地源热泵国外研究现状
- 格式:docx
- 大小:77.53 KB
- 文档页数:3
工作原理——地源热泵1 地源热泵工作原理地源热泵则是利用水源热泵的一种形式,它是利用水与地能(地下水、土壤或地表水)进行冷热交换来作为水源热泵的冷热源,冬季把地能中的热量“取”出来,供给室内采暖,此时地能为“热源”;夏季把室内热量取出来,释放到地下水、土壤或地表水中,此时地能为“冷源”。
地源热泵供暖空调系统主要分三部分:室外地能换热系统、水源热泵机组和室内采暖空调末端系统。
其中水源热泵机主要有两种形式:水—水式或水—空气式。
三个系统之间靠水或空气换热介质进行热量的传递,水源热泵与地能之间换热介质为水,与建筑物采暖空调末端换热介质可以是水或空气。
2 地源热泵技术路线地源热泵技术路线有以下两种:土--气型地源热泵技术和水--水型地源热泵技术土--气型地源热泵技术以美国的技术为代表,水--水地源热泵技术以北欧的技术为代表。
二者的差别是:前者从浅层土壤或地下水中取热或向其排热,通过分散布置于各个房间的地源热泵机组直接转换成热风或冷风为房间供暖或制冷。
后者是从地下水中取热或向其排热,经过热泵机组转换成热水或冷水,然后再经过布置在各个房间的风机盘管转换成热风或冷风给房间供暖或制冷。
由于美国的土--气型地源热泵技术,可以不用地下水,采用埋设垂直管、水平管或向地表水抛设管路等多种方式,直接从浅层土壤取效或向其排热,不受地下水开采的限制,推广的范围更大、更灵活。
3 地源分类地源按照室外换热方式不同可分为三类:(1)土壤埋管系统,(2)地下水系统,(3)地表水系统。
根据循环水是否为密闭系统,地源又可分为闭环和开环系统。
闭环系统如埋盘管方式(垂直埋管或水平埋管),地表水安置换热器方式。
开环系统如抽取地下水或地表水方式。
此外,还有一种“直接膨胀式”,它不象上述系统那样采用中间介质水来传递热量,而是直接将热泵的一个换热器(蒸发器)埋入地下进行换热。
4 地源热泵系统的形式土-气型地源热泵系统按照室外换热方式不同分,主要有三类形式:1、地耦管系统该方案只需在建筑物的周边空地、道路或停车场打一些地耦管孔,室外水系统注满水后形成一个封闭的水循环,利用水的循环和地下土壤换热,将能量在空调室内和地下土壤之间进行转换。
土壤源热泵的研究现状与发展前景摘要:本文概述了地源热泵系统的分类及特点,重点分析了土壤源热泵在国内外的研究及发展现状,提出了土壤源热泵技术在我国发展所面临的问题及发展前景。
关键词:土壤源热泵地埋管研究现状发展前景0 引言随着常规能源日益短缺,可再生能源的开发与利用日益引人关注。
可再生能源是指能够持续生长而可供人类长期使用的能源,包括:太阳能、风能、海洋能、水力发电、生物质能、地热能、生物燃料及氢能等。
其中地热能是指地球表面浅层土壤通过吸收太阳辐射能或地球内部物质发生衰变放出热量等从而形成的较低品位的热能资源。
浅层土壤在一年内温度基本恒定,通常为18℃左右,因此,在夏季可作为空调系统的冷源,而在冬季又可作为采暖系统的热源。
利用地能的主要设备就是地源热泵。
1 地源热泵的类型、工作原理及特点地源热泵是一种高效节能环保既可制冷又可供暖的新型空调系统,它利用地下浅层地能资源(主要是地下水、地表水、土壤等),为建筑物提供热量或冷量。
地源热泵系统通过输入少量的高品位能源(如电能),在冬季,将地下的热量取出来,由低温热源传向高温热源,给室内供热;而夏季的热量传递方向则相反,将室内的热量取出,释放到地下,从而使室内温度降低达到空调效果。
根据使用的低品位热源的来源或种类不同,地源热泵可分为地下水源热泵、地表水源热泵及土壤源热泵三种。
1.1 地下水源热泵地下水源热泵是通过钻井由水泵将地下水抽出作为冷、热源,经过热交换后再回灌入地下。
地下水一年四季温度基本稳定,夏季比外界环境温度低,冬季比外界环境温度高,是良好的冷源和热源。
水作为世界最为宝贵的资源之一,任何对水资源的浪费和污染都是不允许的。
国外对使用地下水要求也越来越严格,因而地下水源热泵的应用越来越少,我国一些大中城市不允许打井取水;而且如果水硬度过大也会造成换热器表面结垢,热泵系统的传热性能下降。
地下水源热泵的钻井有单井和多井两种,典型单井的直径为150mm,井深450m。
