高考最后30天冲刺:九大数学必考知识点盘点
- 格式:doc
- 大小:28.50 KB
- 文档页数:4
高考数学思想方法、九大考点与知识点总结高考数学九大核心考点回顾不管是什么考试,无非都是对各知识点的一个练习、总结,只要我们能够对各个知识点深刻了解,考试中拿高分并不难,你知道高考数学常考的知识点有哪些吗?我们不妨一起来了解一下。
九大核心的知识点:函数、三角函数,平面向量,不等式,数列,立体几何,解析几何,概率与统计,导数。
这些内容非常重要。
当然每章当中还有侧重,比如说拿函数来讲,函数概念必须清楚,函数图象变换是非常重要的一个核心内容。
此外就是函数的一种性质问题,单调性、周期性,包括后面我们还谈到连续性问题,像这些性质问题是非常重要的。
连同最值也是在函数当中重点考察的一些知识点,我想这些内容特别值得我们在后面要关注的。
再比如说像解析几何这个内容,不管理科还是文科,像直线和圆肯定是非常重要的一个内容。
理科和文科有一点差别了,比如说圆锥曲线方面,椭圆和抛物线理科必须达到的水平,双曲线理科只是了解状态就可以了。
而文科呢?椭圆是要求达到理解水平,抛物线和双曲线只是一般的了解状态就可以了。
这里需要有侧重点。
拿具体知识来讲,比如说直线当中,两条直线的位置关系,平行、垂直的关系怎么判断应该清楚。
直线和圆的位置关系应该清楚,椭圆、双曲线和抛物线的标准方程,参数之间的关系,再比如直线和椭圆的位置关系,这是值得我们特别关注的一个重要的知识内容。
这是从我的一个角度来说。
我们后面有六个大题,一般是侧重于六个重要的板块,因为现阶段不可能一个章节从头至尾,你没有时间了,必须把最重要的知识板块拿出来,比如说数列与函数以及不等式,这肯定是重要板块。
再比如说三角函数和平面向量应该是一个,解析几何和平面几何和平面向量肯定又是一个。
再比如像立体几何当中的空间图形和平面图形,这肯定是重要板块。
再后面是概率统计,在解决概率统计问题当中一般和计数原理综合在一起,最后还有一个板块是导数、函数、方程和不等式,四部分内容综合在一起。
应当说我们后面六个大题基本上是围绕着这样六个板块来进行。
高三倒计时知识点总结数学在高三的倒计时阶段,同学们需要对过去一年学习的数学知识进行全面总结,巩固基础,强化理解,以备应对即将到来的考试。
本文将对高三数学的各个知识点进行逐一梳理和总结,以便同学们能够系统地进行复习和回顾。
1. 函数与方程1.1 一次函数与二次函数1.1.1 一次函数:回顾一次函数的性质、图像以及相关概念(斜率、截距等)。
1.1.2 二次函数:复习二次函数的图像、顶点坐标、对称轴等基本要素,掌握二次函数的变形和变换。
1.2 高次函数与分式函数1.2.1 高次函数:回顾高次函数的基本图像、导数、零点与极值等概念。
1.2.2 分式函数:复习分式函数的定义域、值域,以及其图像的变化规律。
1.3 方程与不等式1.3.1 一元一次方程与一元一次不等式:回顾解一元一次方程与不等式的基本方法和步骤。
1.3.2 一元二次方程与一元二次不等式:掌握解一元二次方程与不等式的基本解法,包括配方法、因式分解法和根的判别式等。
2. 空间几何2.1 点、线、面2.1.1 点:复习点的基本定义和性质,理解点的坐标表示以及坐标系的概念。
2.1.2 线:回顾直线和曲线的特征,了解斜率和截距的计算方法。
2.1.3 面:了解平面的特点和表示方法,熟悉平面上点的位置关系,掌握平面方程的求解方法。
2.2 如何分析解决几何问题2.2.1 几何证明:复习基础几何证明的方法和技巧,包括直角三角形的性质证明、对称性质的证明等。
