高考数学高考必备知识点总结
- 格式:docx
- 大小:977.10 KB
- 文档页数:16
新高考数学归纳知识点新高考数学的知识点归纳是帮助学生系统地掌握高中数学知识,提高解题能力的重要环节。
以下是对新高考数学知识点的归纳总结:一、集合与函数- 集合的概念:元素、子集、并集、交集、补集等。
- 函数的概念:定义域、值域、单调性、奇偶性、周期性等。
- 函数的表示方法:解析法、图像法、列表法等。
二、数列- 数列的基本概念:通项公式、前n项和等。
- 等差数列与等比数列:通项公式、求和公式。
- 数列的极限:无穷等比数列的极限、单调有界定理等。
三、三角函数与三角恒等变换- 三角函数的定义:正弦、余弦、正切等。
- 三角函数的基本性质:周期性、奇偶性、单调性等。
- 三角恒等变换:和角公式、差角公式、倍角公式、半角公式等。
四、解析几何- 平面直角坐标系:点的坐标、直线方程、圆的方程等。
- 空间直角坐标系:空间直线与平面的方程。
- 圆锥曲线:椭圆、双曲线、抛物线的性质与方程。
五、立体几何- 空间几何体:柱、锥、台、球等的体积与表面积。
- 空间直线与平面的位置关系:平行、垂直、相交等。
- 空间向量:向量的加减、数乘、点积、叉积等。
六、概率与统计- 随机事件的概率:古典概型、几何概型、条件概率等。
- 统计初步:数据的收集、整理、描述等。
- 离散型随机变量及其分布列:期望、方差等。
七、导数与微分- 导数的概念:导数的定义、几何意义、物理意义等。
- 基本初等函数的导数:幂函数、三角函数、指数函数、对数函数等。
- 导数的应用:函数的单调性、极值、最值等。
八、积分- 不定积分与定积分的概念:原函数、积分区间、积分值等。
- 积分的基本公式与计算方法:换元积分法、分部积分法等。
- 定积分的应用:面积、体积、物理量等。
九、复数- 复数的概念:复平面、复数的四则运算等。
- 复数的代数形式与三角形式:欧拉公式、德摩弗定理等。
- 复数的应用:解析几何、电路分析等。
十、逻辑与推理- 逻辑连接词:与、或、非、蕴含等。
- 推理方法:演绎推理、归纳推理、类比推理等。
高考必背最完整的高中数学知识点一、代数1. 一次函数的性质:直线的斜率、截距和方程形式。
2. 二次函数的性质:顶点坐标、对称轴、开口方向和方程形式。
3. 幂函数与指数函数的性质。
4. 对数函数的性质:底数为正数时的定义、性质与常见公式。
5. 三角函数的基本概念:正弦函数、余弦函数和正切函数的周期、定义域、值域和图像。
6. 数列的概念及常见数列的通项公式和求和公式。
二、几何1. 平面几何基本概念:点、直线、平行和垂直关系。
2. 三角形的性质:角的度量、三角形类型和重要定理(如余弦定理和正弦定理)。
3. 圆的性质:圆周角、弧长和面积公式。
4. 球和立体几何的基本概念:体积、表面积和投影等。
三、概率与统计1. 概率的基本概念:事件、样本空间、概率以及概率的性质与计算。
2. 随机变量的概念及其分布函数和密度函数。
3. 统计的基本概念:总体、样本、参数和统计量。
4. 样本调查与统计分析的方法和步骤。
四、解析几何1. 向量的基本概念:向量的表示、向量的运算、向量的模和方向角。
2. 平面的方程:一般式、点法式、两点式和法向量式等。
3. 空间几何基本概念:点、直线、平面的关系与位置。
4. 空间直角坐标系:空间直角坐标系的建立与距离公式。
五、数学思维1. 基本解题方法和思维:分类讨论、递推法、数学归纳法等。
2. 数学证明的基本方法:直接证明、间接证明、反证法等。
3. 数学建模的基本流程和方法。
4. 数学问题的模型转化与解决策略。
以上是高考必背的最完整的高中数学知识点。
希望同学们在备考过程中认真复这些知识,做好各种题型的练,提高自己的数学水平,取得好成绩!加油!。
2024年高考数学知识点总结整理一、函数与方程1. 函数的概念和性质- 函数的定义:函数是一个将一个集合的元素(称为自变量)映射到另一个集合的元素(称为因变量)的规则。