地源热泵技术应用及施工方法的研究发布时间:2022-10-23T00:51:24.898Z 来源:《建筑实践》2022年第41卷11期作者:张扬戴力蒋水青范建湘陈凌凯王京波[导读] 随着社会工业化程度不断提高,日益凸显的能源问题逐步展现在我们面前,张扬戴力蒋水青范建湘陈凌凯王京波中国建筑第五工程局有限公司湖南长沙 410004摘要:随着社会工业化程度不断提高,日益凸显的能源问题逐步展现在我们面前,作为社会总能耗中的一大项-建筑能耗,越来越引起我们的高度重视,建筑节能必将成为建筑业发展必须重视的一个根本性问题。
因此发展建筑节能技术,降低能源消耗量变的尤为重要,根据实际情况适时地开展地源热泵技术研究,努力推广地源热泵系统的应用,可以提高建筑工程的工程质量、使用寿命和技术水平,从而促进整个建筑业的发展。
本文主要是通过了解地源热泵技术的工作原理,进而又分析了地源热泵在国内外的发展状况,阐述了地源热泵在我国发展的有利条件及优势,并研究分析了我国地源热泵的发展现状。
从而对地源热泵技术发展中所面对的问题进行分析,为地源热泵系统的进一步优化提供重要依据。
关键词:地源热泵技术;应用;施工方法引言:随着我国经济的迅速发展,能源工业受到了来自经济发展和环境保护两方面的挑战。
一方面,为了确保经济的高速发展,能源需求日益增加。
现在,我国石油消费40%靠进口,预计到2020年,这个数据将达到50%。
即使控制GDP的增长为5%,能源“瓶颈”现象也会很严重。
另一方面,我国一直在遭受能源引起的环境问题。
根据世界卫生组织的报告,世界上10个污染最严重的城市,中国就有7个。
我国CO2的排放量,位于美国之后,居世界第二位,1998年排出7.40亿t,1990~1996年,CO2排放量的增长占全世界总增长量的90%。
因此,优化能源结构,开发地热能、太阳能、生物能和风能,以减少传统能源(煤、石油和天然气)的利用,对能源的可持续发展是十分必要的。
摘要:随着全球能源需求的不断增长和环境保护意识的提高,热泵技术因其高效、节能、环保的特点,已成为全球能源领域的研究热点。
本文对热泵技术的发展历程、主要类型、工作原理、应用领域以及我国热泵技术的发展现状进行了综述,以期为我国热泵技术的进一步发展提供参考。
一、热泵技术的发展历程热泵技术起源于20世纪初,经过近百年的发展,已经从单一的空调制冷技术逐渐发展成为涵盖热水供应、供暖、制冷、烘干等多个领域的综合性技术。
我国热泵技术的研究始于20世纪50年代,经过多年的发展,已在热水供应、供暖等领域取得了显著成果。
二、热泵的主要类型及工作原理1. 空气源热泵:利用空气中的低温热源,通过吸收热量,将其传递到高温热源,从而实现热量的转移。
空气源热泵具有结构简单、安装方便、适应性强等优点。
2. 地源热泵:利用地下恒定的温度作为热源,通过热交换器将地热能转移到室内或室外,实现供暖、制冷和热水供应。
地源热泵具有高效、节能、环保等优点。
3. 水源热泵:利用地表水、地下水或工业废水等作为热源,通过热交换器将热量转移到室内或室外,实现供暖、制冷和热水供应。
水源热泵具有节能、环保、适用范围广等优点。
热泵的工作原理:热泵通过压缩机、冷凝器、蒸发器和膨胀阀等部件,将低温热源的热量转移到高温热源,实现热量的转移。
热泵的性能系数(COP)是衡量热泵节能性能的重要指标。
三、热泵的应用领域1. 热水供应:热泵热水器已成为家庭、酒店、宾馆等场所热水供应的主要设备。
2. 供暖制冷:热泵空调系统在建筑供暖、制冷领域具有广泛应用。
3. 农业烘干:热泵烘干设备在农产品、木材等烘干领域具有显著优势。
4. 工业应用:热泵技术在工业领域具有广泛的应用前景,如工业余热回收、制冷剂替代等。
四、我国热泵技术的发展现状1. 政策支持:我国政府高度重视热泵技术的发展,出台了一系列政策措施,推动热泵产业健康发展。
2. 技术创新:我国热泵技术研发取得了显著成果,部分技术已达到国际先进水平。
地源热泵应用现状调研及优化建议摘要:热泵是在电能驱动下,通过热力学逆循环连续地将热量从低位热源转移到高温物体或者介质,并用于制取热量的装置。
可以利用一份电能提取3~4份可再生能源中的低位热能,共同向用户供热,因此,热泵供热是一种节能、环保、高效的供热方式,在建筑供暖和生活热水供应上获得了广泛应用。
正是由于其这一特性,热泵技术的发展始终同能源与环境问题息息相关,紧密联系在一起。
进入21世纪,气候变化及能源问题更加严峻,热泵技术作为可再生能源利用的有效途径,成为国际能源署认定的节能减碳关键技术之一,在我国获得了广泛的应用。
关键词:地源热泵;应用现状;优化建议引言能源革命、低碳能源、清洁供暖目前已经成为我国能源战略的重要组成部分。
