逻辑门电路知识
- 格式:ppt
- 大小:842.51 KB
- 文档页数:33
数字逻辑电路基础知识整理数字逻辑电路是电子数字系统中的基础组成部分,用于处理和操作数字信号。
它由基本的逻辑门和各种组合和顺序逻辑电路组成,可以实现各种功能,例如加法、减法、乘法、除法、逻辑运算等。
下面是数字逻辑电路的一些基础知识整理:1. 逻辑门:逻辑门是数字逻辑电路的基本组成单元,它根据输入信号的逻辑值进行逻辑运算,并生成输出信号。
常见的逻辑门包括与门、或门、非门、异或门等。
2. 真值表:真值表是描述逻辑门输出信号与输入信号之间关系的表格,它列出了逻辑门的所有输入和输出可能的组合,以及对应的逻辑值。
3. 逻辑函数:逻辑函数是描述逻辑门输入和输出信号之间关系的数学表达式,可以用来表示逻辑门的操作规则。
常见的逻辑函数有与函数、或函数、非函数、异或函数等。
4. 组合逻辑电路:组合逻辑电路由多个逻辑门组合而成,其输出信号仅取决于当前的输入信号。
通过适当的连接和布线,可以实现各种逻辑操作,如加法器、多路选择器、比较器等。
5. 顺序逻辑电路:顺序逻辑电路由组合逻辑电路和触发器组成,其输出信号不仅取决于当前的输入信号,还取决于之前的输入信号和系统状态。
顺序逻辑电路可用于存储和处理信息,并实现更复杂的功能,如计数器、移位寄存器、有限状态机等。
6. 编码器和解码器:编码器将多个输入信号转换成对应的二进制编码输出信号,解码器则将二进制编码输入信号转换成对应的输出信号。
编码器和解码器可用于信号编码和解码,数据传输和控制等应用。
7. 数字信号表示:数字信号可以用二进制表示,其中0和1分别表示低电平和高电平。
数字信号可以是一个比特(bit),表示一个二进制位;也可以是一个字(word),表示多个二进制位。
8. 布尔代数:布尔代数是逻辑电路设计的数学基础,它通过符号和运算规则描述了逻辑门的操作。
布尔代数包括与、或、非、异或等基本运算,以及与运算律、或运算律、分配律等运算规则。
总的来说,数字逻辑电路是由逻辑门和各种组合和顺序逻辑电路组成的,它可以实现各种基本逻辑运算和数字信号处理。
集成逻辑门电路基本知识1. 引言集成逻辑门电路是现代数字电路的基础,广泛应用于计算机、通信、控制等领域。
了解集成逻辑门电路的基本知识对于理解数字电路的原理和设计至关重要。
本文将介绍集成逻辑门电路的基础概念、分类和应用。
2. 集成逻辑门电路的概述集成逻辑门电路是由多个逻辑门组成的电路,逻辑门通过控制输入端的电信号,产生特定的输出信号。
逻辑门的种类包括与门、或门、非门、与非门、或非门、异或门等。
3. 集成逻辑门电路的分类3.1 与门与门是最基本的逻辑门之一,其输入端都要为高电平时,输出端才会为高电平。
与门的符号为“&”或“∩”,常用的与门有AND、NAND等类型。
3.2 或门或门是另一种基本的逻辑门,只要输入端中有一个为高电平,则输出端为高电平。
或门的符号为“|”或“∪”,常用的或门有OR、NOR等类型。
3.3 非门非门是最简单的逻辑门之一,若输入端为高电平,则输出端为低电平;若输入端为低电平,则输出端为高电平。
非门的符号为“!”或“¬”。
3.4 异或门异或门是比较特殊的逻辑门,当输入端中只有一个为高电平时,输出端为高电平;否则,输出端为低电平。
异或门的符号为“⊕”或“≠”。
4. 集成逻辑门电路的应用集成逻辑门电路可以用于各种数字电路的设计和实现,以下是集成逻辑门电路的一些常见应用场景:4.1 逻辑运算集成逻辑门电路可以实现各种逻辑运算,例如用与门组成加法器、用异或门实现比较器等。
逻辑运算是计算机和数字电路的基础。
4.2 存储器设计存储器是计算机系统中重要的组成部分,集成逻辑门电路可以用于存储器的设计和实现。
常见的存储器包括静态随机存取存储器(SRAM)和动态随机存取存储器(DRAM)。