2.2.2 几何计算:熟悉几何图形的计算,包括面积、周长、体积等的计算方法,应用于解决实际问题。
3. 概率与统计3.1 概率3.1.1 概率基本概念:回顾概率的基本概念,了解概率计算的公式和方法。
3.1.2 古典概型:熟悉古典概型的概念和计算方法,掌握事件的互斥和独立性判断。
3.2 统计3.2.1 统计基本概念:了解统计的基本概念,包括样本、总体、频率等。
3.2.2 统计图表:复习各类统计图表的绘制方法和分析技巧,包括直方图、折线图、饼图等。
高考倒计时的知识点总结一、数学1. 几何学(1)平面几何:线段、角、三角形、四边形、圆等的性质和计算;平面图形的面积和周长计算。
(2)空间几何:直线、平面、空间图形的性质和计算;立体图形的表面积和体积计算。
2. 代数学(1)四则运算:整数、分数、小数的计算;代数式的化简和因式分解。
(2)方程与不等式:一元一次方程、一元二次方程和一元一次不等式的解法和应用。
(3)函数:函数的定义、性质和图像;函数关系的建立和分析。
3. 概率与统计(1)概率:基本概率事件和概率计算;概率统计问题的应用。
(2)统计:频数分布、均值、中位数、众数、标准差等统计概念和计算。
4. 三角学(1)三角函数的定义和性质;三角函数关系的应用。
(2)三角形的性质和计算;解三角形的相关问题。
5. 导数与积分(1)导数的概念和性质;导函数的计算和应用。
(2)不定积分和定积分的概念和计算;微积分的应用。
二、物理1. 力学(1)牛顿运动定律的应用;平抛运动和斜抛运动的计算。
(2)动能、势能和机械能的计算;能量守恒和动量守恒定律的应用。
2. 电磁学(1)静电场和电路的基本知识;电场强度和电势差的计算。
(2)电流和电阻的概念和计算;欧姆定律和基尔霍夫定律的应用。
3. 光学(1)光的传播和成像规律的理解;光的折射和全反射的计算。
(2)光的色散和光谱的现象和计算;光的波粒二象性的理解。
4. 热学(1)理想气体定律的计算;内能、热量和功的计算和转化。
(2)热力学循环和效率的计算;热传导和热辐射的基本知识。
5. 声学(1)声音的传播和声音的特性;声强、声压和声级的计算。
(2)共振和波动的现象及计算;声音的衍射和多普勒效应的理解。
三、化学1. 基本概念(1)化学反应的类型和化学方程式的平衡;摩尔的概念和计算。
(2)原子结构和元素周期表的规律;化合物的命名和结构。
2. 化学反应(1)氧化还原反应和电化学反应的应用;精细化学实验的原理和方法。
(2)酸碱中和和溶解度平衡的计算;氧化物和酸的性质和应用。
高考倒计时30天:数学要牢记九个核心考点?现在离高考时间非常近,在有限的时间里,我们复习肯定要有侧重点。
关注核心考点非常重要,核心考点包括九个核心的知识点:函数、三角函数,平面向量,不等式,数列,立体几何,解析几何,概率与统计,导数。
这些内容非常重要。
当然每章当中还有侧重,比如说拿函数来讲,函数概念必须清楚,函数图象变换是非常重要的一个核心内容。
此外就是函数的一种性质问题,单调性、周期性,包括后面我们还谈到连续性问题,像这些性质问题是非常重要的。
连同最值也是在函数当中重点考察的一些知识点,我想这些内容特别值得我们在后面要关注的。
再比如说像解析几何这个内容,不管理科还是文科,像直线和圆肯定是非常重要的一个内容。
理科和文科有一点差别了,比如说圆锥曲线方面,椭圆和抛物线理科必须达到的水平,双曲线理科只是了解状态就可以了。
而文科呢?椭圆是要求达到理解水平,抛物线和双曲线只是一般的了解状态就可以了。
这里需要有侧重点。
