求函数值域的几种方法PPT课件
- 格式:pptx
- 大小:3.68 MB
- 文档页数:13
函数值域十三种求法1. 直接观察法对于一些比较简单的函数,其值域可通过观察得到。
例1. 求函数x 1y =的值域解:∵0x ≠∴0x 1≠显然函数的值域是:),0()0,(+∞-∞例2. 求函数x 3y -=的值域解:∵0x ≥3x 3,0x ≤-≤-∴故函数的值域是:]3,[-∞2. 配方法配方法是求二次函数值域最基本的方法之一。
例3. 求函数]2,1[x ,5x 2x y 2-∈+-=的值域 解:将函数配方得:4)1x (y 2+-= ∵]2,1[x -∈由二次函数的性质可知:当x=1时,4y min =,当1x -=时,8y max = 故函数的值域是:[4,8]3. 判别式法(只有定义域为整个实数集R 时才可直接用)例4. 求函数22x 1x x 1y +++=的值域 解:原函数化为关于x 的一元二次方程0x )1y (x )1y (2=-+-(1)当1y ≠时,R x ∈0)1y )(1y (4)1(2≥----=∆解得:23y 21≤≤ (2)当y=1时,0x =,而⎥⎦⎤⎢⎣⎡∈23,211 故函数的值域为⎥⎦⎤⎢⎣⎡23,21例5. 求函数)x 2(x x y -+=的值域解:两边平方整理得:0y x )1y (2x 222=++-(1) ∵R x ∈∴0y 8)1y (42≥-+=∆ 解得:21y 21+≤≤-但此时的函数的定义域由0)x 2(x ≥-,得2x 0≤≤由0≥∆,仅保证关于x 的方程:0y x )1y (2x 222=++-在实数集R 有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由 0≥∆求出的范围可能比y 的实际范围大,故不能确定此函数的值域为⎥⎦⎤⎢⎣⎡23,21。
可以采取如下方法进一步确定原函数的值域。
∵2x 0≤≤0)x 2(x x y ≥-+=∴21y ,0y min +==∴代入方程(1)解得:]2,0[22222x 41∈-+=即当22222x 41-+=时,原函数的值域为:]21,0[+注:由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部分剔除。
1. 直接观察法对于一些比较简单的函数,通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域例1. 求函数的值域。
解:∵∴显然函数的值域是:2. 配方法配方法是求二次函数值域最基本的方法之一。
例2. 求函数的值域。
解:将函数配方得:∵由二次函数的性质可知:当x=1时,,当x=-1时,故函数的值域是:[4,8]3. 判别式法例3. 求函数的值域。
解:两边平方整理得:(1)∵∴解得:但此时的函数的定义域由,得由,仅保证关于x的方程:在实数集R有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由求出的范围可能比y的实际范围大,故不能确定此函数的值域为。
可以采取如下方法进一步确定原函数的值域。
∵∴∴代入方程(1)解得:即当时,原函数的值域为:注:由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部分剔除。
4. 反函数法直接求函数的值域困难时,可以通过求其原函数的定义域来确定原函数的值域。
例4. 求函数值域。
解:由原函数式可得:则其反函数为:,其定义域为:故所求函数的值域为:5. 函数有界性法直接求函数的值域困难时,可以利用已学过函数的有界性,反客为主来确定函数的值域。
例5. 求函数的值域。
解:由原函数式可得:,可化为:即∵∴即解得:故函数的值域为6. 函数单调性法例6. 求函数的值域。
解:令则在[2,10]上都是增函数所以在[2,10]上是增函数当x=2时,当x=10时,故所求函数的值域为:例7. 求函数的值域。
