第52讲第十五章结构力学(二十三)
- 格式:doc
- 大小:596.00 KB
- 文档页数:2
2.1 几何可变系统和几何不变系统工程结构是用来承受和传递外载荷的系统。
一个工程结构通常是由若干个构件用某种方法联结而成的。
它在承受载荷作用时,各构件只允许发生材料的弹性变形,而不应发生构件间相对的机械运动。
如图2.1(a)所示的系统,如果不考虑弹性变形,系统也未发生破坏,则其几何形状与位置均保持不变,这样的系统,我们称之为几何不变系统。
但是,对如图2.1(b)所示的系统,在载荷作用下,即使不考虑弹性变形,它的形状和位置也将改变,这样的系统,我们称之为几何可变系统,它是不能用来承受和传递外载荷的。
所以,凡是工程结构必须是几何不变系统。
图2.1对系统进行几何组成分析的目的在于:判断该系统是否为几何不变系统,以决定其能否作为工程结构使用;研究并掌握几何不变系统的组成规则,以便合理安排构件,设计出合理的结构;根据系统的组成规则,确定结构的性质(静定系统还是静不定系统),以便选用相应的计算方法。
3.2 静定桁架的内力桁架是由某些杆系结构经过简化而得到的计算模型,其特点是:(1)各元件均为直杆;(2)各杆两端均用没有摩擦的理想铰链相连接;(3)杆的轴线通过铰心,称铰心为桁架的结点;(4)载荷和支座反力仅作用在各结点上。
由于理想铰链没有摩擦力,故不能传递力矩。
显然,在载荷仅作用在结点上时,若不计杆的自重,各杆都只受到两端结点的作用力,且在此二力作用下处于平衡。
因此,桁架的杆件均为“二力杆”,即杆两端受到大小相等、方向相反、沿着杆轴线的两个力作用。
杆子横截面上只有轴力,这些轴力就是所要计算的桁架内力。
静定桁架是一种没有多余约束的结构,它的内力计算原则上,只要把桁架分解为若干自由体(结点)和约束(杆),用未知力代替约束的作用,对所有的自由体列出全部静力平衡方程式,所得方程式数与包含的未知力数相等。
由于结构是几何不变的,方程组有唯一解。
解这联立方程组就可得到静定桁架的内力。
但在工程实际中,往往可以运用下述两种方法:结点法和截面法。
名词解释为帮助同学们复习,提出一些名词解释,请同学们总结以下:(注意总结全面)1.计算图形2.刚架3.平面刚架4.板架5.弹性支座6.梁的弯曲要素7.梁的复杂弯曲8.叠加原理9.静定结构10.超静定结构11.几何不变体系12.超静定次数13.力法14.位移法15.矩阵位移法16.三弯矩方程17.杆元18.平面刚架单元19.平面板架单元20.固端弯矩21.结构刚度矩阵22.单元刚度矩阵23.节点未知位移向量24.杆元定位向量25.节点外荷载向量26.节点自由度27.单元自由度28.对称阵29.正定阵30.方阵31.稀疏矩阵32.半带宽33.强迫位移34.乘大数法35.降阶法36.杆元内力37.支反力38.固端力向量39.梁的应变能40.几何非线性问题41.材料非线性问题42.外力功43.比能44.泛函45.余能46.虚位移原理47.结构总位能48.位能驻值原理49.应变能原理50.虚力原理51.余位能驻值原理52.应力能原理53.卡氏第二定理54.最小余能原理55.最小功原理56.形(状)函数57.李兹法58.位移边界条件59.应力边界条件60.平衡方程61.几何方程62.物理方程63.薄板64.薄板的筒形弯曲65.薄板的筒形横弯曲66.薄板的筒形复杂弯曲67.薄板的筒形大挠度弯曲68.刚性板69.柔性板70.薄板小挠度弯曲的基本假定71.屈曲72.稳定平衡73.中性平衡74.最小临界荷载75.中性平衡微分方程76.稳定性方程式77.欧拉(应)力78.临界(应)力79.压杆柔度80.板的极限荷载问答题:一部分,有时间再补全1、何谓骨架的带板?骨材与带板为什么会共同工作?其宽度(或一积)与什么因素有关,如何确定?试分析带板宽度对骨架断面几何要素的影响。