- 函数的表示:函数可以用函数式表示、图像表示、数据表格表示等。
- 函数的性质:奇偶性、周期性、单调性、极值、零点等。
2. 平面直角坐标系- 坐标系的建立:确定坐标轴的正方向和原点的位置。
- 直角坐标的表示法:点在平面上的位置可以用有序数对表示。
- 直线的方程:点斜式、两点式、截距式等。
3. 一元二次方程- 一元二次方程的定义:形如ax^2 + bx + c = 0的代数方程,其中a、b、c都是已知的实数,a ≠ 0。
- 一元二次方程的解:实数解、复数解、无解等。
- 一元二次方程的求解方法:配方法、公式法、图解法等。
4. 不等式- 不等式的概念:比大小关系不是等号的代数式。
- 不等式的性质:加减、乘除等运算规则。
- 不等式的解集:解集可以用数轴图、区间表示等。
二、数列与数学归纳法1. 等差数列- 等差数列的定义:数列中相邻两项之差相等。
- 等差数列的通项公式:an = a1 + (n - 1)d,其中an是第n项,a1是首项,d是公差。
- 等差数列的性质:求和公式、前n项和等。
2. 等比数列- 等比数列的定义:数列中相邻两项之比相等。
- 等比数列的通项公式:an = a1 * r^(n - 1),其中an是第n项,a1是首项,r是公比。
- 等比数列的性质:求和公式、前n项和等。
3. 数列的求和- 等差数列的前n项和公式:Sn = n/2 * (a1 + an),其中Sn是前n项和,a1是首项,an是第n项。
- 等比数列的前n项和公式:Sn = (a1 * (1 - r^n))/(1 - r),其中Sn是前n项和,a1是首项,r是公比。
4. 数学归纳法- 数学归纳法的基本思想:证明某个命题对于一切自然数n 都成立,先证明对n=1成立,然后假设对n=k成立,再证明对n=k+1成立。
数学高考必备的知识点总结一、函数与方程1.函数的定义及基本性质2.直线、圆的方程3.一元二次方程的解法4.一次函数、二次函数的图像和性质5.函数的单调性、奇偶性及周期性6.组合函数、反函数二、数列1.等差数列、等比数列的通项公式2.数列的前n项和3.数列的通项公式和性质4.递推数列及其通项公式5.数列的应用:等差数列与等比数列的求和公式,利用数列解决实际问题三、三角函数1.弧度制与角度制2.三角函数的定义域、值域及周期3.基本三角函数图像及性质4.三角函数的变换公式、和差化积公式、倍角公式、半角公式5.三角函数的应用:解三角形、三角函数的图像四、空间解析几何1.点、向量、平面、直线的方程2.平面向量及其运算3.向量的数量积和叉积及其性质4.空间中的点、直线、平面的位置关系5.空间解析几何的应用:求直线、平面的交点、距离、角平分线等五、数学证明1.证明方法:直接证明、间接证明、归纳证明、反证法等2.数学归纳法证明3.三角函数中的常见证明方法六、概率与统计1.概率的基本概念及性质2.事件的概率、独立事件和互斥事件3.排列、组合、概率的应用4.统计量的计算及意义5.统计图的绘制及解读七、导数1.导数的定义及性质2.常用函数的导数3.高阶导数、导数的应用及作图4.导数在几何和物理中的应用八、不定积分1.不定积分的概念及性质2.常用函数的不定积分3.变限积分4.定积分及其应用以上便是数学高考必备的知识点总结,希望同学们能够充分掌握这些知识点,努力备战高考,取得优异的成绩!。
高三数学知识点总结(15篇)高三数学知识点总结1考点一:集合与简易逻辑集合部分一般以选择题出现,属容易题。
重点考查集合间关系的理解和认识。
近年的试题加强了对集合计算化简能力的考查,并向无限集发展,考查抽象思维能力。
在解决这些问题时,要注意利用几何的直观性,并注重集合表示方法的转换与化简。
简易逻辑考查有两种形式:一是在选择题和填空题中直接考查命题及其关系、逻辑联结词、“充要关系”、命题真伪的判断、全称命题和特称命题的否定等,二是在解答题中深层次考查常用逻辑用语表达数学解题过程和逻辑推理。
考点二:函数与导数函数是高考的重点内容,以选择题和填空题的为载体针对性考查函数的定义域与值域、函数的性质、函数与方程、基本初等函数(一次和二次函数、指数、对数、幂函数)的应用等,分值约为10分,解答题与导数交汇在一起考查函数的性质。