拿具体知识来讲,比如说直线当中,两条直线的位置关系,平行、垂直的关系怎么判断应该清楚。
直线和圆的位置关系应该清楚,椭圆、双曲线和抛物线的标准方程,参数之间的关系,再比如直线和椭圆的位置关系,这是值得我们特别关注的一个重要的知识内容。
这是从我们的一个角度来说。
与当今“教师”一称最接近的“老师”概念,最早也要追溯至宋元时期。
金代元好问《示侄孙伯安》诗云:“伯安入小学,颖悟非凡貌,属句有夙性,说字惊老师。
”于是看,宋元时期小学教师被称为“老师”有案可稽。
清代称主考官也为“老师”,而一般学堂里的先生则称为“教师”或“教习”。
可见,“教师”一说是比较晚的事了。
如今体会,“教师”的含义比之“老师”一说,具有资历和学识程度上较低一些的差别。
辛亥革命后,教师与其他官员一样依法令任命,故又称“教师”为“教员”。
我们后面有六个大题,一般是侧重于六个重要的板块,因为现阶段不可能一个章节从头至尾,你没有时间了,必须把最重要的知识板块拿出来,比如说数列与函数以及不等式,这肯定是重要板块。
高三数学九大模块的知识点高三数学可以说是中学阶段数学学习的最后一站,也是最为关键的一站。
在高三数学中,学生需要掌握并运用九大模块的知识点。
这九大模块包括代数与函数、立体几何、平面向量、数列与数学归纳法、解析几何、概率统计、三角函数、导数与微分以及积分与定积分。
代数与函数这一模块是数学学习的基础,也是高三数学的基石。
学生需要掌握代数式的化简、方程与不等式的解法、函数的性质以及函数图像的绘制等知识点。
此外,学生还需要熟练掌握函数的运算、反函数、函数的相交以及函数的最值等重要概念和技巧。
立体几何是高三数学中的一大重点。
学生需要了解各种几何体的性质,如球、圆锥、圆柱、圆台等,并能运用这些性质解决相关的问题。
此外,学生还需要掌握立体几何中的投影、截面、体积与表面积的计算。
平面向量是高三数学中的一门重要课程。
学生需要学习向量的定义、运算和性质,并能灵活运用向量解决几何问题。
此外,学生还需要掌握向量的共线、垂直以及平行等重要概念,能够准确判断和计算向量之间的关系。
数列与数学归纳法是高三数学中的一项基本内容。
学生需要了解等差数列、等比数列以及等差数列与等比数列的应用,并能够应用数列的性质解决相关问题。
此外,学生还需要熟练运用数学归纳法,能够用归纳的方法证明数学命题的正确性。
解析几何是高三数学中的一门重要课程。
学生需要学习平面坐标系、直线的方程以及圆的方程,并能够应用这些知识解决几何问题。
此外,学生还需要学习曲线的方程以及相关的性质,并能够运用曲线的性质解决相关问题。
概率统计是高三数学中的一门实用课程。
学生需要学习概率的定义与性质,掌握计算概率的方法,并能够应用概率解决实际问题。
此外,学生还需要学习统计的方法和技巧,能够进行数据的整理、分析和解读。
三角函数是高三数学中的一门基础课程。
学生需要学习三角函数的定义、性质以及图像,并能够根据图像解决相关问题。
此外,学生还需要学习三角方程、三角不等式以及三角函数的应用,能够灵活运用这些知识解决相关问题。
高考数学三轮复习九大核心考点下面是查字典数学网整理的2021年高考数学三轮复习九大核心考点,期望能够关心到同学们。
九大核心的知识点,函数、三角函数,平面向量,不等式,数列,立体几何,解析几何,概率与统计,导数。
这些内容专门重要。
因此每章当中还有侧重,比如说拿函数来讲,函数概念必须清晰,函数图象变换是专门重要的一个核心内容。
此外确实是函数的一种性质问题,单调性、周期性,包括后面我们还谈到连续性问题,像这些性质问题是专门重要的。