4.3 时序电路设计时序电路是处理与时间有关的数字信号的电路,集成逻辑门电路可以用于时序电路的设计和实现。
时序电路广泛应用于计时器、时钟、触发器等领域。
5. 总结集成逻辑门电路是数字电路中的基本组成单元,通过不同逻辑门的组合,可以实现各种逻辑运算和功能。
逻辑门电路有关知识一、逻辑门电路有关概念1、逻辑所谓逻辑是指条件与结果之间的关系。
最基本的逻辑关系是与、或、非。
2、逻辑电路输入与输出信号之间存在一定逻辑关系的电路称为逻辑电路。
3、门所谓门就是一种开关,它能按照一定的条件去控制信号的通过或不通过。
4、门电路门电路是一种具有多个输入端和一个输出端的开关电路。
门电路是数字电路的基本单元。
5、逻辑门电路门电路的输入和输出之间存在一定的逻辑关系(因果关系),所以门电路又称为逻辑门电路。
逻辑门电路是指能实现基本和常用逻辑运算的电子电路,也是集成电路上的基本组件。
最基本的逻辑门是与门、或门和非门。
6、正、负逻辑规定低电平为“0”,高电平为“1”,称为正逻辑;反之,高电平为“0”,低电平为“1”,称为负逻辑。
二、基本逻辑门电路1、与门电路实现与逻辑功能的电路叫与门电路。
1)与门是一个能够实现逻辑乘运算的、多端输入、单端输出的逻辑电路,逻辑函数式为:F=A·B。
记忆口诀为:有0出0,全1才1。
2)二极管与门电路,输入端A、B代表条件,输出端F代表结果。
有多个输入端,一个输出端。
当所有的输入同时为高电平(逻辑1)时,输出才为高电平,否则输出为低电平(逻辑0)。
当U A=U B=0时,D1、D2均导通,输出U F被限制在0.7V;当U A=0V,U B=3V时,D1先导通,U F=0.7V,D2承受反压而截止;当U A=3V,U B-=0V 时,D2先导通,D1承受反压而截止;当U A=U B=3V时,D1,D2导通,输出端电压U F=3.7V。
若忽略二极管压降,高电平用1、低电平用0代替,其结果与真值表是一致的,与门电路逻辑符号。
2、或门电路实现或逻辑功能的电路叫或门电路。
或门是一个能够实现逻辑加运算的、多端输入、单端输出的逻辑电路,逻辑函数式为:F=A+B。
记忆口诀为:有1出1,全0才0。
3、非门电路实现非逻辑功能的电路叫非门电路,有时又叫反相缓冲器。
计算机基础知识解密计算机中的逻辑门电路在现代社会中,计算机已经成为我们生活中不可或缺的一部分。
但是很少有人知道,计算机内部的逻辑门电路是如何工作的。
本文将深入探讨计算机中的逻辑门电路,揭示其背后的原理和工作方式。
一、逻辑门的概念和分类逻辑门是计算机内部最基本的电路元件之一,主要负责处理和操作二进制数据。
常见的逻辑门有与门(AND)、或门(OR)、非门(NOT)以及异或门(XOR)。
这些逻辑门可以根据不同的输入信号进行逻辑运算,并产生相应的输出信号。
二、与门(AND)的工作原理与门是最常用的逻辑门之一。
它的输入端有两个或多个信号,只有当所有输入信号都为1时,才会产生输出信号1;否则,输出信号为0。
与门的工作原理是通过晶体管的开关控制来实现的,其中每个输入信号都与一个晶体管相连。
三、或门(OR)的工作原理或门也是常见的逻辑门,它的输入端同样有两个或多个信号。
只要有一个输入信号为1,输出信号就会为1;只有所有输入信号都为0,输出信号才为0。
与门的实现方式与与门类似,通过晶体管的开关控制来实现不同输入信号的逻辑运算。
四、非门(NOT)的工作原理非门是最简单的逻辑门之一,它只有一个输入信号。
当输入信号为1时,输出信号为0;当输入信号为0时,输出信号为1。
非门的实现方式是通过晶体管的切换控制来实现的。
五、异或门(XOR)的工作原理异或门是比较特殊的逻辑门,它的输入端同样有两个信号。
当两个输入信号相同(0或1)时,输出信号为0;当两个输入信号不同时,输出信号为1。
