高一数学-指数函数-函数的值域与最值
- 格式:doc
- 大小:2.55 MB
- 文档页数:16
【高中数学】高中数学知识点:指数函数的解析式及定义(定义域、值域)指数函数的定义:一般地,函数y=ax(a>0,且a≠1)叫做指数函数,其中x是自变量,函数的定义域是R,值域是(0,+∞)。
指数函数的解析式:y=ax(a>0,且a≠1)理解指数函数定义,需注意的几个问题:①因为a>0,x是任意一个实数时,ax是一个确定的实数,所以函数的定义域为实数集R.②规定底数a大于零且不等于1的理由:如果a<0,比如y=(-4)x,这时对于在实数范围内函数值不存在.如果a=1,y=1x=1是一个常量,对它就没有研究的必要,为了避免上述各种情况,所以规定a>0且a≠1.③像等函数都不是指数函数,要注意区分。
相关高中数学知识点:指数与指数幂的运算(整数、有理、无理)n次方根的定义:一般地,如果xn=a,那么x叫做a的n次方根,其中n>1,且n∈N*。
分数指数幂的意义:(1);(2);(3)0的正分数指数幂等于0,0的负分数指数幂没有意义。
n次方根的性质:(1)0的n次方根是0,即=0(n>1,n∈N*);(2)=a(n∈N*);(3)当n为奇数时,=a;当n为偶数时,=|a|。
幂的运算性质:(1);(2);(3);注意:一般地,无理数指数幂(a>0,α是无理数)是一个确定的实数,上述有理指数幂的运算性质,对于无理指数幂都适用。
感谢您的阅读,祝您生活愉快。
2.1.2 指数函数及其性质疱丁巧解牛知识·巧学·升华 一、指数函数及其性质 1.指数函数的定义一般地,函数y=a x(a >0且a ≠1,x ∈R )叫做指数函数,其中x 是自变量.由于当a=0时,若x >0,a x 恒等于0;若x ≤0,a x无意义. 当a <0时,如y=(-2)x,对x=…,-21,41,21,…在实数范围内函数值不存在. 当a=1时,y=1x=1,是一常量,没有研究的必要.综上可知,当a ≤0或a=1时,不是没有意义,就是没有研究的必要,故规定a >0且a ≠1.只有形如y=a x (a >0且a ≠1)且定义域为R 的函数,才是指数函数,又如y=3·2x ,y=2x-1,y=2x+1等,是由指数函数经过某种变换而得到的,它们都不是指数函数.要点提示 因为指数的概念已经从整数扩充到实数,在底数a >0且a ≠1的情况下,对任意一个x 都有唯一确定的值y 与它对应,所以x 是任意实数. 2.指数函数的图象和性质(1)下面先画指数函数y=2x 及y=0.5x图象列出x,y 的对应值表,用描点法化出图象: x …-3 -2 -1 0 1 2 3 … y=2x 0.13 0.25 0.5 1 2 4 8 y=0.5x84210.50.250.13要点提示 函数y=a x与y=a -x的图象关于y 轴对称.xa >10<a <1图象性质①定义域:R ②值域:(0,+∞)③过点(0,1),即x=0时,y=1 ④在R 上是增函数, 当x <0时,0<y <1; 当x >0时,y >1④在R 上是减函数, 当x <0时,y >1; 当x >0时,0<y <1指数函数的单调性是指数函数性质中应用最广的,运用此性质可以求与指数函数有关的一般函数的值域、单调区间等.指数函数的图象变换有两种:一种是平移变换分上下、左右平移,遵循“左加右减,上加下减”.平移前后的形状没有发生变化,只是位置改变了;另一种是对称变换,它会导致前后的形状发生明显改变.指数函数的图象变换可以推广到我们学过的任何函数. 研究函数的性质,可明确图象的形状;通过函数的图象可以进一步加深对性质的理解.二者相辅相成、缺一不可,可通过解决函数的图象来解决与方程和不等式有关的问题,这时作函数的图象应明确其图象的形状,而确定形状的手段主要有:函数关系式的等价变形、图象的变换、通过研究函数的性质等.要点提示 ①指数函数的图象恒在x 轴上方;②指数函数的单调性取决于它的底数;③y=a x (a >1)在 x >0的方向上增幅越来越快;④指数函数由唯一的常量a 确定.⑤y=a x (0<a<1)在x <0的方向上增幅越来越快.方法点拨 遇到求含有字母的表达式等问题可先用待定系数法确定a ,再求值.深化升华 ①底数相同,指数不同的,可构造指数函数,利用函数的单调性比较大小; ②底数、指数都不相同的,可选一中间值比较大小; ③指数相同,底数不同的可用数形结合法比较大小. 问题·思路·探究问题1 为什么说指数函数的图象是研究函数性质的直观工具?思路:对于指数函数问题,我们不仅仅应该知道其表达式及利用表达式进行计算的问题,而且应注重结合其相应的图象掌握相应的知识且能灵活运用图象来分析问题、解决问题,从而领会图象在指数函数应用方面的作用. 