面对严峻的能源危机,国家大力支持低碳清洁能源的开发和利用,建筑行业领域也迎来能源革命。
在建筑领域,地源热泵系统作为一种使用清洁能源的采暖(制冷)系统,可以利用少量的高位能(一般为电能),将浅层的地热能转化为高位热能。
地源热泵主要是将土壤所储藏的庞大太阳能作为热源,通过热泵系统进行能量的相互转换,是一种实用的节能技术。
从长期来看,地源热泵系统具有良好的发展前景,国家大力支持,随着科学技术的进步,未来,其势必获得更广泛的利用。
1热泵发展现状根据热泵利用的低位热源不同分为:空气源热泵、地源热泵、太阳能热泵,其中地源热泵包括地埋管地源热泵、地下水地源热泵和江、河、湖、海、污水及再生水等地表水源热泵。
按照低位热源的可得性、稳定性及技术经济性,空气源热泵和地源热泵是我国热泵应用主要类型。
空气源热泵早期以冷暖空调形式应用推广,以供冷为主、供热为辅,主要应用于分散式短期供暖的长江流域及以南地区。
近年来随着我国清洁取暖国家战略的实施,空气源热泵供暖成为分散电代煤的主要技术形式,应用范围不断北扩。
长江流域供暖需求的日益增加,空气源热泵在这一区域的应用也进一步推广。
建筑节能工作的不断深入推进,迈入近零能耗时代,建筑负荷需求大幅度降低,供能灵活性要求提升,空气源热泵集成新风、净化、除湿的多功能产品不断涌现。
地源热泵机组的农村推广现状与研究【摘要】本文介绍了地源热泵系统及其特点,分析了地源热泵技术推广现状,阐明了热泵技术在我国新农村的发展优势。
【关键词】地源热泵;农村推广;优势中图分类号:th3文献标识码: a 文章编号:一、前言地源热泵系统及其特点1、地源热泵系统地源热泵系统是一种利用地表浅层地热资源作为冷热源,实现对建筑物的供暖或供冷的高效节能的空调系统。
地表浅层是一个巨大的太阳能集热器,蕴藏着无限的可再生能源,地源热泵通过输入少量的高品位能源(如电能),通过热泵实现低温位到高温位的能量转移。
在冬季利用热泵吸收其热量向建筑供暖,在夏季热泵将吸收到的热量向其排放,实现对建筑物的供冷。
其工作原理大都是通过外部管道及阀门的切换来实现冬夏工况的转换,夏季空调供、回水走蒸发器,水源水走冷凝器,冬季空调供回水走冷凝器,水源水走蒸发器。
地表浅层地热资源的温度计一年四季相对稳定,冬季比环境空气温度高,夏季比环境空气温度低,是热泵很好的供热热源和供冷冷源,这种特性使得地源热泵比传统空调运行效率要高35%左右,通常地源热泵机组的性能系数cop(指其制热量与所消耗的电能的比值)达到3.8~5.4,即消耗1kw的能量可以得到4kw以上的热量或制冷量。
2、地源热泵系统构成地源热泵系统由地表浅层地热资源、地热能交换系统、热泵机组、建筑物内系统(末端装置)组成一完整的供热空调系统。
3、地源热泵系统特点(一)节能。
地源热泵系统利用地表浅层地能进行供热、制冷,与使用煤、气、油等常规能源供热制冷方式相比,地源热泵系统供热时省去了燃煤、燃气、然油等锅炉房系统,节约了煤、气、油等这些常规的不可再生能源;供冷时省去了冷却水塔,避免了冷却塔的水耗。
(二)环保。
利用地源热泵系统供热、制冷无燃烧过程,避免了排烟、排污等污染,不产生废渣、废水、废气和烟尘。
(三)运行效能高、费用低。
夏季高温差的散热和冬季低温差的取热,使得地源热泵系统换热效率很高。
地源热泵系统0 前言与太阳能或地热能一样,地表热能储量十分丰富;而且地表热能不受时间、季节、地域的限制,分布面广而且相对均匀,更具有可再生性。
地源热泵技术就是地表热能利用开发的最典型的例子。
它利用地球表面浅层土壤或水源中的地热能作为冷热源,冬季通过热泵机组将地热能传递转移到需供暖的建筑物内,夏季通过热泵机组将建筑物内的热量转移到地球土壤或水源中,从而实现冬季供暖、夏季供冷。
GSHP系统按照热源(热汇)不同,大致可以分为如下三种形式: GSHP系统(ground source heat pump)、GWHP系统(ground water heat pump)和SWHP系统(surface water heat pump),其中GWHP系统由于无法较好地解决地下水的回灌问题,在一定程度上影响了系统的进一步推广。
相比而言,随着钻井技术、土壤热性能研究的不断深入,GSHP系统的应用越来越广泛。
GSHP系统是以大地为冷源(或热源),通过中间介质(通常是水或防冻液)作为热载体,并使中间介质在封闭环路(通常是塑料管组成)中循环流动,从而实现与大地进行热量交换的目的,并进而通过热泵实现对建筑物的空调。
