】. 试计算能通过光电效应从金属钾中打出电子所需的光子最小能量及其相应的最小频率(阈值频率)和最大波长。
已知金属钾的逸出功为2.25电子伏特,hc =1240 nm · eV 。
339,2.897105.91049010mbT Kλ--⨯===⨯⨯由维恩位移公式得【例题】:试计算能通过光电效应从金属钾中打出0.25电子伏特的电子,必须使用多少波长的电磁波辐射?【例题】巳知紫光的波长λ= 400 nm,其光子的能量、动量各为多少?【例题】求能量 E = 1.0 keV 光子的波长λ与频率ν。
【例题】 已知氢原子两个能级为-13.58eV 和-3.4eV ,氢原子从基态受激吸收到高能级,所吸收光子的波长应该是多少(组合常数:hc =1240 nm · eV )【例题】. 试计算下列各粒子的德布罗意波长:1)能量为 150eV 的自由电子; 2)能量为 0.2eV 的自由中子;3)能量为 0.5eV 质量为2.5克的质点( mec2=511keV ,hc =1240nm ·ev )21hE E ν=玻尔公式 -【例题】. 在电子显微镜中假定电子的波长是0.01nm(比可见光小4个量级,比原子尺度小一个量级),求相应的电子动能是多少电子伏特。
【例题】设子弹的质量为0.01㎏,枪口的直径为0.5㎝, 试求子弹射出枪口时的横向速度的不确定量?【例题】:π- 介子是一种不稳定的粒子,从它产生到它衰变为μ- 介子经历的时间即为它的寿命,已测得静止π- 介子的平均寿命τ0 = 2 ⨯ 10-8s 。
某加速器产生的π-介子以速率u = 0.98 c 相对实验室运动。
大学物理习题册计算题及答案三 计算题1. 一质量m = 0.25 kg 的物体,在弹簧的力作用下沿x 轴运动,平衡位置在原点。
弹簧的劲度系数k = 25N ·m -1。
(1) 求振动的周期T 和角频率.(2) 如果振幅A =15 cm ,t = 0时物体位于x = 7.5 cm 处,且物体沿x 轴反向运动,求初速v 0及初相. (3) 写出振动的数值表达式。
解:(1) 1s 10/-==m k ω 63.0/2=π=ωT s(2) A = 15 cm ,在 t = 0时,x 0 = 7。
5 cm,v 0 〈 0 由 2020)/(ωv +=x A得 3.1220-=--=x A ωv m/s π=-=-31)/(tg 001x ωφv 或 4/3∵ x 0 > 0 , ∴ π=31φ(3) )3110cos(10152π+⨯=-t x (SI )振动方程为)310cos(1015)cos(2πϕω+⨯=+=-t t A x (SI )﹡2. 在一平板上放一质量为m =2 kg 的物体,平板在竖直方向作简谐振动,其振动周期为T = 21s ,振幅A = 4 cm ,求 (1) 物体对平板的压力的表达式.(2) 平板以多大的振幅振动时,物体才能离开平板。
解:选平板位于正最大位移处时开始计时,平板的振动方程为 t A x π4cos = (SI)t A x ππ4cos 162-=(SI ) (1) 对物体有 x m N mg=- ① t A mg x m mg N ππ4cos 162+=-= (SI) ② 物对板的压力为 t A mg N F ππ4cos 162--=-= (SI )t ππ4cos 28.16.192--= ③(2) 物体脱离平板时必须N = 0,由②式得 04cos 162=+t A mg ππ (SI )A qt 2164cos π-=π 若能脱离必须 14cos ≤t π (SI )即 221021.6)16/(-⨯=≥πg A m三 计算题﹡1。
大学物理下册期末复习计算题第7章真空中的静电场*1.一半径为R 的带电导体球,电荷为-Q 。
求:球内、外任意一点的电场强度。
1.解:由高斯定理可求出电场强度的分布(1分)∑⎰=⋅int q S d E(3分)(4分) (2分) (2分)解:由高斯定理可求出电场强度的分布(1分)∑⎰=⋅int q S d E(3分)(4分) (2分) (2分)*2.一半径为R 的带电导体球,电荷为Q 。
求:(1)球内、外任意一点的电场强度;(2)球内、外任意一点电势。
解:由高斯定理可求出电场强度的分布(3分) (2分)当r>R 时 (3分) 当r ≤R 时 (4分)⎪⎪⎩⎪⎪⎨⎧=-<>-R r R Q R r R r r Q E 4 042020πεπε=⎪⎩⎪⎨⎧<>R r R r r q E0 420πε=r qdr r q V r 02044πεπε=⎰∞=R qdr r q dr V RRr 020440πεπε=+⎰⎰∞=⎪⎪⎩⎪⎪⎨⎧=-<>-R r R Q R r R r r Q E 4 0 4202πεπε=*3. 如图所示,一长为L ,半径为R 的圆柱体,置于场强为E 的均匀电场中,圆柱体轴线与场强方向平行,求穿过圆柱体下列端面的电通量。