导数部分一方面考查导数的运算与导数的几何意义,另一方面考查导数的简单应用,如求函数的单调区间、极值与最值等,通常以客观题的形式出现,属于容易题和中档题,三是导数的综合应用,主要是和函数、不等式、方程等联系在一起以解答题的形式出现,如一些不等式恒成立问题、参数的取值范围问题、方程根的个数问题、不等式的证明等问题。
考点三:三角函数与平面向量一般是2道小题,1道综合解答题。
小题一道考查平面向量有关概念及运算等,另一道对三角知识点的补充。
大题中如果没有涉及正弦定理、余弦定理的应用,可能就是一道和解答题相互补充的三角函数的图像、性质或三角恒等变换的题目,也可能是考查平面向量为主的试题,要注意数形结合思想在解题中的应用。
向量重点考查平面向量数量积的概念及应用,向量与直线、圆锥曲线、数列、不等式、三角函数等结合,解决角度、垂直、共线等问题是“新热点”题型、考点四:数列与不等式不等式主要考查一元二次不等式的解法、一元二次不等式组和简单线性规划问题、基本不等式的应用等,通常会在小题中设置1到2道题。
对不等式的工具性穿插在数列、解析几何、函数导数等解答题中进行考查、在选择、填空题中考查等差或等比数列的概念、性质、通项公式、求和公式等的灵活应用,一道解答题大多凸显以数列知识为工具,综合运用函数、方程、不等式等解决问题的能力,它们都属于中、高档题目、考点五:立体几何与空间向量一是考查空间几何体的结构特征、直观图与三视图;二是考查空间点、线、面之间的位置关系;三是考查利用空间向量解决立体几何问题:利用空间向量证明线面平行与垂直、求空间角等(文科不要求)、在高考试卷中,一般有1~2个客观题和一个解答题,多为中档题。
高考数学知识点总结及公式大全《高考数学知识点总结及公式大全》一、函数与方程1. 一次函数- 方程:y = ax + b- 直线的斜率公式:a = Δy / Δx- 直线的截距公式:b = y - ax2. 二次函数- 方程:y = ax^2 + bx + c- 抛物线的顶点坐标公式:(h, k) = (-b / (2a), c - b^2 / (4a))3. 三角函数- 正弦函数:y = sin(x)- 余弦函数:y = cos(x)- 正切函数:y = tan(x)- 三角函数间的关系:sin^2(x) + cos^2(x) = 14. 指数函数与对数函数- 指数函数:y = a^x- 对数函数:y = loga(x)- 对数运算法则:loga(m * n) = loga(m) + loga(n)5. 不等式- 线性不等式:ax + b > 0- 二次不等式:ax^2 + bx + c > 0二、解析几何1. 直线与曲线- 一次函数的图像是一条直线- 二次函数的图像是一个抛物线2. 二维坐标系- 直角坐标系:以x轴和y轴为基准构建的坐标系- 极坐标系:以原点O和角度θ为基准构建的坐标系3. 几何图形- 圆:由所有与一个点的距离相等的点所组成的图形- 圆柱体:由一个圆沿着一条平行于其平面的直线旋转一周形成的立体图形三、概率与统计1. 概率- 事件的概率:P(A) = n(A) / n(S)- 互斥事件:P(A ∩ B) = 0- 独立事件:P(A ∩ B) = P(A)P(B)2. 统计- 平均数:A = (x1 + x2 + ... + xn) / n- 方差:Var(X) = (x1^2 + x2^2 + ... + xn^2) / n - (A)^2- 标准差:σ = √[ (x1 - A)^2 + (x2 - A)^2 + ... + (xn - A)^2 / n ]四、解题技巧1. 代入法:将未知数用已知条件中的数进行代入,并求解方程。