GSHP空调系统主要包括三个回路:用户回路、制冷回路和地下换热器回路。
根据需要也可以增加第四个回路-生活热水回路。
1 地源热泵系统研究现状1.1国外研究状况土壤源热泵在国外起步较早,这要追溯到1912年瑞士的一个专利,其发展大致可以分为以下三个阶段:第一阶段,1912年,瑞士人佐伊利(H.ZOELLY)提出了利用土壤作为热泵热源的专利设想,但是,直到二战结束后,才在欧洲与北美兴起对其大规模的研究与开发,这一阶段主要是对土壤源热泵进行了一系列基础性的实验研究,包括土壤源热泵运行的实验研究,埋地盘管的实验研究,埋地盘管的数学模型的建立,同时也对土壤的热流理论方面作过研究,如开尔文线源理论;然而,由于土壤源热泵的高投资及当时廉价的能源资源,这一阶段的研究高潮持续到20世纪50年代中期便基本停止了。
关于地源热泵应用的几个问题摘要:对地源热泵系统工作运行原理、管路基本组成、分类形式以及其它一些技术特点等几个方面进行论述,通过分析与研究得出地源热泵是一种高效节能环保空调技术在我国应适度合理开发利用,并对其应用前景进行了探讨。
关键词:地源热泵;空调;节能由于我国建筑业的不断发展,建筑能耗每年都在增加,随着国家对环保和节能技术日益重视,所以地源热泵技术在暖通空调实际工程中得到越来越广泛应用。
本文对地源热泵系统的工作运行原理、管路基本组成、分类形式以及其它一些技术特点等几个方面进行论述,并通过小型地源热泵实验装置实际运行工况分析研究,得出地源热泵是一种高效节能环保空调技术,在我国应适度合理开发利用,并对其应用前景进行了探讨与展望。
1 地源热泵系统工作运行原理及管路基本组成地源热泵是空调制冷热泵机组的一种形式,它是通过热力学第二定律逆卡诺循环原理实现运行的。
制冷剂工质在压缩机、冷凝器、节流装置、蒸发器四大制冷部件中不断往复循环工作,并通过四通换向阀根据室外季节变换和室内不同要求进行转换,以实现冬夏两用的空调制冷机组。
因为地表浅层土壤温度波动变化范围较小且温度相对恒定,通过地埋管装置在冬季空调供暖时从土壤中取热,经过地源热泵机组提升后可以给空调系统末端用户供暖。
同理在夏季空调供冷时,空调系统可以将建筑物内的得热量通过地源热泵机组装置转移释放于室外浅层土壤中以备建筑物冬季供暖时使用,并且平时还可以供给用户生活用热水,所谓一机三用。
地源热泵机组管路系统一般由设置在建筑物内空调用户末端水管路系统,空调机房内的热泵机组制冷剂内循环系统、建筑物室外侧地埋管水管路外循环系统组成。
地源热泵机组特点是室外侧水循环管路是由埋设于浅层土壤层中的高密度聚乙烯塑料盘管构成,其此时相当于动力工程换热器装置,从而代替了传统暖通空调设备冷却塔、采暖锅炉等。
2地源热泵系统的管路地下埋管分类形式目前在实际暖通空调工程中地源热泵地埋管大多采用高密度聚乙烯塑料管,以前地源热泵工程中地埋管常使用金属管材,由于其抗腐蚀性能差、使用寿命短、造价高、不节能和环保,尽管有导热效果好等优点,现在基本上工程中已经不再使用了。
多能互补供热研究现状与评价方法多能互补供热是近年来国内外关注的热点问题之一,其旨在利用多种能源资源,如余热、光伏发电、风能发电等,共同为供热系统提供热能。
目前,已有一些研究对多能互补供热进行了探讨和评价。
研究现状1. 多能源联合供热系统的研究多能源联合供热系统旨在通过多种能源的协同作用,实现供热系统的高效、安全、可靠运行。
文献中有同济大学等学者研究了基于太阳能、余热和燃气锅炉的联合供热系统,结果表明该系统具有节能、减排、经济等优点。
但该系统的实用性和可行性需要进一步探讨和研究。
不同能源的特性不同,如温度、功率等,因此多种能源的协同供热需要对不同能源进行匹配。
文献中有上海交通大学、哈尔滨工业大学的学者研究了太阳能热泵、地源热泵、燃气锅炉等多种能源的匹配问题,结果表明正确选择和配比能源,可以最大程度地提高供热系统的能效。
但该研究还有待实际应用验证。
3. 多能互补供热的碳足迹分析多能互补供热的碳足迹是评价其环境效益的重要指标之一。
文献中有福州大学等学者使用生命周期评价法,对太阳能光伏供热系统的碳足迹进行了分析,结果表明太阳能光伏供热系统的碳足迹较小,且随着系统收益的增加而逐渐减小。
但该研究只涉及太阳能光伏,还需要对多种能源的碳足迹进行研究。
评价方法1. 供热能效评价多能互补供热的主要目的是提高供热系统的能源利用效率,因此供热能效是重要的评价指标。
供热能效评价可采用集中供热系统的等效热损失系数和等效热负荷系数进行计算,同时还可以综合考虑燃料利用率、系统热损失、装置效率等指标。