解:原函数可化为:令,显然在上为无上界的增函数所以,在上也为无上界的增函数所以当x=1时,有最小值,原函数有最大值显然y>0,故原函数的值域为7. 换元法通过简单的换元把一个函数变为简单函数,其题型特征是函数解析式含有根式或三角函数公式模型,换元法是数学方法中几种最主要方法之一,在求函数的值域中同样发挥作例8. 求函数的值域。
函数值域的求法求函数的值域时,要明确两点:一是函数值域的概念,二是函数的定义域和对应关系。
常用的方法有:观察法、换元法、配方法、判别式法、数形结合法、分离常数法、反表示法、中间变量值域法等。
(1)观察法:有的函数结构并不复杂,可以通过对解析式的简单变形和观察,利用熟知的函数的值域求出函数的值域。
如函数211xy +=的值域{}10|≤<y y 。
(2)换元法:运用换元,将已知的函数转化为值域容易确定的另一函数,从而求得原函数的值域。
例如:形如d cx b ax y +±+=(d c b a ,,,均为常数,0≠ac )的函数常用此法。
(3)配方法:若函数是二次函数的形式,即可化为()02≠++=a c bx ax y 型的函数,则可通过配方后再结合二次函数的性质求值域,但要注意给定区间上二次函数最值得求法。
如求函数32+-=x x y 的值域,因为()2212≥+-=x y ,所以所求函数的值域为[)∞+,2。
(4)判别式法:求形如fex dx c bx ax y ++++=22(f e d c b a ,,,,,不同时为0)的值域,常利用去分母的形式,把函数转化为关于x 的一元二次方程,通过方程有实根,判别式0≥∆,求出y 的取值范围,即得到函数的值域。
(5)数形结合法:有些函数的图像比较容易画出,可以通过函数的图像得出函数的值域;或者分段函数也常用画出函数图像的方法判断出函数的值域。
例如:12--+=x x y 。
(6)分离常数法:形如()0≠++=a b ax d cx y 的函数,经常采用分离常数法,将bax d cx ++变形为()b ax a bc d a c b ax a bcd b ax ac +-+=+-++,再结合x 的取值范围确定b ax a bcd +-的取值范围,从而确定函数的值域。
如求函数112+-=x x y 的值域时,因为132+-=x y ,且013≠+x ,所以2≠y ,所以函数的值域为{}2,|≠∈y R y y 且。
1. 直接观察法对于一些比较简单的函数,通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域例1. 求函数的值域。
解:∵∴显然函数的值域是:2. 配方法配方法是求二次函数值域最基本的方法之一。
例2. 求函数的值域。
解:将函数配方得:∵由二次函数的性质可知:当x=1时,,当x=-1时,故函数的值域是:[4,8]3. 判别式法例3. 求函数的值域。
解:两边平方整理得:(1)∵∴解得:但此时的函数的定义域由,得由,仅保证关于x的方程:在实数集R有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由求出的范围可能比y的实际范围大,故不能确定此函数的值域为。
可以采取如下方法进一步确定原函数的值域。
∵∴∴代入方程(1)解得:即当时,原函数的值域为:注:由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部分剔除。
4. 反函数法直接求函数的值域困难时,可以通过求其原函数的定义域来确定原函数的值域。
例4. 求函数值域。
解:由原函数式可得:则其反函数为:,其定义域为:故所求函数的值域为:5. 函数有界性法直接求函数的值域困难时,可以利用已学过函数的有界性,反客为主来确定函数的值域。
例5. 求函数的值域。
解:由原函数式可得:,可化为:即∵∴即解得:故函数的值域为6. 函数单调性法例6. 求函数的值域。
解:令则在[2,10]上都是增函数所以在[2,10]上是增函数当x=2时,当x=10时,故所求函数的值域为:例7. 求函数的值域。