异或门的实现方式与其他逻辑门有所不同,需要使用多个晶体管以及电阻和电容等元件来实现。
六、逻辑门的组合运算逻辑门可以通过不同的组合运算实现更复杂的逻辑功能。
例如,可以通过将与门、或门和非门进行组合,来实现逻辑电路中的加法器和减法器等功能。
这些组合电路通常有多个输入和多个输出,可以实现更加复杂的运算和数据处理。
七、逻辑门的应用逻辑门电路在计算机中的应用非常广泛。
基本逻辑门电路1.基本概念在数字电路中,门电路是最基本的逻辑元件,它的应用极为广泛。
所谓门就是一种开关,它能按照一定的条件去控制数字信号通过或不通过。
门电路的输入信号和输出信号之间存在一定的逻辑关系,所以门电路又称为逻辑门电路。
基本逻辑门电路有与门、或门和非门,逻辑门电路可以用二极管、三极管等分立元件组成,更常用的是集成门电路。
2. 基本逻辑关系逻辑电路的基本逻辑关系有“与逻辑”、“或逻辑”和“非逻辑”。
(1) 与逻辑“与”逻辑是指当决定某件事的几个条件全部具备时,该件事才会发生,这种因果关系称为“与”逻辑关系,实现“与”逻辑关系的电路称为“与”门电路。
例如在图1所示的照明电路中,开关A和B串联,只有当A“与”B同时接通时(条件),电灯才亮(结果),电路具有“与”逻辑功能。
“与”逻辑可用下式表示B=F⋅A图1 “与”门电路举例式中小圆点“.”表示A、B的“与”运算,又称逻辑乘,应用时往往省略“.”。
(2)“或”逻辑“或”逻辑是指当决定某件事的几个条件中,只要有一个条件具备,该件事就会发生,这种因果关系称为“或”逻辑关系,实现“或”逻辑关系的电路称为“或”门电路。
例如在图2所示的照明电路中,开关A和B关联,只要开关A “或”B有一闭合,灯就会亮,所以图2电路具有“或”逻辑功能。
“或”逻辑可用下式表示B=AF+图2 “或”门电路举例式中符号“+”表示A 、B “或”运算,又称逻辑加。
3.“非”逻辑在逻辑关系中,“非”就是否定或相反的意思。
实现“非”逻辑关系的电路称为“非”门电路。
图3所示照明电路中,当开关A 断开(“0”)时,灯亮(“1”);开关A 合上(“1”)时,灯不亮(“0”)。
这表示条件和结果是相反的逻辑关系,这种关系称为“非”逻辑关系,所以图3电路具有“非”逻辑功能。
可写为A F =图3 “非”门电路式中A 上的短横线表示“非”的意思,读作“A 非”或“非A ”。
能够实现逻辑运算的电路称为逻辑门电路。
数电逻辑门电路逻辑门电路是数字电路中常见的一种电路结构,用于处理不同的逻辑运算和控制信号。
逻辑门电路通常由不同类型的逻辑门组成,如与门、或门、非门、异或门等。
在这篇文章中,我们将介绍几种常见的逻辑门电路以及它们的应用。
1. 与门电路与门电路是最基本的逻辑门之一,其功能是将两个输入信号进行逻辑与运算,输出结果为如果两个输入信号同时为高电平时输出高电平,否则输出低电平。
与门电路通常用于逻辑运算和控制信号的处理,比如电脑中的逻辑电路、开关控制等。
2. 或门电路或门电路是另一种常见的逻辑门,其功能是将两个输入信号进行逻辑或运算,输出结果为如果任一输入信号为高电平时输出高电平,否则输出低电平。
或门电路也广泛应用于逻辑运算和控制信号处理中,例如电脑中的逻辑电路、开关控制等。
3. 非门电路非门电路是一种单输入单输出的逻辑门,其功能是将输入信号取反输出,即如果输入信号为高电平则输出低电平,如果输入信号为低电平则输出高电平。
非门电路通常用于信号反转、逻辑反相等应用。
4. 异或门电路异或门电路是一种常见的逻辑门,其功能是将两个输入信号进行逻辑异或运算,输出结果为如果两个输入信号不相同则输出高电平,否则输出低电平。
异或门电路在数字电路设计中经常被使用,例如数据的误码检测、加法器电路等。
以上是几种常见的逻辑门电路,下面我们将介绍一个简单的逻辑门电路示例:4位全加器电路。