2. 经济效益评价经济效益是评价多能互补供热的关键之一,主要是从成本和效益两个方面进行分析。
成本包括投资成本、运行成本和维护成本等,效益包括供热效益、环保效益和社会效益等。
经济效益评价需要综合考虑供热系统的实际情况,对现金流量和现值进行计算,并进行敏感性分析。
多能互补供热的环境效益可从能源效率、碳排放等方面进行评价,其中碳排放是重要的评价指标之一。
地源热泵可行性研究报告一、引言地源热泵(Ground Source Heat Pump,简称GSHP)是一种利用地下热能进行空调供热的节能环保技术。
本报告旨在对地源热泵的可行性进行深入研究,以评估其在不同应用场景下的经济和环境效益。
二、地源热泵原理及工作方式地源热泵利用地下土壤或水体的稳定温度来进行热能交换。
其工作原理主要分为地热吸收和传递、热泵压缩和释放热能三个过程。
通过循环利用地下的热能来供热或制冷,实现能量的高效转化。
三、地源热泵在供暖系统中的应用1. 住宅建筑供暖地源热泵在冬季可以通过吸收地热进行室内供暖,从而达到舒适的居住环境。
相比传统的采暖设备,地源热泵具有更高的能效,能够极大地降低取暖成本,并且不会产生有害气体的排放。
2. 商业和工业场所供热地源热泵不仅适用于住宅建筑,还可以应用于商业和工业场所的供热系统。
由于商业和工业用地面积较大,可以通过地埋式循环管道来进行热能交换,从而更好地满足大范围的供热需求。
四、地源热泵在空调系统中的应用1. 夏季空调地源热泵在夏季可以将室内的热能通过地热吸收和排放的方式进行散热,从而实现室内空调效果。
与传统空调相比,地源热泵不仅能够有效控制室内温度,还能节约能源,减少对环境的影响。
2. 室内空气净化地源热泵在空调系统中还可以结合空气净化技术,对室内空气进行过滤和净化。
通过地源热泵的循环系统,能够将新风与室内空气充分混合,保持室内空气的新鲜和洁净。
五、地源热泵的可行性分析1. 经济可行性地源热泵的投资成本相对较高,但在长期运行中能够获得较高的回报。
通过对比传统供暖和空调系统的运行费用,可以发现地源热泵系统在能效和运行成本上具有明显的优势。
2. 环境可行性地源热泵利用地下的可再生能源进行供热和制冷,不会产生二氧化碳等温室气体的排放,对环境没有负面影响。
同时,地源热泵还可以有效利用地下水资源,减少了对水资源的消耗和污染。
六、地源热泵可行性研究的案例分析以某住宅小区为例,对其采用地源热泵进行供热和制冷的可行性进行研究,包括经济回报分析、环境影响评估等。
国内外地源热泵发展现状及趋势一、国内地源热泵发展现状1. 地源热泵技术的应用日益普及。
随着科技的发展,地源热泵技术的应用不断得到改进,迅速普及到全国各地,在冬季供暖、冷却和室外热水供应等方面表现出色,日益受到居民的好评。
2. 我国地源热泵集中采用水源抽水系统。
水源抽水系统是我国地源热泵技术最主流的应用,它可以高效率、低能耗地利用深层地下水热量,来满足居民的住宅及企业用户的供暖、冷却及室外热水供应的效需求。
3. 一些地区采用了地源热泵新技术的应用。
近年来,一些地区采用了地源热泵新技术,比如空气源热泵系统,这种系统可以利用外部空气中的热能,以更有效率、更低能耗地确保居民家庭适宜的供暖温度。
二、国外地源热泵发展现状1. 国外地源热泵技术先进。
欧美国家,特别是澳大利亚、日本以及德国等国家,在地源热泵技术的发展方面,远远超过我国。
他们用先进且实用的技术,将地源热泵的应用运用在了住宅、商业、娱乐等各种场所,成效显著。
2. 国外地源热泵优势多。
国外应用地源热泵的场景更为多元,不仅限定在冬季供暖。
比如在比较温和的气候下,还可以替代空调,节约能量。
此外,大型项目运用地源热泵系统并不仅仅限于建筑物里面,比如锅炉系统、空调、游泳池等,都可以是地源热泵系统的重要应用场景。
三、地源热泵发展趋势1. 技术更趋完善。
未来地源热泵技术将越来越完善,使其成本低廉、安装简单,各种匹配设备更具有完善性,使系统运行更加可靠。
2. 应用场景更加广阔。
随着技术的发展,地源热泵将会运用到更多的场景,比如实现居家净水及热水供应,以及实现大规模全空调等。
3. 节能型更加强大。
以往的地源热泵系统,只有在冬季供暖时更加经济环保,但是现在地源热泵系统在各种温度环境下,都可以实现低能耗节能的环境取暖和冷却。
我国浅层地热能开发利用现状及双碳背景下的发展趋势摘要:浅层地热能又称浅层地温能,一般是指蕴藏在地表以下200m以浅范围内未受污染的岩土体、地下水和地表水中,具有可开发利用价值的温度低于25℃的热能。