(1)左端面(2)右端面 (3)侧面 (4)整个表面解: 根据电通量定义 (1)左端面⎰⎰⎰-=-==⋅=121cos s s R E dS E EdS s d E ππφ(4分)(2)右端面⎰⎰===⋅=2030cos R E ES EdS s d E s πφ(4分) (3)侧面⎰⎰==⋅=02cos 2πφEdS s d E s (1分)(4)整个表面0321=++=s s s s φφφφ(3分)4. 三个点电荷1q 、2q 和3q -在一直线上,相距均为R 2,以1q 与2q 的中心O 作一半径为R 2的球面,A 为球面与直线的一个交点,如图。
大学物理 下 复习题 部分计算题 参考答案 答案来自网络 仅供参考1四条平行的载流无限长直导线,垂直通过一边长为a 的正方形顶点,每条导线中的电流都是I ,方向如图,求正方形中心的磁感应强度。
⎪⎭⎫⎝⎛a I πμ02解0222Iaμπ=2.如图所示的长空心柱形导体半径分别为1R 和2R ,导体内载有电流I ,设电流均匀分布在导体的横截面上。
求 (1)导体内部各点的磁感应强度。
(2)导体内壁和外壁上各点的磁感应强度。
解:导体横截面的电流密度为2221()IR R δπ=-在P 点作半径为r 的圆周,作为安培环路。
由0B dl I μ∙=∑⎰得 222201012221()2()I r R B r r R R Rμπμδπ-=-=-即 22012221()2()I r R B r R R μπ-=- 对于导体内壁,1r R =,所以 0B = 对于导体外壁,2r R =,所以 022IB R μπ=3. 如图, 一根无限长直导线,通有电流I , 中部一段弯成圆弧形,求图中O 点磁感应强度的大小。
解:根据磁场叠加原理,O 点的磁感应强度是)A (-∞、)ABC (和)C (∞三段共同产生的。
)A (-∞段在O 点磁感应强度大小:)cos (cos x4IB 2101θθπμ-=将6021πθθ==,,a 213cosa x ==π代入 得到:)231(a 2IB 01-=πμ,方向垂直于纸面向里; )C (∞段在O 点磁感应强度大小:)cos (cos x4IB 2102θθπμ-=将πθππθ=-=216,,a 213cos a x ==π带入得到:)231(a 2I B 02-=πμ,方向垂直向里;)ABC (段在O 点磁感应强度大小:⎰=203a Idl 4B πμ,)a 32(a I 4B 203ππμ=,a6IB 03μ=,方向垂直于纸面向里。
O 点磁感应强度的大小:321B B B B ++=,)231(a I a6IB 00-+=πμμ, 方向垂直于纸面向里。
大学物理下考试题及答案一、选择题(每题5分,共20分)1. 光在真空中的传播速度是:A. 3×10^8 m/sB. 2×10^8 m/sC. 1×10^8 m/sD. 4×10^8 m/s答案:A2. 根据牛顿第二定律,力和加速度的关系是:A. F=maB. F=mvC. F=m/aD. F=a/m答案:A3. 一个物体从静止开始做匀加速直线运动,其位移与时间的关系为:A. s = 1/2at^2B. s = 1/2vtC. s = 1/2atD. s = vt答案:A4. 在理想气体状态方程中,压强、体积、温度的关系是:A. PV = nRTB. PV = nTC. PV = nRD. PV = n答案:A二、填空题(每题5分,共20分)1. 根据能量守恒定律,一个物体的动能和势能之和在任何情况下都______。
答案:保持不变2. 电场强度的定义式为______。
答案:E = F/q3. 根据库仑定律,两点电荷之间的力与它们电荷量的乘积成正比,与它们距离的平方成反比,其公式为______。
答案:F = kQq/r^24. 光的折射定律表明,入射角和折射角之间的关系为______。
答案:n1sinθ1 = n2sinθ2三、简答题(每题10分,共40分)1. 简述波粒二象性的概念。
答案:波粒二象性是指微观粒子如电子、光子等,既表现出波动性,也表现出粒子性。
在某些实验条件下,它们表现出波动性,如干涉和衍射现象;而在另一些实验条件下,它们表现出粒子性,如光电效应和康普顿散射。
2. 什么是电磁感应定律?请给出其数学表达式。
答案:电磁感应定律描述了变化的磁场在导体中产生电动势的现象。
其数学表达式为ε = -dΦ/dt,其中ε是感应电动势,Φ是磁通量,t是时间。
3. 简述热力学第一定律的内容。
答案:热力学第一定律,也称为能量守恒定律,指出在一个封闭系统中,能量既不能被创造也不能被消灭,只能从一种形式转换为另一种形式。