4位全加器电路是由4个异或门、3个与门和1个或门组成的逻辑电路,用于实现4位二进制数的加法运算。
该电路的原理是将两个4位二进制数相加,得到和输出以及进位输出。
当输入信号为A3-A0、B3-B0时,输出信号为S3-S0代表和值,C代表进位位。
在4位全加器电路中,每个异或门接收两个输入信号A和B,输出一个异或运算结果;每个与门接收三个输入信号A、B和C_in,输出一个与运算结果;一个或门接收四个输入信号S0-S3,输出一个或运算结果。
将这些逻辑门按照接线图正确连接,就可以实现全加器电路的功能。
数字电路逻辑门知识点总结一、基本概念1.1 逻辑门的定义逻辑门是数字电路中的基本组成元件,它们用于执行逻辑运算。
逻辑门有不同的类型,比如AND门、OR门、NOT门等。
1.2 逻辑门的功能不同类型的逻辑门执行不同的逻辑运算。
比如,AND门执行逻辑乘法运算,OR门执行逻辑加法运算,而NOT门执行逻辑取反运算。
1.3 逻辑门的符号每种类型的逻辑门都有自己的标准符号,用于表示其在电路图中的位置和连接方式。
比如,AND门的标准符号是一个带有圆点的直线,表示其执行逻辑与运算。
1.4 逻辑门的真值表每种类型的逻辑门都有一个对应的真值表,用于描述其输入和输出之间的关系。
真值表通常包括所有可能的输入组合,以及其对应的输出。
二、基本逻辑门2.1 AND门AND门是逻辑与门的简称,它有两个输入和一个输出。
当所有输入均为高电平时,输出为高电平;否则,输出为低电平。
2.2 OR门OR门是逻辑或门的简称,它同样有两个输入和一个输出。
当任意一个输入为高电平时,输出为高电平;否则,输出为低电平。
2.3 NOT门NOT门是逻辑非门的简称,它只有一个输入和一个输出。
当输入为高电平时,输出为低电平;当输入为低电平时,输出为高电平。
2.4 XOR门XOR门是独占或门的简称,它同样有两个输入和一个输出。
当任一输入为高电平,另一个输入为低电平时,输出为高电平;否则,输出为低电平。
2.5 NAND门NAND门是与非门的简称,它同样有两个输入和一个输出。
当所有输入均为高电平时,输出为低电平;否则,输出为高电平。
2.6 NOR门NOR门是或非门的简称,它同样有两个输入和一个输出。
当任意一个输入为高电平时,输出为低电平;否则,输出为高电平。
2.7 XNOR门XNOR门是独占或非门的简称,它同样有两个输入和一个输出。
当两个输入相等时,输出为高电平;否则,输出为低电平。
三、逻辑门的组合3.1 逻辑门的串联多个逻辑门可以串联在一起,形成更复杂的逻辑功能。
逻辑电路的基础知识
逻辑电路是电子学中的一个分支,它主要研究数字信号的处理和控制。
逻辑电路由门电路组成,门电路基本上是由晶体管、二极管、电容等元器件组成的,每个门电路都有一个逻辑功能,在数字电路中广泛应用。
逻辑电路的基础知识包括以下内容:
1. 逻辑门电路的分类:逻辑电路主要分为与门、或门、非门、异或门等多种类型的逻辑门电路。
2. 逻辑门电路的真值表:逻辑门电路的真值表是描述逻辑门电路输入和输出关系的重要工具。
3. 逻辑门电路的布尔代数:逻辑门电路可以用布尔代数表示,即将逻辑门电路的输入和输出用逻辑运算符进行表达。
4. 逻辑门电路的运算规律:逻辑门电路有多种运算规律,例如分配律、结合律、德摩根定理等。
5. 逻辑门电路的电路图和符号:逻辑门电路由于运用非常广泛,因此需要有相应的电路图和符号进行标识与表示。
6. 逻辑门电路的组合逻辑电路和时序逻辑电路:逻辑门电路根据其功能可分为组合逻辑电路和时序逻辑电路,前者处理输入信号的瞬时状态,后者处理输入信号的时序关系。
7. 逻辑门电路的应用:逻辑门电路应用广泛,例如计算机、控制器、家用电器等都需要用到逻辑门电路。
逻辑门电路基础知识《嘿,聊聊逻辑门电路基础知识那些事儿》各位小伙伴们,今天咱们来唠唠逻辑门电路基础知识。
