GPS伪距测量
- 格式:ppt
- 大小:97.00 KB
- 文档页数:7
伪距测距原理GPS接收机若要实现定位,必须解决如下两个问题:一是要知道各颗可见卫星在空间的准确位置,二是要测量从接收机到这些卫星的精确距离。
GPS接收机对每颗卫星产生伪距和载波相位两个基本距离测量值。
伪距测量值:伪距在GPS领域是一个非常重要的概念,它是GPS接收机对卫星信号的一个最基本的距离测量值。
通过测量GPS信号从GPS卫星到接收机的传输时间,再乘以信号的传播速度,可得到GPS卫星与接收机之间大概距离的测量值称为伪距。
核心是测量GPS卫星发射的测距码信号(C/A码或P码)到达用户接收机天线的电波传播时间τ。
为了测量上述传播时间,在用户GPS接收机里复制了与卫星发射的测距码(C/A码或P码)结构完全相同的码信号,通过接收机中的时间延迟器,使复制的测距码进行相移,使其在码元上与接收到的卫星发射的测距码对齐,即进行相关处理。
当相关系数为1时,接收到的卫星测距码与本地复制的测距码码元对齐。
为此,所需要的相移量就是卫星发射的码信号到达接收机天线的传播时间τ。
编号为S的卫星按照其自备的卫星时钟在t(s)时刻发射出某一信号,将t(s)时刻称为GPS 信号发射时间。
该信号在t u时刻被用户GPS接收机接收到,将t u时刻称为GPS信号的接收时间。
用户接收机时钟产生的时间通常与GPS时间不同步。
假设对应于信号接收时间t u的GPS 时间实际上等于t,那么我们可将GPS时间为t时的接收机时钟t u记为t u(t),并将此时的接收机时钟超前GPS时间的量记为δt u(t),即t u(t)=t+δt u(t)式中,δt u(t)通常称为接收机时钟钟差,其值通常来说是未知的,并且是一个关于GPS 时间t的一个函数。
GPS时间t与卫星时钟t(s)(t)存在以下关系:t(s)(t)=t+δt(s)(t)其中卫星时钟钟差δt(s)(t)可以视为已知的,根据此式GPS时间与卫星时钟在信号发射时刻(t-τ)时的关系可表达成t(s)(t-τ)=t-τ+δt(s)(t-τ)GPS接收机根据接收机时钟在t u(t)时刻对GPS信号进行采样,然后对采样信号进行处理,可得到标记在GPS信号上的发射时间t(s)(t-τ)。
伪距定位的基本原理
伪距定位技术是一种基于卫星信号的定位方法,主要使用在全球定位系统(GPS)中。
其原理是通过接收卫星信号并测量信号传输时间,从而得到接收器与卫星之间的距离差。
通过多个卫星的信号测量,可以计算出接收器的位置。
伪距定位技术的基本原理是利用卫星发射的信号,接收器接收到信号后记录下信号的到达时间。
因为信号传输时速度是已知的,通过记录到达时间,就可以计算出信号传播的距离。
而通过接收多颗卫星的信号并计算距离,就可以确定接收器的位置。
在伪距定位技术中,卫星发射的信号包含有精确的时间信息。
接收器通过接收这个信号,可以知道卫星在发送信号时的精确时间。
而当信号到达接收器时,接收器也可以记录下接收信号的时间。
通过计算信号传播时的时间差,就可以计算出信号传播的距离。
然而,在实际应用中,由于卫星与接收器之间的距离相差较远,信号传播的路径存在多种可能。
因此,要精确地计算信号的传播距离,需要考虑多种因素,如信号传播的时间、信号传播的路径、信号传播过程中遇到的障碍物等。
为了提高伪距定位的精度,需要使用更为复杂的算法,如差分GPS等。
总的来说,伪距定位技术是一种基于卫星信号的定位方法,其原理是通过接收卫星信号并测量信号传输时间,从而得到接收器与卫星
之间的距离差。
通过多个卫星的信号测量,可以计算出接收器的位置。
在实际应用中,为了提高精度,需要考虑多种因素,并使用更为复杂的算法。
GPS伪距测量定位概述GPS的观测量GPS GPS(全球定位系统)是一种由美国政府研发和控制的卫星导航系统,能够提供全球范围内的三维位置、速度和时间信息。
GPS系统由一组带有
高精度原子钟的卫星和地面控制站组成,这些卫星在轨道上运行,向用户
提供定位信息。
GPS定位利用卫星发射的信号来测量接收器与卫星之间的距离(伪距
测量)。
GPS卫星发射的信号包括导航消息以及定位码和载波信号。
定位
码是由卫星周期性发送的,它包含了卫星的信息以及用于测量接收机与卫
星距离的数据。
载波信号是高频信号,其周期性地波动,用于进行更精确
的距离测量。
GPS的接收机通过接收来自多颗卫星的信号,并测量与每颗卫星之间