浅层地热能具有可循环再生、清洁环保、分布广泛、储量巨大、埋藏较浅、可就近开发利用等特点,作为化石能源的替代资源,通过地源热泵技术进行开发利用,能够有效减少二氧化碳和污染物排放。
随着传统能源的紧缺和人们对清洁能源的重视以及热泵技术的日益成熟,加之中国浅层地热能资源较为丰富,浅层地热能的开发利用在中国城市地区得到了快速发展。
基于此,本文将对浅层地热能开发利用现状及双碳背景下的发展趋势进行简单分析。
关键词:浅层地热能;开发利用现状;双碳背景;发展趋势1.浅层地热能资源开发利用方式根据地热能交换形式的不同,浅层地热能开发利用方式分为地埋管地源热泵系统、地下水地源热泵系统和地表水地源热泵系统三种模式。
1.1地埋管地源热泵系统地埋管地源热泵系统由传热介质通过水平或竖直的地埋管换热器与岩土体进行热交换的热泵系统,通过传热介质在封闭的地下埋管中流动和土壤巨大的蓄热蓄冷能力,利用热泵技术将地下土壤中的热量进行转移,从而实现系统与大地之间的传热。
地埋管地源热泵系统受地下水量的影响较小,基本不会造成地下水破坏或污染,系统运行稳定性和可靠性强,能够达到节能减排的目的。
1.2地下水地源热泵系统地下水地源热泵系统将地下水作为低品位热源,利用少量的电能输入,实现低品位热能向高品位热能转移,从而达到供热或供冷的一种系统。
地下水地源热泵系统适合于比较丰富、稳定、优质的地下水资源地区。
它的优点是系统的水井占地面积小、综合造价低、简便易行,并可以满足大面积建筑物的供暖制冷的需要。
1.3地表水地源热泵系统地表水地源热泵系统利用热泵技术,将池塘、湖泊或河流中的地表水作为低品位热源,通过少量的高品位电能输入,实现低品位热能向高品位热能转移,从而达到供热或供冷的一种系统。
地源热泵国内外研究现状及前景于对所建立的实验系统进行性能测试并与传统的空气热源热泵性能进行技术经济比较,从而得出土壤源热泵节能的一般性结论。
由于缺乏对埋地换热器在土壤中复杂的传热、传质综合传递过程的深入研究,使得这些结论只适用于某一具体实验系统,所提供的基础数据较少而不能作为设计依据。
近几年来我国水源热泵事业发展势头看好。
天津大学、清华大学分别与有关企业结成产学研联合体开发出中国品牌的地源热泵系统,已建成数个示范工程,越来越多的中国用户开始熟悉地源热泵,并对其应用产生了浓厚的兴趣,可以预计中国的地源热泵市场前景广阔。
之所以对中国的地源热泵市场发展前景持乐观态度,一方面是要节约常规能源、充分利用可再生能源的国内外大趋势;另一方面,我国具有较好的热泵科研与应用的基础,早在50年代,天津大学热能研究所吕灿仁教授就开展了我国热泵的最早研究,1965年研制成功国内第一台水冷式热泵空调机。
重庆建筑大学、天津商学院等单位对地下埋盘管的地源热泵也进行了多年的研究。
在中国科学院广州能源研究所等单位还多次召开全国性的有关热泵技术发展与应用的专题研讨会。
美国特别看好中国市场,美国能源部和中国科技部于1997年11月签署了中美能源效率及可再生能源合作议定书,其中主要内容之一是“地源热泵”,该项目拟在中国的北京、杭州和广州3个城市各建一座采用地源热泵供暖空调的商业建筑,以推广运用这种“绿色技术”,缓解中国对煤炭和石油的依赖程度,从而达到能源资源多元化的目的。
目前,这3个地源热泵示范工程正在落实,有的已进入实施阶段。
与此同时,科技部委托的中国企业公司正酝酿将美国的地源热泵技术及设备引进中国市场,这将促进我国地源热泵的市场化、产业化的发展,并使我国地源热泵的研究开发尽快跟上国际潮流。
我们有理由相信,在充分学习借鉴国外先进技术和运行经验的基础上,在各级政府的有力支持下,中国的科技界与企业界携手共进,依靠自己的力量完全有能力在不长的时间内开拓出具有中国特色的地源热泵产业。
地源热泵的定义:地源热泵以地球表面浅层土壤作为热源(热汇),常将传统空调的冷凝器(或蒸发器)中需要排放(或吸收)的热量通过中间介质(通常是水)作为载体,并使中间介质在封闭环路中通过大地循环流动,从而实现与大地进行冷热交换的目的。
根据地下换热介质的不同地源热泵可分为三类:一是与岩土换热的地下耦合热泵系统(ground-coupled heat pump,GSHP,也叫土壤源热泵);二是与地下水换热的地下水热泵系统(ground-water heat pump,GWHP);三是与地表水换热的地表水热泵系统(surface-water heatpump,GSHP)。