这玩意儿啊,听起来好像挺玄乎,但别怕,跟着我,保证让你轻轻松松就搞懂。
你就把逻辑门电路想象成是一群特别有个性的小家伙在那儿工作。
这些小家伙呢,就专门负责处理一些信息,决定哪些该通过,哪些得拦下来。
比如说那个与门吧,它可挑剔了,就像个严格的海关官员。
只有两边输入的都是“真”,它才会让信息通过。
这就好比你想去一个特别棒的派对,光你自己想去不行,还得有个特别铁的伙伴也想去,这才能去成,不然门儿都没有。
还有那个或门呢,就豁达多啦!只要两边输入有一个是“真”,它就会放行。
这就像你今天可以吃蛋糕,也可以吃冰淇淋,只要你想吃其中一个,那就行啦,不用两个都吃,或门就会给你放行。
至于非门,那更是个有趣的家伙。
它就像是个爱捣蛋的小精灵,专门和输入的信息对着干。
输入个“真”,它非得给你弄成个“假”。
就好像你说今天天气真好,它就偏要说“才不是呢,天气很差”。
学习逻辑门电路基础知识的时候,就像在玩一个解谜游戏。
你得搞清楚这些小家伙们的脾气,才能让它们好好为你干活呀。
有时候可能会觉得有点头疼,别急呀,慢慢来。
这就跟搭积木似的,一块一块地往上搭,总会搭出漂亮的城堡。
我还记得我刚开始学的时候啊,也是一头雾水。
但后来我就把那些复杂的电路图想象成是我自己设计的一个智能小世界,这些逻辑门就是小世界里的居民,我得让他们和谐共处。
这么一想,是不是觉得还挺有意思的呢?总之呢,逻辑门电路基础知识虽然看起来有点难,但只要你有耐心,肯去钻研,肯定能搞得定。
而且啊,等你掌握了以后,你就会发现自己好像打开了一扇通往新世界的大门,那里面充满了各种神奇的玩意儿。
小伙伴们,加油哦,和我一起去探索这个有趣的逻辑门电路世界吧!。
1 . 1 = 1数字电路基础知识1 、逻辑门电路 (何为门)2 、真值表3 、 卡诺图4 、3 线-8 线译码器的应用5 、555 集成芯片的应用一 . 逻辑门电路 (何为门)在逻辑代数中, 最基本的逻辑运算有与、或、非三种。
每种逻辑运算代表一种函数关系 这种函数关系可用逻辑符号写成逻辑表达式来描述, 也可用,文字来描述,还可用表格或图形 的方式来描述。
最基本的逻辑关系有三种: 与逻辑关系 、或逻辑关系 、非逻辑关系。
实现基本逻辑运算和常用复合逻辑运算的单元电路称为 逻辑门电路 。
例如: 实现“与” 运算的电路称为与逻辑门, 简称与门; 实现 非”运算的电路称为 与非门 。
逻辑门电路是设计数字系统的最小单元。
1.1.1 与门“与”运算是一种二元运算, 它定义了两个变量 A 和 B 的一种函数关系 。
用语句来描 述它, 这就是: 当且仅当变量 A 和 B 都为 1 时, 函数 F 为 1; 或者可用另一种方式来描述 它, 这就是: 只要变量 A 或 B 中有一个为 0, 则函数 F 为 0。
“与”运算又称为 逻辑乘运算 也叫逻辑积运算。
,“与”运算的逻辑表达式为:F = A . B式中, 乘号“. ”表示与运算,在不至于引起混淆的前提下,乘号“. ”经常被省略 。
该式可 读作: F 等于 A 乘 B , 也可读作: F 等于 A 与 B 。
表 2-1b “与”运算真值表由“与”运算关系的真值表可知“与”逻辑的运算规律为:0 . 0 = 00 . 1 = 1. 0 = 0 F = A . B0 0 0 1A 0 0 1 1B 0 1 0 1简单地记为:有 0 出 0,全 1 出 1。
由此可推出其一般形式为:A⋅0=0A⋅1=AA⋅A=A实现”逻辑运算功能的的电路称为“ 与门”。
每个与门有两个或两个以上的输入端和一个输出端,图 2-2 是两输入端与门的逻辑符号。
在实际应用中,制造工艺限制了与门电路的输入变量数目,所以实际与门电路的输入个数是有限的。
逻辑门电路的知识点归纳
1.半导体⼆极管与MOS管的开关特性
