高等数学导数的概念.
- 格式:doc
- 大小:2.39 MB
- 文档页数:13
高等数学导数
导数是高等数学中的一个重要概念,意思是表示函数的变化速率的概念,它是高等数学中的一个基本概念。
导数的定义是:当函数y=f(x)的自变量x经过一个微
小的变化时,函数y的变化量与自变量x变化量之比,记作f′(x)或y′,称为函数f(x)在x处的导数,记作d/dx[f (x)], 或f′(x)。
导数的性质可概括为:(1)函数的导数表示函数变化率
的变化,即函数变化速率;(2)函数的导数指示函数在某一
点处的变化状况,如曲线在某点的切线的斜率;(3)函数的
导数可以用来求函数的极值。
导数在微积分中具有重要的意义,它与微积分的基本概念——定积分密切相关,它使微积分中的许多定理更加清晰明了。
如果不考虑导数,微积分中的定理将是模糊的,将难以推导。
因此,导数是高等数学中非常重要的概念。
导数的应用也十分广泛,在物理、化学、经济学等多学科中都有其重要的作用。
它可以用来计算某一物体在受到力的作用时的速度变化,从而求得物体的运动轨迹;它也可以用来计算某一物体在受到力的作用时的加速度变化,从而求得物体的动量;它还可以用来计算某一物体在受到力的作用时的位置变
化,从而求得物体的位置;它在经济学中也可以用来分析某一经济指标的变化趋势。
总之,导数是高等数学中的一个重要概念,它的应用也十分广泛,具有重要的意义。
第3讲导数与微分高等数学基础课程的主要研究对象是函数,函数是变量之间的对应关系,怎样研究函数的变化是这一讲的主要问题。
3.1导数的概念一、函数的变化率对于函数)(x f y =,我们要研究y 怎样随x 变化,进一步我们还要研究变化的速率,可以先看看下面这个图我们可以看出,对于相同的自变量的改变量x ∆,所对应的函数改变量y ∆是不同的。
xy∆∆可以表示变化的速率,但这是一个平均速率,怎样考虑函数)(x f y =在一点0x 的变化率呢?二、导数的概念根据前面的介绍,我们给出下面的定义。
定义3.1设函数)(x f y =在点0x 及其某个邻域U 内有定义,对应于自变量x 在0x 处的改变量x ∆,函数相应的改变量为)()(00x f x x f y -∆+=∆,如果当0→∆x 时极限 存在,则此极限值称为函数)(x f y =在点0x 处的导数,或在点0x 处函数)(x f 关于自变量x 的变化率,记作)(0x y ',或)(0x f '这时,称函数)(x f y =在点0x 处是可导的。
根据导数定义,我们来求一些基本初等函数的导数。
例1根据导数定义求c y =在点x 处的导数。
解根据定义求导数通常分三步: (Ⅰ)求)()(00x f x x f y -∆+=∆:(Ⅱ)求xy∆∆: (Ⅲ)求xyx ∆∆→∆0lim :因此得出0)(='x y 。
如果函数)(x f 在其定义域内每一点都可导,那么我们就得到了一个新的函数)(x f ',称)(x f '为)(x f 的导函数。
)(x f '在点0x x =的函数值)(0x f '就是)(x f 在点0x x =的导数。
例2根据导数定义求2)(x x f =在点x 处的导数。
解按照由定义求导数的步骤: 因此得出x x f 2)(='。
例3根据导数定义求n x x f =)((n 为自然数)在点x 处的导数。
完整版高数一知识点一、导数与微分高等数学中,导数是一种表示函数变化率的工具。
它是研究函数在某一点上的局部性质和变化趋势的基本概念。
导数可以通过极限的概念进行定义,表示函数在某一点上的瞬时变化率。
导函数的计算方法包括:1. 基本函数的导数公式:常数函数、幂函数、指数函数、对数函数、三角函数等的导数公式。
2. 四则运算法则:求导的四则运算法则包括加法法则、减法法则、乘法法则和除法法则。
3. 复合函数的求导:使用链式法则求解复合函数的导数。
微分是导数的应用之一,用于研究函数的近似变化。
微分的计算方法包括:1. 微分的定义:微分可以通过导数来进行计算,表示函数在某一点上的变化量。
2. 微分的近似计算:使用微分近似计算可以帮助我们在没有具体数值的情况下估计函数的变化。
二、不定积分与定积分不定积分是求解函数原函数的过程,也被称为反导数。
不定积分可以表示函数的面积、函数的平均值等。