连同最值也是在函数当中重点考察的一些知识点,我想这些内容专门值得我们在后面要关注的。
再比如说像解析几何那个内容,不治理科依旧文科,像直线和圆确信是专门重要的一个内容。
理科和文科有一点差别了,比如说圆锥曲线方面,椭圆和抛物线理科必须达到的水平,双曲线理科只是了解状态就能够了。
而文科呢?椭圆是要求达到明白得水平,抛物线和双曲线只是一样的了解状态就能够了。
那个地点需要有侧重点。
拿具体知识来讲,比如说直线当中,两条直线的位置关系,平行、垂直的关系如何判定应该清晰。
直线和圆的位置关系应该清晰,椭圆、双曲线和抛物线的标准方程,参数之间的关系,再比如直线和椭圆的位置关系,这是值得我们专门关注的一个重要的知识内容。
这是从我们的一个角度来说。
我们后面有六个大题,一样是侧重于六个重要的板块,因为现时期不可能一个章节从头至尾,你没有时刻了,必须把最重要的知识板块拿出来,比如说数列与函数以及不等式,这确信是重要板块。
再比如说三角函数和平面向量应该是一个,解析几何和平面几何和平面向量确信又是一个。
再比如像立体几何当中的空间图形和平面图形,这确信是重要板块。
再后面是概率统计,在解决概率统计问题当中一样和计数原理综合在一起,最后还有一个板块是导数、函数、方程和不等式,四部分内容综合在一起。
“教书先生”可能是市井百姓最为熟悉的一种称呼,从最初的门馆、私塾到晚清的学堂,“教书先生”那一行当如何说也确实是让国人景仰甚或敬畏的一种社会职业。
高考数学冲刺必考考点全解析高考对于每一位学子来说,都是人生中的一次重要挑战。
而数学作为其中的重要学科,更是让众多考生又爱又恨。
在高考冲刺阶段,掌握必考考点,进行有针对性的复习,能够大大提高复习效率,增加取得高分的可能性。
接下来,让我们一起全面解析高考数学的必考考点。
一、函数与导数函数是高中数学的核心内容,在高考中占据着重要的地位。
首先是函数的性质,包括定义域、值域、单调性、奇偶性和周期性。
考生需要熟练掌握这些性质的判断方法和应用。
例如,通过求导来判断函数的单调性,利用奇偶性的定义来判断函数的奇偶性等。
其次,函数的图像也是常考的内容。
能够根据函数的表达式准确地画出函数的图像,或者通过函数的图像来分析函数的性质,都是必备的技能。
导数作为研究函数的有力工具,其应用广泛。
求导公式和法则必须牢记于心,利用导数求函数的极值、最值,以及解决函数的单调性问题,都是高考的热点。
二、三角函数三角函数是高考数学中的一个重点和难点。
要熟练掌握三角函数的基本关系式,如正弦定理、余弦定理等。
同时,对于三角函数的图像和性质,包括周期性、奇偶性、单调性等,也要了如指掌。
在解题过程中,常常需要进行三角函数的化简和求值。
这就要求考生熟练运用三角函数的诱导公式、和差公式、倍角公式等。
此外,解三角形问题也是常见的考点,通常会结合实际问题,考查考生运用三角函数知识解决问题的能力。
三、数列数列在高考中通常会有一道大题。
等差数列和等比数列的通项公式、前 n 项和公式是必须掌握的基础知识。
对于数列的递推关系,要能够通过变形转化为等差数列或等比数列来求解。
数列求和问题也是重点,如错位相减法、裂项相消法等求和方法要熟练运用。
四、立体几何立体几何主要考查考生的空间想象能力和逻辑推理能力。
直线与平面、平面与平面的位置关系是重点,要能够准确判断并进行相关的证明。
计算空间几何体的体积和表面积也是常考的内容。
掌握常见几何体的体积和表面积公式,以及通过空间向量法求空间角和距离,能够提高解题的效率。