⼆极管:正向导通,反向截⽌,但是要注意的是从反向截⽌到正向导通的时间极其短,但是从正向导通到反向截⽌要经过反向恢复(电荷存储效应)的过程,这个过程实际上就是存储电荷消失的时间,也是结电容的放电时间。
(所以可以⽤于防⽌反相电流过⼤的情况)
BJT:主要分为截⽌区放⼤区以及饱和区,截⽌区的时候Ib=0相当于开关打开,断路,⽽饱和区的时候,Vce=0.2-0.3V开关闭合导通。
在放⼤区⼯作的时候,基级输⼊理想的⽅波信号,它的集电极输出的波形的起始和平顶部分都会延迟⼀段时间,有延迟时间,上升时间存储时间以及下降时间
MOS:开关输⼊信号在⾼低电平之间转换的时候,MOS要通过导通电阻对负载电容放电,输出电压变化滞后于输⼊电压的变化,⽽且他的导通电阻⼤,所以其开关特性较差。
关于MOS管的增强型与耗尽型的之间的联系区别。
增强型的MOS管指的是输⼊到栅极的电压Vgs是⼤于零的,随着栅极输⼊电压Vgs的增⼤,电流Id 也在增⼤,载流⼦不断向栅极靠拢的过程;⽽耗尽型的MOS指的是栅极输⼊电压VGs从⼀开始的时候是⼩于零的,这时候的载流⼦都集中在栅极,然后VGs绝对值变⼤的过程中,Id变⼤,同时载流⼦不断减少的过程。
门电路知识点总结门电路是数字电子电路的核心,由于它可以进行逻辑运算,因此在信息处理中被广泛使用。
门电路根据它的逻辑功能被分为与门、或门、非门、异或门等,我们下面将对门电路的知识点进行总结。
一、门电路的基本原理门电路是由晶体管或者二极管等电子元件构成的,它通过二进制信号的输入与输出,控制电流的开关来进行逻辑运算。
例如,当控制信号为高电平时,与门可以把输入的两个二进制信号进行“与”运算,输出信号变为高电平;如果控制信号为低电平,输出信号为低电平。
门电路的输入和输出信号都是二进制的高电平和低电平,高电平通常被表示为“1”,低电平通常被表示为“0”。
门电路常常被用来进行逻辑判断,例如在计算机内部进行数据处理、选择和控制等操作。
二、与门与门是最简单的门电路之一,由两个输入端和一个输出端组成。
当两个输入端都是高电平时,输出端输出高电平;反之,输出端输出低电平。
与门的符号为“∧”。
三、或门或门也是由两个输入端和一个输出端组成,当两个输入端其中一个或两个同时为高电平时,输出端将输出高电平;如果两个输入端同时为低电平,则输出高电平。
或门的符号为“∨”。
四、非门非门只有一个输入端和一个输出端,当输入端为高电平时,输出端输出低电平;反之,当输入端为低电平时,输出端输出高电平。
非门的符号为“¬”。
五、异或门异或门有两个输入端和一个输出端,当两个输入端的电平不一样时,输出端输出高电平;当两个输入端的电平一样时,输出端输出低电平。
异或门的符号为“⊕”。
六、门电路的组合门电路的逻辑运算可以通过组合不同类型的门电路实现。
组合的方式有两种,串联和并联。
串联方式是将门电路按照功能运作的顺序排列,使一个门电路的输出电平作为下一个门电路的输入电平;并联方式是将门电路的输出端连接到同一输出端,输入端通过不同的输入信号进行逻辑运算。
门电路的组合可以构建出逻辑电路,例如加法器、平衡振荡器、计数器等。
逻辑电路具有复杂的逻辑功能,因此在实际应用中被广泛使用。
实验一逻辑门电路的基本参数及逻辑功能测试一、实验目的1、了解TTL与非门各参数的意义。
2、掌握TTL与非门的主要参数的测试方法。
3、掌握基本逻辑门的功能及验证方法。
4、学习TTL基本门电路的实际应用。
5、了解CMOS基本门电路的功能。
6、掌握逻辑门多余输入端的处理方法。
二、实验仪器三、实验原理(一) 逻辑门电路的基本参数用万用表鉴别门电路质量的方法:利用门的逻辑功能判断,根据有关资料掌握电路组件管脚排列,尤其是电源的两个脚。
按资料规定的电源电压值接好(5V±10%)。