解:原函数可化为:令,显然在上为无上界的增函数所以,在上也为无上界的增函数所以当x=1时,有最小值,原函数有最大值显然y>0,故原函数的值域为7. 换元法通过简单的换元把一个函数变为简单函数,其题型特征是函数解析式含有根式或三角函数公式模型,换元法是数学方法中几种最主要方法之一,在求函数的值域中同样发挥作例8. 求函数的值域。
求函数值域常用的方法-CAL-FENGHAI.-(YICAI)-Company One12 求函数值域常用的方法(1)直接法——从自变量x 的范围出发,推出y =f(x)的取值范围;(2)二次函数法(配方法)——配方法式求“二次函数类”值域的基本方法。
形如2()()()F x af x bf x c =++的函数的值域问题,均可使用配方法。
(3)分离常数法——形如)0(≠++=a b ax d cx y 的函数,求出y 的取值范围;(4)单调性法——根据函数在定义域(或定义域的某个子集)上的单调性求出函数的值域;(5)换元法——形如d cx b ax y +±+=的函数(6)利用函数的导数——当一个函数在定义域上可导时,可据其导数求值域;(7)数形结合法——利用函数所表示的几何意义,借助几何方法或图象来求函数的值域.(8)不等式法——利用基本不等式,“)00(22>>≥+b a ab b a ,” “一正、二定、三相等”。
当条件不具备时,需要进行适当的转化基础训练:(求下列函数的值域)1:函数1y = 2. 函数12-=x y3,函数]2,3[,822-∈--=x x x y 4.函数y =5.函数12x y x 6、函数x x y --=127.函数14()3y x x =≤ 8、函数x x y 2122-+=39、 函数x x y 1+=)0(>x 10、函数 )2(4>+=x xx y强化训练:1,函数323yx 2、函数322+--=x x y3、函数xx y +-=11 4、函数y x =5、函数123+-+=x x y6、函数]1,1[,122-∈++-=x x x y7、函数]2,0[,sin 2cos 2π∈-=x x x y8、(整体换元) 已知[]0,2x ∈,求函数1224)(-•+=x x x f 的值域。
9、(三角换元) 求函数21x x y -+=值域。
求函数值域的四种方法一、观察法。
1.1 这种方法就像是我们用眼睛去打量一个人,直观又简单。
对于一些简单的函数,我们可以直接通过观察函数的性质来确定值域。
比如说一次函数y = 2x + 1,x 可以取任意实数,那随着x的变化,y也会相应地在实数范围内变化,所以这个一次函数的值域就是全体实数。
这就好比我们看一个一目了然的事情,不用费太多周折。
1.2 再看函数y = x²,因为任何实数的平方都大于等于0,所以这个函数的值域就是[0,+∞)。
这就像我们知道太阳总是从东边升起一样确定,一眼就能看出来这个函数值的范围。
二、配方法。
2.1 配方法就像是给函数做个“美容整形”。
拿二次函数y = x² 2x + 3来说,我们可以把它配方成y = (x 1)²+ 2。
因为(x 1)²大于等于0,所以y就大于等于2。
这就好比我们把一个有点杂乱的东西整理得井井有条,然后就能清楚地看到它的价值范围了。
2.2 还有函数y = -x²+ 4x 1,配方后得到y = -(x 2)²+ 3。
由于-(x 2)²小于等于0,所以这个函数的值域就是(-∞,3]。
这就像我们把一个原本模糊不清的东西,通过自己的巧手整理,让它的界限清晰起来。
2.3 配方法就像是一个神奇的魔法,能把复杂的二次函数变得简单易懂,让我们轻松地找出值域这个“宝藏”。
三、换元法。
3.1 换元法有点像“偷梁换柱”。
例如函数y = 2x + √(x 1),我们可以设t = √(x 1)(t≥0),那么x = t²+ 1。
这样原函数就变成了y = 2(t²+ 1)+ t = 2t²+ t + 2。
这就把原来带根号的复杂函数转化成了一个二次函数,然后我们就可以用配方法或者观察法来求值域了。
这就像我们在一个迷宫里,找到了一条新的通道,一下子豁然开朗。
3.2 再比如函数y = x + √(1 x²),我们设x = sinθ(-π/2≤θ≤π/2),那么原函数就变成了y = sinθ+ cosθ。