计算不定积分的方法包括:1. 基本积分公式:根据一些基本函数的导数公式,可以得到相应的不定积分公式。
2. 积分的线性性质:积分具有线性性质,即函数的线性组合的积分等于各组成函数的积分之和。
3. 特殊函数的积分:对于一些特殊的函数,可以通过一些特殊的方法进行积分。
定积分是求解函数在某一区间上的面积的过程,也被称为积分。
定积分可以表示弧长、质量、体积等物理量。
计算定积分的方法包括:1. 定积分的定义:定积分可以通过分割区间,计算分割点上函数值与区间长度的乘积之和来进行计算。
2. 积分的性质:定积分具有一些性质,例如积分的线性性质、积分的区间可加性等。
3. 牛顿-莱布尼茨公式:牛顿-莱布尼茨公式给出了定积分与不定积分之间的关系。
三、常微分方程常微分方程是研究函数的导数与自变量之间关系的方程。
它是高等数学中一个重要的分支,应用广泛。
常微分方程的求解方法包括:1. 可分离变量法:对于可分离变量的常微分方程,可以通过分离变量并积分的方法进行求解。
大一高等数学导数知识点一、导数的定义及性质1.定义:设函数f(x)在点x0的一些邻域内有定义,若极限lim(h→0)[f(x0+h)-f(x0)]/h存在,称该极限为函数f(x)在点x0处的导数,记作f'(x0)或df(x0)/dx。
2.函数在一点处的导数表示函数在该点的变化速率,若导数大,则说明函数变化快;若导数小,则说明函数变化慢。
3.导数的几何意义:函数f(x)在点x0处的导数等于其曲线在该点的切线斜率。
4.导数的性质:(1)可加性:(f+g)'(x)=f'(x)+g'(x)(2)可乘性:(f·g)'(x)=f'(x)·g(x)+f(x)·g'(x)(3)常值函数的导数为0:(C)'=0(4)乘方函数的导数:(x^n)' = nx^(n-1)(5)指数函数的导数:(a^x)' = a^x·ln(a)(6)对数函数的导数:(ln(x))' = 1/x(7)三角函数的导数:(i)(sin(x))' = cos(x)(ii)(cos(x))' = -sin(x)(iii)(tan(x))' = sec^2(x)(iv)(cot(x))' = -csc^2(x)(8)反三角函数的导数:(i)(arcsin(x))' = 1/√(1-x^2)(ii)(arccos(x))' = -1/√(1-x^2)(iii)(arctan(x))' = 1/(1+x^2)二、导数的计算法则1.基本计算法则:(1)常数的导数为0(2)幂函数求导:(x^n)' = nx^(n-1)(3)指数函数求导:(a^x)' = a^x·ln(a)(4)对数函数求导:(ln(x))' = 1/x(5)三角函数和反三角函数的导数2.复合函数求导法则:设y=f(g(x)),则y'=f'(g(x))·g'(x)3.乘积法则:(f·g)'=f'·g+f·g'4.商积法则:(f/g)'=(f'·g-f·g')/g^25. 链式法则:若y=f(u),u=g(x),则dy/dx = dy/du·du/dx = f'(u)·g'(x)三、导数的应用1.切线方程:设函数f(x)在点x0处可导,其切线方程为y=f(x0)+f'(x0)(x-x0)2.泰勒展开:对于具有n阶导数的函数f(x),其泰勒展开式为:f(x)=f(x0)+f'(x0)(x-x0)+f''(x0)(x-x0)^2/2!+…+f^n(x0)(x-x0)^n/n!+Rn(x)其中Rn(x)为拉格朗日余项,满足,Rn(x),<=M,x-x0,^(n+1),其中M为常数。
一.导数产生的背景1.物理背景1.2. 几何背景PTPQ P L Q P L 的极限位置割线时趋向点沿曲线点处点切线为在点曲线切线方程:, )(00x x k y y −=−αtan =ktan lim 0β→∆=x 其中, . lim 0xy x ∆∆=→∆小结a x f =′)(0⇐⇒ax f x f =′=′−+)()(00定理好像见过面啊!先求导、后代值.4.