在对TTL与非门判断时,输入端全悬空,即全“1”,则输出端用万用表测应为0.4V以下,即逻辑“0”。
若将其中一输入端接地,输出端应在3.6V左右(逻辑“1”),此门为合格门。
按国家标准的数据手册所示电参数进行测试:现以手册中74LS20二-4输入与非门电参数规范为例,说明参数规范值和测试条件。
TTL与非门的主要参数空载导通电源电流ICCL (或对应的空载导通功耗PON)与非门处于不同的工作状态,电源提供的电流是不同的。
ICCL是指输入端全部悬空(相当于输入全1),与非门处于导通状态,输出端空载时,电源提供的电流。
将空载导通电源电流ICCL乘以电源电压就得到空载导通功耗PON ,即 PON= ICCL×VCC。
测试条件:输入端悬空,输出空载,VCC=5V。
通常对典型与非门要求PON<50mW,其典型值为三十几毫瓦。
2、空载截止电源电流ICCh (或对应的空载截止功耗POFF)ICCh是指输入端接低电平,输出端开路时电源提供的电流。
空载截止功耗POFF为空载截止电源电流ICCH 与电源电压之积,即 POFF= ICCh×VCC。
注意该片的另外一个门的输入也要接地。
测试条件: VCC =5V,Vin=0,空载。
对典型与非门要求POFF<25mW。
通常人们希望器件的功耗越小越好,速度越快越好,但往往速度高的门电路功耗也较大。
简单的逻辑电路(知识梳理)通常把高电势称为1,低电势称为0。
数字信号的0和1好比是事物的“是”与“非”,而处理数字信号的电路称数字电路,因此,数字电路就有了判别“是”与“非”的逻辑功能。
我们将数字电路中基本单元电路称为逻辑电路,而最基本的逻辑电路是门电路。
那么数字信号的处理模式就是:数字电路→逻辑电路→门电路知识点二─、简单的逻辑电路1、“与”门的逻辑关系,真值表和电路符号所谓门,就是一种开关,在一定条件下它允许信号通过,如果条件不满足,信号就被阻挡在“门”外。
(1)对“与”门的理解如果一个事件和几个条件相联系,当这几个条件都满足后,该事件才能发生,这种关系叫“与”逻辑关系,具有这种逻辑关系的电路称为“与”门电路,简称“与”门。
如图所示,如果把开关A闭合作为条件A满足,把开关B闭合作为条件B满足,把电灯L亮作为结果Y 成立,则“与”逻辑关系可以示意为:A YB ⎫⇒⎬⎭。
它们的逻辑关系如下表所示:条 件 结 果 开关A 开关B 灯泡Y 断 断 不亮 断 通 不亮 通 断 不亮 通通亮(2)“与”门的真值表如把开关接通定义为1,断开定义为0,灯泡亮为1,不亮为0,那么上表的情况可用下表的数学语言来描述,这种表格称为真值表。
“与”门的真值表输入输出A B Y0 0 00 1 01 0 01 1 1(3)“与”逻辑关系有两个控制条件作用会产生一个结果,当两个条件都满足时,结果才会成立,这种关系称为“与”逻辑关系。
符号:(4)“与”门的逻辑关系式:(5)波形图:(6)实验电路:2.“或”门的逻辑关系、真值表和符号(1)对“或”门的理解如果一个事件和几个条件相联系,当这几个条件中有一个满足,事件就会发生,这种关系叫“或”逻辑关系。
具有这种逻辑关系的电路称为“或”门电路,简称“或”门。
如图所示,如果把开关A 闭合当作条件A满足,把开关B 闭合当作条件B 满足,把电灯L 亮当作结果Y 成立,则“或”逻辑关系可以示意为:A Y B⎫⇒⎬⎭它们的逻辑关系如下表:(2)“或”门的真值表把开关接通定义为1,断开为0,灯泡亮为1,不亮为0,将上表制成下表,就可反映“或” 门输条件结果 开关A 开关B 灯泡Y 断 断 不亮 断 通 亮 通 断 亮 通通亮入输出关系的真值表,见下表:“或”门的真值表:输入输出A B Y0 0 00 1 11 0 11 1 1(3)“或”逻辑关系在几个控制条件中,只要有一个条件得到满足,结果就会发生,这种关系称为“或”逻辑关系。