函数定义域值域求法(全十一种)高中函数定义域和值域的求法总结一、常规型常规型是指已知函数的解析式,求函数的定义域和值域。
解法是由解析式有意义列出关于自变量的不等式或不等式组,解此不等式(或组)即得原函数的定义域。
例如,对于函数 $y=\frac{x^2-2x-15}{|x+3|-8}$,要使函数有意义,则必须满足 $x^2-2x-15\geq 0$ 且 $|x+3|\neq 8$。
解得$x\leq -3$ 或 $x\geq 5$,且 $x\neq -11$ 或 $x\neq 5$。
将两个条件求交集得 $x\leq -3$ 且 $x\neq -11$ 或 $x>5$,即函数的定义域为 $\{x|x\leq -3\text{ 且 }x\neq -11\}\cup\{x|x>5\}$。
二、抽象函数型抽象函数型是指没有给出解析式的函数,需要根据已知条件求解。
一般有两种情况:1)已知 $f(x)$ 的定义域,求 $f[g(x)]$ 的定义域。
解法是:已知 $f(x)$ 的定义域为 $[a,b]$,则 $f[g(x)]$ 的定义域为解$a\leq g(x)\leq b$。
例如,已知 $f(x)$ 的定义域为 $[-2,2]$,求 $f(x^2-1)$ 的定义域。
令 $-2\leq x^2-1\leq 2$,得 $-1\leq x^2\leq 3$,即 $-|x|\leq x\leq |x|$。
因此,$-3\leq x\leq 3$,即函数的定义域为$\{x|-3\leq x\leq 3\}$。
2)已知 $f[g(x)]$ 的定义域,求 $f(x)$ 的定义域。
解法是:已知 $f[g(x)]$ 的定义域为 $[a,b]$,则 $f(x)$ 的定义域为$g(x)$ 的值域。
例如,已知 $f(2x+1)$ 的定义域为 $[1,2]$,求 $f(x)$ 的定义域。
因为 $1\leq x\leq 2$,所以 $2\leq 2x\leq 4$,$3\leq2x+1\leq 5$。
1.直接观察法对于一些比较简单的函数,通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域例1.求函数的值域。
解:∵?∴显然函数的值域是:2.配方法?配方法是求二次函数值域最基本的方法之一。
例2.求函数的值域。
解:将函数配方得:∵由二次函数的性质可知:当x=1时,,当x=-1时,故函数的值域是:[4,8]3.判别式法例3.求函数的值域。
解:两边平方整理得:(1)∵?∴解得:但此时的函数的定义域由,得由,仅保证关于x的方程:在实数集R有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由?求出的范围可能比y的实际范围大,故不能确定此函数的值域为。
可以采取如下方法进一步确定原函数的值域。
∵?∴∴代入方程(1)解得:?即当时,原函数的值域为:注:由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部分剔除。
4.反函数法直接求函数的值域困难时,可以通过求其原函数的定义域来确定原函数的值域。
例4.求函数值域。
解:由原函数式可得:则其反函数为:,其定义域为:故所求函数的值域为:5.函数有界性法直接求函数的值域困难时,可以利用已学过函数的有界性,反客为主来确定函数的值域。
例5.求函数的值域。
解:由原函数式可得:,可化为:?即∵?∴即?解得:故函数的值域为6.函数单调性法例6.求函数的值域。
解:令?则在[2,10]上都是增函数所以在[2,10]上是增函数当x=2时,当x=10时,故所求函数的值域为:例7.求函数的值域。
解:原函数可化为:令,显然在上为无上界的增函数所以,在上也为无上界的增函数所以当x=1时,有最小值,原函数有最大值显然y>0,故原函数的值域为7.换元法通过简单的换元把一个函数变为简单函数,其题型特征是函数解析式含有根式或三角函数公式模型,换元法是数学方法中几种最主要方法之一,在求函数的值域中同样发挥作?例8.求函数的值域。
解:因即故可令∴∵∴∴故所求函数的值域为例9.求函数的值域。