高考数学思想方法、九大考点与知识点总结高考数学九大核心考点回顾不管是什么考试,无非都是对各知识点的一个练习、总结,只要我们能够对各个知识点深刻了解,考试中拿高分并不难,你知道高考数学常考的知识点有哪些吗?我们不妨一起来了解一下。
九大核心的知识点:函数、三角函数,平面向量,不等式,数列,立体几何,解析几何,概率与统计,导数。
这些内容非常重要。
当然每章当中还有侧重,比如说拿函数来讲,函数概念必须清楚,函数图象变换是非常重要的一个核心内容。
此外就是函数的一种性质问题,单调性、周期性,包括后面我们还谈到连续性问题,像这些性质问题是非常重要的。
连同最值也是在函数当中重点考察的一些知识点,我想这些内容特别值得我们在后面要关注的。
再比如说像解析几何这个内容,不管理科还是文科,像直线和圆肯定是非常重要的一个内容。
理科和文科有一点差别了,比如说圆锥曲线方面,椭圆和抛物线理科必须达到的水平,双曲线理科只是了解状态就可以了。
而文科呢?椭圆是要求达到理解水平,抛物线和双曲线只是一般的了解状态就可以了。
这里需要有侧重点。
拿具体知识来讲,比如说直线当中,两条直线的位置关系,平行、垂直的关系怎么判断应该清楚。
直线和圆的位置关系应该清楚,椭圆、双曲线和抛物线的标准方程,参数之间的关系,再比如直线和椭圆的位置关系,这是值得我们特别关注的一个重要的知识内容。
这是从我的一个角度来说。
我们后面有六个大题,一般是侧重于六个重要的板块,因为现阶段不可能一个章节从头至尾,你没有时间了,必须把最重要的知识板块拿出来,比如说数列与函数以及不等式,这肯定是重要板块。
再比如说三角函数和平面向量应该是一个,解析几何和平面几何和平面向量肯定又是一个。
再比如像立体几何当中的空间图形和平面图形,这肯定是重要板块。
再后面是概率统计,在解决概率统计问题当中一般和计数原理综合在一起,最后还有一个板块是导数、函数、方程和不等式,四部分内容综合在一起。
应当说我们后面六个大题基本上是围绕着这样六个板块来进行。
高考数学思想方法、九大考点与知识点总结高考数学九大核心考点回顾不管是什么考试,无非都是对各知识点的一个练习、总结,只要我们能够对各个知识点深刻了解,考试中拿高分并不难,你知道高考数学常考的知识点有哪些吗?我们不妨一起来了解一下。
九大核心的知识点:函数、三角函数,平面向量,不等式,数列,立体几何,解析几何,概率与统计,导数。
这些内容非常重要。
当然每章当中还有侧重,比如说拿函数来讲,函数概念必须清楚,函数图象变换是非常重要的一个核心内容。
此外就是函数的一种性质问题,单调性、周期性,包括后面我们还谈到连续性问题,像这些性质问题是非常重要的。
连同最值也是在函数当中重点考察的一些知识点,我想这些内容特别值得我们在后面要关注的。
再比如说像解析几何这个内容,不管理科还是文科,像直线和圆肯定是非常重要的一个内容。
理科和文科有一点差别了,比如说圆锥曲线方面,椭圆和抛物线理科必须达到的水平,双曲线理科只是了解状态就可以了。
而文科呢?椭圆是要求达到理解水平,抛物线和双曲线只是一般的了解状态就可以了。
这里需要有侧重点。
拿具体知识来讲,比如说直线当中,两条直线的位置关系,平行、垂直的关系怎么判断应该清楚。
直线和圆的位置关系应该清楚,椭圆、双曲线和抛物线的标准方程,参数之间的关系,再比如直线和椭圆的位置关系,这是值得我们特别关注的一个重要的知识内容。
这是从我的一个角度来说。
我们后面有六个大题,一般是侧重于六个重要的板块,因为现阶段不可能一个章节从头至尾,你没有时间了,必须把最重要的知识板块拿出来,比如说数列与函数以及不等式,这肯定是重要板块。
再比如说三角函数和平面向量应该是一个,解析几何和平面几何和平面向量肯定又是一个。
