例题分析
例3 已知点A(1,2), B(2, 7),在x轴上求一点P,使 得 | PA|| PB |,并求| PA|的值.
解:设所求点为P(x,0),于是有
|PA| (x1)2 (0 2)2 x2 2x 5 |PB| (x 2)2 (0 7)2 x2 4x11
新课标人教版课件系列
《高中数学》
必修2
3.3.2《两点间的距离》
教学目标
• 使学生掌握两点间距离公式的推导,能 记住公式,会熟练应用公式解决问题, 会建立直角坐标系来解决几何问题,学 会用代数方法证明几何题。
• 教学重点:两点间距离公式及其应用。 • 教学难点:例4的教学是难点。
两点间的距离
已知平面上两点P1(x1,y1), P2(x2,y22
o
x
y
P2
P1
o
x
| P1P2 || x2 x1 |
| P1P2 || y2 y1 |
练习
1、求下列两点间的距离:
(1)、A(6,0),B(-2,0) (2)、C(0,-4),D(0,-1) (3)、P(6,0),Q(0,-2) (4)、M(2,1),N(5,-1) (5)、A(2, 4),B(2, -7) (6)、C(-2, -8),D(-2, 7) (7)、O(0, 0),P(3, 4) 2.已知点A(a, -5)与B(0, 10)间的距离是17,求a的值.
由|P A||P B|得 x2 2x 5 x2 4x11
解得x=1,所以所求点P(1,0)
|PA| (11)2 (0 2)2 2 2
练习
2、求在x轴上与点A(5,12)的距离为13的坐标; 3、已知点P的横坐标是7,点P与点N(-1,5)间的 距离等于10,求点P的纵坐标。