高三数学高考知识点总结1. 函数与方程1.1 一元二次函数及应用1.2 二次函数与一元二次方程1.3 三角函数与解三角形1.4 指数、对数与幂函数1.5 不等式1.6 等式与方程的应用1.7 参数方程与函数的图形2. 数列与数列极限2.1 数列的概念与性质2.2 等差数列与等比数列2.3 数列极限的定义与性质2.4 数列极限的计算方法2.5 无穷数列极限3. 三角函数与三角恒等变换3.1 三角函数的定义与性质3.2 三角函数的图像与变换3.3 三角函数的复合与反函数3.4 三角恒等式的证明与应用3.5 三角函数的基本计算4. 几何与空间几何4.1 平面几何基本概念与定理4.2 平面图形的性质与计算4.3 立体图形的基本概念与定理4.4 空间图形的性质与计算4.5 空间几何的向量与坐标表示4.6 空间几何的相交与平行关系5. 三角函数与向量5.1 向量的概念与性质5.2 平面向量的基本运算5.3 向量的数量积与向量积5.4 向量与空间图形的应用5.5 三角函数与向量的关系6. 概率与统计6.1 随机事件与概率6.2 概率的计算与性质6.3 组合与排列6.4 统计图与频率分布表6.5 参数估计与假设检验7. 导数与微分7.1 导数的概念与性质7.2 导数的计算及应用7.3 高阶导数与隐函数求导7.4 微分的概念与性质7.5 微分中值定理与泰勒展开7.6 极值与最值的判定8. 不定积分与定积分8.1 不定积分及其基本性质8.2 常用的积分公式与方法8.3 定积分的定义及性质8.4 定积分的计算方法8.5 定积分在几何与物理中的应用9. 空间解析几何9.1 空间直线与面的方程9.2 空间几何的两点形式与一般方程9.3 空间几何的交点、距离与投影9.4 空间直线与面的位置关系9.5 空间曲线及其方程10. 数学建模10.1 建模的基本思路与方法10.2 建模中的数学工具与技巧10.3 建模中的数据处理与分析10.4 建模中的模型建立与求解这些都是高中数学高考的核心知识点,在备考过程中需要掌握这些知识点的概念、性质、计算方法和应用。
高考数学必考知识点归纳全高考数学是高中阶段学生面临的一次重要考试,它涵盖了多个数学领域的基础知识点。
以下是高考数学必考知识点的归纳:一、集合与函数- 集合的概念:集合的表示、子集、并集、交集、补集。
- 函数的概念:函数的定义、值域、定义域、单调性、奇偶性。
- 函数的表示:函数的图象、函数的解析式。
二、代数基础- 指数与对数:指数函数、对数函数、对数运算法则。
- 幂运算:幂的运算法则、根式。
- 代数方程:一元一次方程、一元二次方程、高次方程、方程组的解法。
三、不等式与不等式组- 不等式的基本性质:不等式的基本解法、不等式组的解集。
- 绝对值不等式:绝对值的定义、绝对值不等式的解法。
四、数列- 等差数列:等差数列的定义、通项公式、求和公式。
- 等比数列:等比数列的定义、通项公式、求和公式。
- 数列的极限:数列极限的概念、极限的运算。
五、三角函数与解三角形- 三角函数:正弦、余弦、正切等基本三角函数的性质和图像。
- 解三角形:正弦定理、余弦定理、三角形的面积公式。
六、解析几何- 直线:直线的方程、直线的位置关系。
- 圆:圆的方程、圆与直线的位置关系。
- 椭圆、双曲线、抛物线:圆锥曲线的性质和方程。
七、立体几何- 空间直线与平面:空间直线的方程、平面的方程、线面关系。
- 多面体与旋转体:多面体的体积、旋转体的表面积和体积。
八、概率与统计初步- 随机事件的概率:概率的定义、概率的计算方法。
- 统计初步:数据的收集、整理、描述。
九、导数与微分- 导数的概念:导数的定义、几何意义。
- 基本导数公式:常见函数的导数公式。
- 微分的概念:微分的定义、微分的应用。
十、积分与应用- 不定积分:不定积分的概念、基本积分公式。
- 定积分:定积分的概念、定积分的计算方法。
- 积分的应用:面积、体积、物理量等的计算。
十一、复数- 复数的概念:复数的定义、复数的运算。
- 复数的几何表示:复平面、复数的模和辐角。
十二、逻辑推理与证明方法- 逻辑推理:命题逻辑、逻辑运算。