美国采暖、制冷与空调工程师学会(ASHRAE)在1997 年将地源热泵以往的各种名称统一称为地源热泵(ground-source heatpump,GSHP)[2]。
考虑道地下水热泵和地表水热泵受地下水文地质条件和建筑周边环境条件的限制要多于地下耦合热泵,运用的广泛性均小于地下耦合热泵,故而本文中的地源热泵是指地下耦合热泵(或称土壤源热泵)。
工作原理:在制冷工况时,空调房间的冷负荷连同压缩机的功所转化的热量被排入大地。
室外埋管换热器1 与换热器2(此时换热器2 在热泵机组中起冷凝器的作用)之间通过管道连接成一个封闭的回路,在水泵7 的作用下,水在回路中往复循环,在换热器2(冷凝器)中吸收制冷剂的热量,通过室外埋管换热器 1 传入大地;在供热工况时,从压缩机 5 出来的制冷剂经换向阀8 作用换向,此时换热器 2 转换成为热泵机组的蒸发器,循环水流经室外埋管换热器 1 时吸收大地中的热量,在换热器2(蒸发器)中释放给制冷剂。
在室内侧,同样既可以通过水的循环进行热量传递,也可以使制冷剂直接流经房间换热器 6 与空气进行热交换。
[2] 殷平, 地源热泵在中国, 现代空调, 2001(3)[3] 肖益民, 何雪冰, 刘宪英. 地源热泵空调系统的设计施工方法及应用实例, 现代空调, 2001(3)1.国内外应用研究现状1912 年,瑞士的H.Zoelly 首次提出利用浅层地热能(地源能)作为热泵系统低温热源的概念,但由于当时一次能源充足,用热泵供暖的社会需求不足,导致热泵技术没有得到重视和发展。
地源热泵的定义:
地源热泵以地球表面浅层土壤作为热源(热汇),常将传统空调的冷凝器(或蒸发器)中需要排放(或吸收)的热量通过中间介质(通常是水)作为载体,并使中间介质在封闭环路中通过大地循环流动,从而实现与大地进行冷热交换的目的。
根据地下换热介质的不同地源热泵可分为三类:一是与岩土换热的地下耦合热泵系统(ground-coupled heat pump,GSHP,也叫土壤源热泵);二是与地下水换热的地下水热泵系统(ground-water heat pump,GWHP);三是与地表水换热的地表水热泵系统(surface-water heatpump,GSHP)。
美国采暖、制冷与空调工程师学会(ASHRAE)在1997 年将地源热泵以往的各种名称统一称为地源热泵(ground-source heatpump,GSHP)[2]。
考虑道地下水热泵和地表水热泵受地下水文地质条件和建筑周边环境条件的限制要多于地下耦合热泵,运用的广泛性均小于地下耦合热泵,故而本文中的地源热泵是指地下耦合热泵(或称土壤源热泵)。
工作原理:
在制冷工况时,空调房间的冷负荷连同压缩机的功所转化的热量被排入大地。
室外埋管换热器1 与换热器2(此时换热器2 在热泵机组中起冷凝器的作用)之间通过管道连接成一个封闭的回路,在水泵7 的作用下,水在回路中往复循环,在换热器2(冷凝器)中吸收制冷剂的热量,通过室外埋管换热器 1 传入大地;在供热工况时,从压缩机 5 出来的制冷剂经换向阀8 作用换向,此时换热器 2 转换成为热泵机组的蒸发器,循环水流经室外埋管换热器 1 时吸收大地中的热量,在换热器2(蒸发器)中释放给制冷剂。
在室内侧,同样既可以通过水的循环进行热量传递,也可以使制冷剂直接流经房间换热器 6 与空气进行热交换。
[2] 殷平, 地源热泵在中国, 现代空调, 2001(3)
[3] 肖益民, 何雪冰, 刘宪英. 地源热泵空调系统的设计施工方法及应用实例, 现代空调, 2001(3)
1.国内外应用研究现状
1912 年,瑞士的H.Zoelly 首次提出利用浅层地热能(地源能)作为热泵系统低温热源的概念,但由于当时一次能源充足,用热泵供暖的社会需求不足,导致热泵技术没有得到重视和发展。
直到1948 年,Zoelly 的专利技术才真正引起普遍的关注,尤其是欧
洲和美国。
20 世纪50 年代,美国和欧洲国家开始研究和利用地源热泵,但当时能源价格较低,使用热泵系统并不经济,因而没有得到推广。
1974 年以来,由于石油危机的出现和环境的恶化,引发了人们对新能源的开发和利用,因此开始了地源热泵的研究和利用。
这一时期欧洲建立了许多采用水平盘管地下换热器的土壤源热泵系统的研究平台。
自1974 年起,瑞典、瑞士、荷兰等国政府资助的示范工程逐步建立起来,地源热泵技术也日趋完善。