导数的几何意义)(tan 0x f k ′==α此时, 切线方程为:))((000x x x f y y −′=−函数 f (x ) 在点 x 0 的导数 f ′( x 0) 就是对应的平面曲线 y = f (x ) 在点 (x 0, y 0) 处的切线的斜率 k :切线平行于x 轴:0)(0=′x f 曲线 y = f (x ) 在点 x 0 处的切线可能平行于x 轴、垂直于 x 轴、或不存在, 所反映出的导数值是:切线垂直于x 轴:∞=′)(0x f (曲线为连续曲线)在点 x 0 处无切线: f ′(x 0) 不存在.解定理解解定理证则函数 f (x ) 在点 x 0 处有若函数 f (x ) 在点 x 0 处有(有限)导数 f ′(x 0),可近似表示为: ∆y ≈ f ′(x 0)∆x(1) 函数 f (x ) 在该点的增量∆y = f (x 0+ ∆x ) − f (x 0)x x f x f x x f ∆′+≈∆+)()()(000(2);) )U( (00x x x ∈∆+))(()()(000x x x f x f x f −′+≈))U((0x x ∈ 推论。
高等数学导数16个基本公式在高等数学中,导数是一个非常重要的概念,它描述了一个函数在某一点的变化率。
掌握导数的基本公式对于解题至关重要。
在本文中,我们将重点介绍高等数学中的16个导数的基本公式,以帮助读者更好地理解和运用导数的概念。
1. 导数的定义导数描述了函数在某一点的斜率,即函数在该点的瞬时变化率。
若函数f(f)在f0处可导,则其导数定义为:$$ f'(x_0)=\\lim_{{\\Delta x\\to 0}}\\frac{f(x_0+\\Delta x)-f(x_0)}{\\Delta x} $$其中f′(f0)表示f(f)在f0处的导数。
2. 常数函数导数对于常数函数f,其导数为0,即(f)′=0。
3. 幂函数导数对于幂函数f=f f,其中f为常数,则有(f f)′=ff f−1。
4. 指数函数导数对于指数函数f=f f,其中f为常数,则有$(a^x)'=a^x\\ln(a)$。
5. 对数函数导数对于对数函数$y=\\log_ax$,其中f为常数,则有$(\\log_ax)'=\\frac{1}{x\\ln(a)}$。
6. 三角函数导数•$\\sin'(x)=\\cos(x)$•$\\cos'(x)=-\\sin(x)$•$\\tan'(x)=\\sec^2(x)$•$\\csc'(x)=-\\csc(x)\\cot(x)$•$\\sec'(x)=\\sec(x)\\tan(x)$•$\\cot'(x)=-\\csc^2(x)$7. 反三角函数导数•$\\arcsin'(x)=\\frac{1}{\\sqrt{1-x^2}}$•$\\arccos'(x)=-\\frac{1}{\\sqrt{1-x^2}}$•$\\arctan'(x)=\\frac{1}{1+x^2}$8. 和差积商导数法则•$(u\\pm v)'=u' \\pm v'$•(ff)′=f′f+ff′•$\\left(\\frac{u}{v}\\right)'=\\frac{u'v-uv'}{v^2}$9. 链式法则如果函数f=f(f(f))为复合函数,则有$y'=f'(g(x))\\cdot g'(x)$。
⾼等数学五:导数的定义⽰例1:
⾃由落体的函数: s = f(t) = 1/2gt2
时间t0到t的平均速度为:
在t0时刻的瞬时速度为:
⽰例2:曲线的切线斜率
导数的定义:
导数定义式⼀:
导数定义式⼆:利⽤x - x0 = Δx变形得到
⼀般地,导数的定义式,还可以写成以下形式(导数的⼴义定义式):使⽤Ψ(h)代替Δx
单侧导数:
右导数。
左导数。
左、右导数统称为单侧导数。
区间可导与导函数:
函数可导与函数连续的关系:
证明:
+可导的差别定理:
⽰例:
导数的⼏何意义:
⽰例:
求点(x0, f(x0)切线⽅程为:y - f(x0) = f'(x0)(x - x0)
将x0=6代⼊,得到y - f(6) = f'(6)(x - 6),
⼜因f(x)是周期为5的连续函数,因此,相当于求的是:y - f(1) = f'(1)(x - 1)
因此,需要我们求得f(1)和f'(1)。
f'(1):对某点求导,根据导数的定义,可以使⽤以下任意⼀种公式:
f(1):求极限,可根据极限定义,⽆穷⼩的⽐较法则,结合题⽬中的条件,得到。
⾼阶导数:
⾼阶导数的定义式:
n阶导数的计算⽅法:。