再比如像立体几何当中的空间图形和平面图形,这肯定是重要板块。
再后面是概率统计,在解决概率统计问题当中一般和计数原理综合在一起,最后还有一个板块是导数、函数、方程和不等式,四部分内容综合在一起。
应当说我们后面六个大题基本上是围绕着这样六个板块来进行。
2024年高考数学必考知识点总结一、函数与方程1. 一次函数与二次函数- 函数定义与函数图像- 函数的性质:定义域、值域、单调性、奇偶性、周期性等- 一次函数的表示与性质- 二次函数的表示与性质:顶点坐标、对称轴等- 一次函数与二次函数的图像变换2. 指数与对数- 指数与对数的性质:乘法规则、除法规则、幂次规则、换底公式等- 指数函数与对数函数的图像与性质- 指数方程与对数方程的解法3. 三角函数- 常用角的定义:正弦、余弦、正切、余切等- 三角函数的周期性与对称性- 三角函数的图像变换- 三角函数的性质:奇偶性、周期性、单调性等- 三角函数的主要公式与应用4. 线性方程组- 线性方程组的解的判定方法与解法- 线性方程组的应用问题二、平面几何1. 直线与曲线- 直线与平面的位置关系:平行、垂直等- 直线与曲线的交点问题- 直线方程与曲线方程的解法2. 三角形与四边形- 三角形的基本性质:内角和、外角和、中线定理、垂心、内心、外心、重心等- 三角形的判定方法- 三角形的相似与全等- 四边形的性质:平行四边形、矩形、菱形、正方形等3. 圆与圆锥曲线- 圆的性质:弦长定理、弧长定理、切线定理等- 圆与直线、圆与圆的位置关系- 圆锥曲线:椭圆、双曲线、抛物线的定义与性质三、空间几何1. 空间几何基础- 点与向量的运算与性质- 平行四边形法则与向量共线性- 点、线、面的位置关系2. 空间直线与空间曲线- 空间直线的方程与性质- 空间曲线的参数方程与性质3. 空间几何体- 空间几何体的基本概念与性质:球、柱、锥、棱柱、棱锥等- 空间几何体的体积与表面积计算四、概率与统计1. 随机事件与概率- 随机事件的基本概念与性质- 概率的定义与性质:加法原理、乘法原理等- 事件的独立性与互斥性- 概率计算:古典概型、几何概型、条件概率等2. 统计与抽样- 数据的分布:频数分布与频率分布- 统计指标:平均数、中位数、众数等- 抽样与样本调查- 点估计与区间估计3. 随机变量与概率分布- 随机变量的基本概念与性质- 离散型随机变量与连续型随机变量- 常见概率分布:二项分布、正态分布等- 期望、方差、标准差的计算与应用以上是____年高考数学必考的知识点总结,希望可以帮助你更好地准备高考。
高考最后30天冲刺:九大数学必考知识点
盘点
现在离高考时间非常近,满打满算大概30天的时间,在这样优先的时间里,我们复习肯定要有侧重点。
关注核心考点非常重要,核心考点一个是九大核心的知识点,函数、三角函数,平面向量,不等式,数列,立体几何,解析几何,概率与统计,导数。
这些内容非常重要。
当然每章当中还有侧重,比如说拿函数来讲,函数概念必须清楚,函数图象变换是非常重要的一个核心内容。
此外就是函数的一种性质问题,单调性、周期性,包括后面我们还谈到连续性问题,像这些性质问题是非常重要的。
连同最值也是在函数当中重点考察的一些知识点,我想这些内容特别值得我们在后面要关注的。
再比如说像解析几何这个内容,不管理科还是文科,像直线和圆肯定是非常重要的一个内容。
理科和文科有一点差别了,比如说圆锥曲线方面,椭圆和抛物线理科必须达到的水平,双曲线理科只是了解状态就可以了。
而文科呢?椭圆是要求达到理解水平,抛物线和双曲线只是一般的了解状态就可以了。