的距离。
接收机通过计算信号传播时间并使用光速,可以得出接收机到每
个卫星的距离。
接收机还需要知道卫星位置和信号传播速度,这些信息由
卫星的导航消息提供。
通过测量与至少四个卫星的距离,接收机可以计算
自己的三维位置。
除了定位,GPS还可以用于导航、时间同步和测量速度等应用。
导航
是GPS最常见的应用之一,它可以帮助用户确定自己的位置,并提供导航
指引,比如最短路径、到达时间等。
GPS还被广泛用于航空、航海、交通
管理和军事领域等,以及一些科学研究和测量任务中。
总的来说,GPS是一种基于卫星导航的定位系统,利用卫星发射的信
号来测量接收机与卫星之间的距离,从而确定接收机的位置。
它广泛应用
于定位、导航和测量等领域,并为人们提供方便和精确的空间信息。
测绘技术使用教程之GPS测量数据的收集与处理引言:在现代测绘领域中,全球定位系统(GPS)是一项不可或缺的技术。
GPS的应用广泛,从普通消费者使用的导航设备,到高精度测绘工作中的地理数据采集,都离不开GPS。
本文将介绍GPS测量数据的收集与处理方法。
一、GPS测量数据的收集GPS测量数据的收集需要使用GPS接收器。
选择一个合适的GPS接收器非常重要,它应具备以下功能:1. 多频率接收:多频率接收器可同时接收不同频率的GPS信号,以提高接收器的性能和测量精度。
2. 实时差分:实时差分技术可以通过接收参考站的信号纠正GPS接收器的误差,提高位置测量的精度。
3. 数据记录:接收器应具备数据记录功能,方便后续的数据处理与分析。
在进行GPS测量之前,需要对接收器进行初始化设置。
这包括选择合适的坐标系统、坐标单位以及数据采样频率等参数。
一旦设置完成,接收器即可开始接收卫星信号。
在实际的数据收集过程中,应尽量避免阻碍GPS信号的物体。
例如,高建筑物、树木、山脉等地形会降低GPS信号的质量。
因此,在选择采集点时,应选择开放地带。
同时,采集时应尽量保持接收器的稳定,以避免测量误差的产生。
二、GPS测量数据的处理处理GPS测量数据的目的是获得准确的位置信息。
下面将介绍两个常用的GPS数据处理方法。
1. 伪距法伪距法是一种基本的GPS测量原理。
接收器通过测量从卫星发射的信号到达接收器的时间来计算距离。
根据接收到的多个卫星信号,可以利用三角定位原理计算出接收器的位置。
在实际应用中,伪距法需要考虑误差来源,如大气延迟、钟差等。
这些误差可以通过实时差分技术和数据后处理方法进行修正。
2. 载波相位法载波相位法是一种更精确的GPS测量方法。
它不仅测量信号的到达时间,还测量信号的相位差。
通过对相位差进行计算,可以得到更准确的位置信息。
然而,载波相位法的处理较为复杂,需要高精度的测量设备和复杂的数据处理算法。
因此,它通常用于高精度测绘工作和科学研究等领域。
伪距测量及定位原理伪距测量及定位原理是一种基于卫星信号的测距技术,可以用来确定接收器的位置。
这种技术是现代导航系统中最常用的定位技术之一。
伪距测量是通过测量卫星信号从发射到接收器的时间来计算距离,再结合卫星的位置信息,最终确定接收器的位置。
伪距测量的原理是基于卫星导航系统发射的信号在空间中传播的速度是已知的。
当卫星信号到达接收器时,可以通过测量信号从发射到接收器的时间来计算距离。
由于卫星的位置信息是已知的,通过多个卫星的信号测距,可以得到接收器相对于这些卫星的距离。
进一步,通过三个或以上的卫星信号测距,可以利用三边定位原理来确定接收器的位置。
伪距测量及定位原理的关键在于准确测量信号的传播时间。
接收器会接收到多个卫星的信号,每个信号都会有一个不同的传播时间。
为了准确测量传播时间,接收器需要和卫星进行时间同步。
卫星会通过导航信号发送时间信息,接收器通过接收这些信息来进行时间同步。
一旦接收器和卫星的时间同步完成,接收器就可以通过测量信号的传播时间来计算距离。
伪距测量及定位原理的精度受到多种因素的影响。
首先,信号的传播速度在大气中会发生变化,这会导致距离的测量误差。
其次,卫星的位置信息也会存在一定的误差。
此外,接收器本身的误差也会对定位精度产生影响。
为了提高定位的精度,可以使用差分定位技术,通过与参考站的信号进行比较,消除误差。
伪距测量及定位原理在现代导航系统中得到了广泛应用。
全球定位系统(GPS)就是一种基于伪距测量及定位原理的导航系统。
通过接收多颗卫星的信号,GPS可以实现准确的定位和导航。