2、什么叫做船体结构的计算图形,它是用什么原则来确定的?它与真实结构有什么差别?3、一个完整的船体结构计算图形应包含哪些具体内容?为什么对同一船体结构构件,计算图形不是固定的、一成不变的?4、梁弯由微分方程式是根据什么基本假定导出的,有什么物理意义,适用范围怎样?5、单跨梁初参数法中的四个参数指什么参数?它们与坐标系统的选择有没有关系?6、为什么当单跨梁两端为自由支持与单跨梁两端为弹性支座支持时,在同样外荷重作用下两梁断面的弯矩和剪力都相等,而当梁两端是刚性固定与梁两端为弹性固定时,在同样外荷重作用下两梁断面的弯矩和剪力都不同?7、梁的边界条件与梁本身的计算长度、剖面几何要素、跨间荷重有没有关系?为什么?8、当梁的边界点上作用有集中外力P或集中外弯矩M时,一种处理是把该项外力放在梁端,写进边界条件中去。
1.关于∞点和∞线的下列四点结论:(1) 每个方向有一个∞点(即该方向各平行线的交点)。
(2) 不同方向上有不同的∞点。
(3) 各∞点都在同一直线上,此直线称为∞线。
(4) 各有限远点都不在∞线上。
2.多余约束与非多余约束是相对的,多余约束一般不是唯一指定的。
一个体系中有多个约束时,应当分清多余约束和非多余约束,只有非多余约束才对体系的自由度有影响。
3.W>0, 缺少足够约束,体系几何可变。
W=0, 具备成为几何不变体系所要求 的最少约束数目。
W<0, 体系具有多余约束。
4.一刚片与一结点用两根不共线的链杆相连组成的体系内部几何不变且无多余约束。
两个刚片用一个铰和一根不通过此铰的链杆相联,组成无多余约束的几何不变体系。
两个刚片用三根不全平行也不交于同一点的链杆相联,组成无多余约束的几何不变体系。
三个刚片用不在同一直线上的三个单铰两两相连,组成无多余约束的几何不变体系。
5.二元体规律:在一个体系上增加或拆除二元体,不改变原体系的几何构造性质。
6.形成瞬铰(虚铰)的两链杆必须连接相同的两刚片。
7.w=s-n ,W=0,但布置不当几何可变。
自由度W >0 时,体系一定是可变的。
但W ≤0仅是体系几何不变的必要条件。
S=0,体系几何不变。
8..轴力FN --拉力为正;剪力FQ--绕隔离体顺时针方向转动者为正;弯矩M--使梁的下侧纤维受拉者为正。
弯矩图--习惯绘在杆件受拉的一侧,不需标正负号; 轴力和剪力图--可绘在杆件的任一侧,但需标明正负号。
9.剪力图上某点处的切线斜率等于该点处荷载集度q 的大小 ; 弯矩图上某点处的切线斜率等于该点处剪力的大小。
10. 梁上任意两截面的剪力差等于两截面间载荷图所包围的面积; 梁上任意两截面的弯矩差等于两截面间剪力图所包围的面积。
()()Q dM x dF x dx=22()()()QdF x d M x q y dx dx==-FN+d FN F N FQ+dF QF QM M+d Md x dx ,,BAB A BAx NB NA x x x QB QA y x x B AQx F F q dx F F q dx M M F dx=-=-=+⎰⎰⎰11.分布力q(y)=0时(无分布载荷),剪力图为一条水平线;弯矩图为一条斜直线。
自振频率的计算公式
式中W mg
=为质体的重量,
st
∆表示
W 沿运动自由度方向作用于质量时产生的静位移
结构的自振频率及自振周期只与结构的刚度和质量有关,是体系固有的动力特性。
自振周期的平方与刚度系数成反比,与质量成正比,改变体系的质量或刚度可调整体系的自振周期。
【例】求图示体系的自振频率(柔度法)
求图示体系的自振频率(刚度法)
超静定结构(柔度法)
刚度系数计算方法——刚度系数等于附加链杆产生单位位移时引起的附加反力
st
g
W
g
m
m
k
∆
=
=
=
δ
δ
ω
1
=
3
48
ml
EI
=
ω
EI
l
l
l
l
EI48
4
3
2
2
4
2
1
23
=
⨯
⨯
⨯
⨯
⨯
=
δ
3
12
l
EI
k=
3
12
ml
EI
=
ω
3
24
h
EI
k=
【例】若
沿振动方向给以单位位移求刚度系数K
试对下面三个体系的自振频率由小到大排序
试对下面三个体系的自振频率由小到大排序
3
K=51
EI
k
l
+
3
3
K51
=
M3
EI kl
ml
ω
+
=
3
3
33
3
EI kl
ml
ω
+
=。