从热泵技术来说,此时的地源热泵系统大多直接利用地下水作为冷热源,因此对地下水温度有一定要求,而且当时的技术相对粗糙,甚至不设置回灌井。
20 世纪70 年代末到90 年代初,美国开展了冷热联供地源热泵的研究工作。
这一时期,地源热泵技术飞速发展并趋于成熟。
美国的地源热泵机组生产厂家也十分活跃,成立了全国地源热泵生产商联合会,并逐步完善了工程安装网络,成为世界上地源热泵机组生产和使用的大国。
图.1990年、1995年和2000年美国地热直接利用比较
从图2中可以看出1990年、1995年和2000年地热直接利用中,地源热泵占有很大的比例,约为59%,而且发展很稳定,平均年增长率约为7.7%。
1997年已安装12kW 的地源热泵4万台,2000年时有40万台左右,预计2010年总装机量可以达到150万台。
目前地源热泵在美国应用最多的还是学校和办公楼,大约有600多万所学校安装了地源热泵,主要集中在中西部和南部地区,地源热泵技术真正的商业应用是从最近几十年开始的。
我国具有较好的热泵科研成果与应用基础,20世纪50年代,天津大学的热能研究所最早开展了热泵方面的研究工作,并于1965年研制了我国第一台水冷式热泵空调机组。
我国对土壤源热泵的研究始于20世纪80年代,国内的科研工作者相继展开地源热泵的研究和试验工作,各种试验研究工作主要由各大学进行。
虽然我国对地源热泵的研究和应用较晚,但发展势头很好,地源热泵发展已列入国家新能源和可再生能源产业发展十五规划。
1978年-1999年,中国制冷学会第二专业委员会举办了9届“全国余热制
冷与热泵技术学术会议”,在2001年宁波召开的全国热泵和空调技术交流会和2002年在北京召开的国际热泵会议上,国内外有关人士开始关注中国这个很有发展潜力的大市场。
近几年来国内加强了地热源热泵的应用研究力度,自行研究和生产地源热泵机组的厂家已达几十家,如山东的富尔达、北京的中科能等。
另外国外很多知名公司已经在中国设立了销售部。
目前我国地源热泵工程正逐年增加,并取得了初步效果。
但从总体上看,中国地源热泵的发展还不够规范,基础研究上还有待于进一步完善,行业之间缺少必要的合作交流,这些因素都或多或少影响着这项技术的推广。
但是根据“绿色奥运、科技奥运、人文奥运”的要求,2008年的北京奥运会,在体育场馆、运动员村等奥运会建筑中将广泛采用太阳能、地热能等可再生能源,并将采用高效、清洁的常规能源利用技术,将在一定程度上代表了国际上最先进的用能方式,其产生的效应将直接影响北京市未来能源利用的发展方向。
同时对国内其他地区地源热泵的发展也将产生一定的积极作用
2.国内外研究现状
国外对土壤源热泵的研究主要集中在地下换热器。
1946年,美国进行了12个地下换热器的研究项目,这些研究项目测试了埋地盘管的几何尺寸、管间距、埋深等,并将热电偶埋入地下,测试了土壤温度随时间变化和受传热过程影响的情况。
1953年,美国电力协会的研究表明,以上这些试验还没有提供可用于地下换热器的设计方法。
20世纪50年代初,英国安装了用于住宅供暖的地源热泵系统。
1974年,欧洲实施了30个工程开发研究项目,发展了地源热泵的设计、安装技术,并积累了运行经验。
1971年一1978年,美国进行了多种形式地下换热器的测试,并引入太阳能集热器,组成混合土壤源热泵系统。
这一时期开始采用塑料盘管代替金属盘管。
美国和欧洲国家设计安装的土壤源热泵系统大多参照类似的已建工程设计安装,另一些工程的设计则采用估算方法。
目前,国外对土壤源热泵的研究仍集中在地下换热器的传热性能上。
地下换热器的设计、计算模型约30多种,对所有模型的建立,关键是求解岩土温度场的动态变化,其基本模型有2种:① 线热源模型,② 圆柱热源模型。
目前,国内外的热泵产品主要以风冷热泵和地源热泵为主,输出温度大于60℃,以地源或低温地热水(50℃以下)为热源的高温地源热泵在国内只有少数几个单位在研制,如中科院广州能源研究所、天津大学、清华大学等,广州能源研究所以于2001年初率先推出了最高出水温度可达75℃的高温地源热泵机组,并在近两年里由其下属公司一北京中科能源高科技有限公司,在北京、广州等地成功实施了十余个工程项目,涉及空调采暖、散热器采暖、热水供应、地热尾水热回收利用等多种形式,取得了良好的运行效果。
国内对土壤源热泵的研究主要集中在以下5个方面:地下换热器的传热计算模型的建立,地下换热器传热计算的模拟研究,地下换热器的筛选及埋地盘管合理管间距的理论分析,土壤冻结对地下换热器传热的影响,地下换热器间歇运行工况的分析。