高考数学最全知识点一、代数与函数1. 整式与分式- 整式的定义与性质- 分式的定义与性质- 分式的化简与运算法则2. 方程与不等式- 一元一次方程与不等式- 一元二次方程与不等式- 二元一次方程与不等式- 绝对值方程与不等式3. 函数与图像- 函数的定义与性质- 基本初等函数的性质与图像- 复合函数与反函数- 二次函数与它的图像特征4. 一次、二次函数和分式函数- 一次函数的图像与性质- 二次函数的图像与性质- 分式函数的图像与性质二、解析几何1. 点、直线与圆- 坐标平面、点的坐标与点的表示- 直线的方程与性质- 圆的方程与性质2. 平面与空间图形- 不共面点的坐标与距离- 空间图形的投影与投影性质- 空间几何体的体积计算3. 向量与坐标变换- 向量的定义与性质- 向量的线性运算与数量积- 坐标变换与平移、旋转、对称三、概率与统计1. 排列与组合- 排列的概念与计算- 组合的概念与计算- 排列组合在实际问题中的应用2. 概率与事件- 概率的定义与性质- 事件的概念与运算- 事件的概率计算与应用3. 统计与数据分析- 统计数据的收集与整理- 统计量与频数分布表- 统计图表与数据分析四、数学思维与方法1. 数学思想方法与证明- 数学思维的培养与发展- 数学证明的基本方法与思路2. 推理与逻辑- 数学推理的基本规律与方法- 逻辑关系的分析与判断3. 分析与解决问题- 数学问题的分析与解决思路- 解决问题的数学模型与方法五、高考数学应试技巧1. 命题特点与解题技巧- 高考数学命题特点的认识- 解题技巧与策略的训练2. 考前复习与应试心态- 高考数学的复习计划与安排- 应试心态与考场策略3. 高考数学备考注意事项- 考试要点与考纲的掌握- 考前注意事项与常见错误的避免以上是高考数学的最全知识点,通过系统地学习和掌握这些知识点,相信你能在高考中取得优异的成绩。
祝你成功!。
高考数学高考必备知识点总结Jenny was compiled in January 2021高考前重点知识回顾第一章-集合(一)、集合:集合元素的特征:确定性、互异性、无序性. 1、集合的性质:①任何一个集合是它本身的子集,记为A A ⊆;②空集是任何集合的子集,记为A ⊆φ;③空集是任何非空集合的真子集;①n 个元素的子集有2n 个. n 个元素的真子集有2n -1个. n 个元素的非空真子集有2n -2个.[注]①一个命题的否命题为真,它的逆命题一定为真.否命题⇔逆命题. ②一个命题为真,则它的逆否命题一定为真. 原命题⇔逆否命题.2、集合运算:交、并、补.{|,}{|}{,}AB x x A x B AB x x A x B A x U x A ⇔∈∈⇔∈∈⇔∈∉U 交:且并:或补:且C(三)简易逻辑构成复合命题的形式:p 或q(记作“p ∨q ” );p 且q(记作“p ∧q ” );非p(记作“┑q ” ) 。
1、“或”、 “且”、 “非”的真假判断 4、四种命题的形式及相互关系: 原命题:若P 则q ; 逆命题:若q 则p ; 否命题:若┑P 则┑q ;逆否命题:若┑q 则┑p 。
①、原命题为真,它的逆命题不一定为真。
②、原命题为真,它的否命题不一定为真。
③、原命题为真,它的逆否命题一定为真。
6、如果已知p ⇒q 那么我们说,p 是q 的充分条件,q 是p 的必要条件。
若p ⇒q 且q ⇒p,则称p 是q 的充要条件,记为pq.第二章-函数一、函数的性质(1)定义域: (2)值域:(3)奇偶性:(在整个定义域内考虑) ①定义:偶函数:)()(x f x f =-,奇函数:)()(x f x f -=-②判断方法步骤:a.求出定义域;b.判断定义域是否关于原点对称;c.求)(x f -;d.比较)()(x f x f 与-或)()(x f x f --与的关系。