除了导航系统,伪距测量及定位原理还可以应用于地震监测、航空航天等领域。
总结一下,伪距测量及定位原理是一种基于卫星信号的测距技术,通过测量信号的传播时间来计算距离,再结合卫星的位置信息,最终确定接收器的位置。
这种技术在现代导航系统中得到了广泛应用,提供了准确的定位和导航功能。
尽管伪距测量及定位原理存在一定的误差,但通过差分定位等技术,可以提高定位的精度。
伪距定位算法伪距定位算法是一种常用的定位算法,通过测量卫星与接收器之间的信号传播时间差来确定接收器的位置。
本文将介绍伪距定位算法的原理、应用和优缺点。
一、原理伪距定位算法基于卫星导航系统,如全球定位系统(GPS),利用卫星发射的信号和接收器接收到的信号之间的时间差来计算距离。
具体步骤如下:1. 接收器接收到至少四颗卫星发射的信号,并记录下信号接收时间。
2. 接收器通过卫星发射信号的速度(光速)和接收时间计算出信号传播的时间。
3. 根据信号传播的时间和速度,计算出卫星与接收器之间的距离。
4. 通过至少三颗卫星的距离计算出接收器的粗略位置。
5. 通过更多卫星的距离测量,使用三角定位法来提高定位的精确度。
二、应用伪距定位算法广泛应用于定位和导航系统中,如汽车导航、航空导航、军事定位等。
以下是几个常见的应用场景:1. 汽车导航:伪距定位算法可以通过接收卫星信号,确定汽车的位置,并提供导航指引,帮助驾驶员准确找到目的地。
2. 航空导航:伪距定位算法在航空导航中起到关键作用。
飞机上的导航系统可以通过接收到的卫星信号,实时确定飞机的位置和航向,为飞行员提供准确的导航信息。
3. 军事定位:伪距定位算法在军事领域具有重要意义。
军事装备可以通过接收到的卫星信号,确定士兵或装备的位置,实现精确的定位和导航。
三、优缺点伪距定位算法有以下优点:1. 精度高:伪距定位算法可以通过接收多颗卫星的信号,使用三角定位法来提高定位的精确度。
在开放区域和有良好信号接收条件的情况下,定位精度可以达到几米甚至更高。
2. 全球覆盖:伪距定位算法依托于卫星导航系统,如GPS,可以在全球范围内提供定位服务。
只要能接收到足够数量的卫星信号,就可以进行定位。
3. 实时性强:伪距定位算法能够实时计算接收器的位置,及时提供定位信息。
在导航和军事等领域,实时性对于决策和行动至关重要。
然而,伪距定位算法也存在一些缺点:1. 受环境影响:伪距定位算法对信号的接收环境要求较高,如高层建筑、山地、森林等会对信号传播产生阻碍,影响定位精度。
GPS伪距的单点定位例析引言全球定位系统(GPS)伪距单点定位技术是利用C/A码进行接收机坐标的求解,伪距定位因其定位速度块,灵活方便且无多值性等优点,能够很好地满足实时测量的要求,因此成为导航的最基本方法被广泛应用[1]。
但是由于卫星钟差,接收机误差以及无线电信号经过对流层,电离层中的延迟,使得其测出的伪距精度并不高,虽然载波相位测量精度比伪距定位高很多,但由于需要求解整周模糊度,探测周跳等问题,增加了定位时间和成本[2],如何实现较高精度的GPS伪距单点定位是必须深入探讨的问题。
目前利用C/A码进行GPS伪距单点定位,一般采用最小二乘(Least Square,LS)法,然而尽管最小二乘法能在含有误差与噪声的各个测量值之间寻求一个最优点,使得所有测量值的残余平方和最小,但是由于最小二乘法没有将不同时刻的定位值联系起来互相制约,因而最小二乘法的定位结果通常显得相当粗糙,杂乱[3][4]。
滤波是一种降低、分离信号中所含噪声量的技术。
如果对最小二乘解经过一定的滤波处理,那么接收机完全有机会输出更加平滑,准确的定位结果。
卡尔曼滤波(Kalman Filtering,KF)是一种最优化自回归数据处理算法,对于解决很大部分的问题,它是最优的,效率最高甚至最有用的[5][6]。
本文利用2013年合肥工业大学观测数据,对LS和KF两种解法进行了对比与分析,旨在寻找最佳解法,以此来提高定位精度。
1、GPS伪距单点定位原理:1.1 伪距定位基本观测方程[1][3]:式中:为卫星到接收机之间的几何距离,,分别为卫星坐标与接收机坐标。
,分别为电离层和对流层的改正项,,分別为接收机钟差与卫星钟差,为伪距观测值,c表示光速,j表示卫星号,k表示接收机号。
1.2 伪距定位方程的线性化模型:令,分别为观测站坐标的近似值与改正数,将式(1)台劳级数展开,并令:取至一次微小项的情况下,伪距观测方程的线性化形式为:式中,,其他符号意义同上。