这里需要有侧重点。
拿具体知识来讲,比如说直线当中,两条直线的位置关系,平行、垂直的关系怎么判断应该清楚。
直线和圆的位置关系应该清楚,椭圆、双曲线和抛物线的标准方程,参数之间的
关系,再比如直线和椭圆的位置关系,这是值得我们特别关注的一个重要的知识内容。
这是从我们的一个角度来说。
单靠“死”记还不行,还得“活”用,姑且称之为“先死后活”吧。
让学生把一周看到或听到的新鲜事记下来,摒弃那些假话套话空话,写出自己的真情实感,篇幅可长可短,并要求运用积累的成语、名言警句等,定期检查点评,选择优秀篇目在班里朗读或展出。
这样,即巩固了所学的材料,又锻炼了学生的写作能力,同时还培养了学生的观察能力、思维能力等等,达到“一石多鸟”的效果。
我们后面有六个大题,一般是侧重于六个重要的板块,因为现阶段不可能一个章节从头至尾,你没有时间了,必须把最重要的知识板块拿出来,比如说数列与函数以及不等式,这肯定是重要板块。
再比如说三角函数和平面向量应该是一个,解析几何和平面几何和平面向量肯定又是一个。
再比如像立体几何当中的空间图形和平面图形,这肯定是重要板块。
再后面是概率统计,在解决概率统计问题当中一般和计数原理综合在一起,最后还有一个板块是导数、函数、方程和不等式,四部分内容综合在一起。
要练说,得练听。
听是说的前提,听得准确,才有条件正确模仿,才能不断地掌握高一级水平的语言。
我在教学中,注意听说结合,训练幼儿听的能力,课堂上,我特别重视教师的语言,我对幼儿说话,注意声音清楚,高低起伏,抑扬有致,富有吸引力,这样能引起幼儿的注意。
当我发现有的幼
儿不专心听别人发言时,就随时表扬那些静听的幼儿,或是让他重复别人说过的内容,抓住教育时机,要求他们专心听,用心记。
平时我还通过各种趣味活动,培养幼儿边听边记,边听边想,边听边说的能力,如听词对词,听词句说意思,听句子辩正误,听故事讲述故事,听谜语猜谜底,听智力故事,动脑筋,出主意,听儿歌上句,接儿歌下句等,这样幼儿学得生动活泼,轻松愉快,既训练了听的能力,强化了记忆,又发展了思维,为说打下了基础。
应当说我们后面六个大题基本上是围绕着这样六个板块来
进行。
这六个板块肯定是我们的核心内容之一。
再比如说现在我们高考当中要体现对数学思想方法的考察,数学思想方法以前考察四个方面,函数和方程思想,数形结合思想,分类讨论,等价转换,现在又增加了三个,原来这四个方面当中有两类做了改造。
函数和方程思想,数形结合思想,分类讨论改成了分类讨论与整合,等价转换转为划归与转化。
有限和无限思想,特殊和一般的思想。
像北京往年考了一道题,一个班里面设计一个八边形的班徽,给了等腰三角形边长为一,现在让你考虑面积多大,按照常规说法,肯定需要考虑四个三角形面积,二分之一乘上一再乘上一,再乘上四,中间还是正方形,利用余弦定理求等腰三角形底边的平方就可以了,最后再一加就是我们要的面积。
这个问题并不是很麻烦,不管怎么说肯定需要计算,
你至少知道三角形面积怎么求,还得考虑余弦定理,再相加还有运算问题,说不定哪个地方没有记准,可能出现这样那样的问题。
其实,任何一门学科都离不开死记硬背,关键是记忆有技
巧,“死记”之后会“活用”。
不记住那些基础知识,怎么会向高层次进军?尤其是语文学科涉猎的范围很广,要真正提高学生的写作水平,单靠分析文章的写作技巧是远远不够的,必须从基础知识抓起,每天挤一点时间让学生“死记”名篇佳句、名言警句,以及丰富的词语、新颖的材料等。
这样,就会在有限的时间、空间里给学生的脑海里注入无限的内容。
日积月累,积少成多,从而收到水滴石穿,绳锯木断的功效。