定义:对于函数f(x)的定义域I 内某个区间上的任意两个自变量的值x 1,x 2, ⑴若当x 1<x 2时,都有f(x 1)<f(x 2),则说f(x)在这个区间上是增函数; ⑵若当x 1<x 2时,都有f(x 1)>f(x 2),则说f(x) 在这个区间上是减函数. 二、指数函数与对数函数x且对数函数y=log a x (a>0且a ≠1)的图象和性质:⑴对数、指数运算:log ()log log log log log log log a a a a a a n a a M N M N M M N NM n M⋅=+=-=()()r s r s r s rs r r ra a a a a ab a b +===⑵xa y =(1,0≠a a )与x y a log =(1,0≠a a )互为反函数.第三章 数列1. ⑴等差、等比数列:(2)数列{n a }的前n 项和n S 与通项n a 的关系:⎩⎨⎧≥-===-)2()1(111n s s n a s a n n n第四章-三角函数一.三角函数1、角度与弧度的互换关系:360°=2π ;180°=π ; 1rad =π180°≈°=57°18ˊ;1°=180π≈(rad )注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零.),,,,(*q p n m N q p n m a a a a q p n m +=+∈⋅=⋅2、弧长公式:r l ⋅=||α. 扇形面积公式:211||22s lr r α==⋅扇形3、三角函数: r y =αsin ; r x =αcos ; xy=αtan ;4、三角函数在各象限的符号:(一全二正弦,三切四余弦)正切、余切余弦、正割正弦、余割5、同角三角函数的基本关系式:αααtan cos sin = 1cos sin 22=+αα 6、诱导公式:x x k x x k xx k x x k cot )2cot(tan )2tan(cos )2cos(sin )2sin(=+=+=+=+ππππ xx x x xx x x cot )cot(tan )tan(cos )cos(sin )sin(-=--=-=--=- xx x x x x xx cot )cot(tan )tan(cos )cos(sin )sin(=+=+-=+-=+ππππ x x x x x x x x cot )2cot(tan )2tan(cos )2cos(sin )2sin(-=--=-=--=-ππππ x x x x xx xx cot )cot(tan )tan(cos )cos(sin )sin(-=--=--=-=-ππππ7、两角和与差公式=±)sin(βαβαβαsin cos cos sin ±=±)cos(βαβαβαsin sin cos cosβαβαβαtan tan 1tan tan )tan(-+=+βαβαβαtan tan 1tan tan )tan(+-=-8、二倍角公式是:sin2α=ααcos sin 2⋅cos2α=αα22sin cos-=1cos 22-α=α2sin 21-tan 2α=αα2tan 1tan 2-。
辅助角公式asin θ+bcos θ=22b a +sin(θ+ϕ),这里辅助角ϕ所在象限由a 、b 的符号确定,ϕ角的值由tan ϕ=ab确定。
9、特殊角的三角函数值:α0 6π 4π 3π 2π π 23πsin α 0 21 22 23 1 01-cos α 1 23 2221 0 1-0 tan α 0 33 1 3 不存在 0 不存在 cot α不存在3133 0不存在10、正弦定理R CcB b A a 2sin sin sin ===(R 为外接圆半径). 余弦定理 c 2 = a 2+b 2-2bccosC , b 2 = a 2+c 2-2accosB , a 2 = b 2+c 2-2bccosA . 面积公式:Abc B ac C ab ch bh ah S c b a sin 21sin 21sin 21212121======∆11.)sin(ϕω+=x y 或)cos(ϕω+=x y (0≠ω)的周期ωπ2=T .12.)sin(ϕω+=x y 的对称轴方程是2ππ+=k x (Z k ∈),对称中心(0,πk );)cos(ϕω+=x y 的对称轴方程是πk x =(Z k ∈),对称中心(0,21ππ+k );)tan(ϕω+=x y 的对称中心(0,2πk ). 第五章-平面向量(1)向量的基本要素:大小和方向.(2)向量的长度:即向量的大小,记作|a |.22a x y =+(),a x y =(3)特殊的向量:零向量a =O ⇔|a |=O.单位向量a 为单位向量⇔|a |=1.(4)相等的向量:大小相等,方向相同(x1,y1)=(x2,y2)⎩⎨⎧==⇔2121y y x x (5) 相反向量:a =-b ⇔b =-a ⇔a +b =0(6)平行向量(共线向量):方向相同或相反的向量,称为平行向量.记作a ∥b.平行向量也称为共线向量. (7).向量的运算运算类型 几何方法 坐标方法运算性质向量的 加法 1.平行四边 形法则 2.三角形法则 1212(,)a b x x y y +=++a b b a +=+ ()()a b c a b c ++=++ AC BC AB =+向量的 减法三角形法则 1212(,)a b x x y y -=--()a b a b -=+-AB BA =-,AB OA OB =-数 乘 向 量 1.a λ是一个向量,满足:||||||a a λλ= 2.λ>0时, a a λ与同向;λ<0时, a a λ与异向; λ=0时, 0a λ=.(,)a x y λλλ=()()a a λμλμ= ()a a a λμλμ+=+ ()a b a b λλλ+=+ //a b a bλ⇔=向 量 的 数 量 积a b •是一个数 1.00a b ==或时,0a b •= 00||||cos(,)a b a b a b a b ≠≠=且时,1212a b x x y y •=+()cos 0,0,0180a b a b a b θθ⋅=≠≠≤≤a b b a •=• ()()()a b a b a b λλλ•=•=• ()a b c a c b c +•=•+• 2222||||=a a a x y =+即 ||||||a b a b •≤(8)两个向量平行的充要条件a ∥b (b0)01221=-=⇔y x y x b a 或λ(9)两个向量垂直的充要条件a ⊥b⇔a ·b =0 ⇔x 1·x 2+y 1·y 2=0(10)两向量的夹角公式:cos θ=||·||·b a b a =222221212121y x y x y y x x +•++ 0≤θ≤180°,附:三角形的四个“心”;1、内心:内切圆的圆心,角平分线的交点2、外心:外接圆的圆心,垂直平分线的交点3、重心:中线的交点4、垂心:高的交点 (11)△ABC 的判定:⇔+=222b ac △ABC 为直角△⇔∠A + ∠B =2π2c <⇔+22b a △ABC 为钝角△⇔∠A + ∠B <2π2c >⇔+22b a △ABC 为锐角△⇔∠A + ∠B >2π(11)平行四边形对角线定理:对角线的平方和等于四边的平方和.第六章-不等式1.几个重要不等式(1)0,0,2≥≥∈a a R a 当且仅当”取“==,0a ,(a -b)2≥0(a 、b ∈R)(2)ab b a R b a 2,,22≥+∈则 (3)+∈R b a ,,则ab b a 2≥+;(4)222)2(2b a b a +≥+;⑸若a 、b ∈R +,,则),()2(222R b a b a b a ∈+≥+ ),(22222+∈+≤+≤≤+R b a b a b a ab b a ab ; 2、解不等式(1)一元一次不等式 )0(≠>a b ax①⎭⎬⎫⎩⎨⎧>>a b x x a ,0 ②⎭⎬⎫⎩⎨⎧<<a b x x a ,0 (2)一元二次不等式 )0(,02>>++a c bx ax第七章-直线和圆的方程一、解析几何中的基本公式1.两点间距离:若)y ,x (B ),y ,x (A 2211,则212212)()(y y x x AB -+-=2.平行线间距离:若0C By Ax :l ,0C By Ax :l 2211=++=++则:2221BA C C d +-=注意:x ,y 对应项系数应相等。