探究:因为通过图象我们可以直观地看到,任取a({a|a>0且a ≠1}),图象始终过定点(0,1),图象始终在x 轴的上方;当a>1时第一象限的图象与0<a<1时第二象限的图象始终在直线y=1的上方,当a>1时第二象限的图象与0<a<1时第一象限的图象始终在直线y=1的下方,当a>1时,图象是上升的,当0<a<1时,图象是下降的.所以应用图象进行数形结合,清晰地刻画了指数函数的性质,它们便于我们记忆起函数性质和变化规律.问题2 函数y=2|x|的图象有什么特征?你能根据它的图象指出其值域和单调区间吗?思路:函数y=a |x|:其图象是关于y 轴对称的,所以只要先把y=a x的y轴右边的图象保留,再将y 轴右边部分关于y轴作出对称部分;就得到了y=a |x|的图象.探究:函数y=2|x|的图象关于y 轴对称,这是因为它的图象由y=2x(x ≥0)的图象和y=(21)x(x<0)的图象合并而成,而y=2x(x>0)与y=(21)x(x<0)的图象关于y 轴对称,所以函数y=2|x|的图象关于y 轴对称,由图象可知值域是[1,+∞),递增区间为[0,+∞),递减区间为(-∞,0]问题3 函数y=a x+h+k(a>0且a ≠1)的图象恒过点(-h,1+k ),为什么?思路:一般地,把函数y=f (x )的图象向右平移m 个单位得函数y=f (x-m )的图象(m ∈R ,m <0就是向右平移|m|个单位);把函数y=f (x )的图象向上平移n 个单位,得到函数y=f (x )+n 的图象(n ∈R ,若n <0,就是向下平移|n|个单位=探究:函数y=a x+h +k(a>0且a ≠1)的图象可由y=a x(a>0且a ≠1)的图象向左(当h>0时)或向右(当h<0时)平移|h|个单位,再向上(当k>0时)或向右(当k<0时)平移|k|个单位而得到,因为y=a x (a>0且a ≠1)的图象恒过点(0,1),所以函数y=a x+h+k(a>0且a ≠1)的图象恒过点(-h,1+k ). 典题·热题·新题例1 下列函数中,哪些是指数函数?①y=4x ②y=x 4 ③y=-4x ④y=4-x ⑤y=(-4)x ⑥y=4x+1 ⑦y=4x +1⑧y=e x ⑨y=4x(x>0)⑩y=(a-1)x(a>1且a ≠2)思路解析:①④⑧⑩为指数函数,其中④y=4-x 从形式上看不是指数函数,将它变形为y=(4-1)x,即y=(41)x.它实质上是指数函数. ②中底数x 不是常数,而4不是变数;③是-1与指数函数4x的乘积;⑤中底数-4<0; ⑥中的指数是x 的函数,不是自变量x ;⑦由y=4x向上平移得到的;⑨x 的范围不是R . 答案:②③⑤⑥⑦⑨不是指数函数.误区警示 像y=4x+1,y=4x +1的图象可由y=2x 的图象通过平移或伸缩变换而得到.而y=a -x从形式上看不是指数函数,将它变形为y=(a -1)x,即y=(a1)x.它实质上是指数函数. 例2 若指数函数y=(2a-1)x是减函数.则a 的范围是多少? 思路解析:由题意可知1>2a-1>0,得21<a <1. 答案:21<a <1 深化升华 解与指数有关的问题时,注意对底数分类讨论,这是考试的一个重点.例3 如右图,在同一坐标系下给出四个指数函数的图象,试比较底数a 、b 、c 、d 的大小.思路解析:作直线x=1与四个图象交于四个点,得四个纵坐标为a 、b 、c 、d ,底数都“跑”到纵轴上去了,可在数轴的位置上直观比较底数的大小,则a >b >1>c >d >0 . 答案:a >b >c >d拓展延伸 在同一坐标系中,画出函数y=3x,y=(31)x ,y=2x,y=(21)x 的图象,比一比,看它们之间有何联系.从图中可以看到,图象向下无限地与x 轴靠拢,即x 轴是指数函数的渐近线.任何两个函数图象都是交叉出现的,交叉点是(0,1).在y 轴的右侧,对同一变量x 而言,底数越大,函数值越大;在y 轴的左侧,情况正好相反,即对同一自变量x 而言,底数越大,函数值越小.以此为依据,可定性地分析在同一坐标系中,底数不同的若干个指数函数的底数的大小关系.怎样定量分析同一坐标系中底数不同的指数函数的底数的大小呢?我们知道,对指数函数y=a x(a >0且a ≠1),当x=1时,y=a ,而a 恰好是指数函数的底数,这就启发我们,不妨作直线x=1,它同各个图象相交,交点的纵坐标就是各指数函数的底数,以此可比较底数的大小.深化升华 (1)渐近线是指逐渐靠拢,但永远不能到达的线.(2)从联系的观点研究不同底数的指数函数图象间的关系,对深化理解指数函数的图象和性质是有帮助的.例4 画出下列函数的图象:(1)y=2x-1+2;(2)y=0.5|x|思路解析:利用指数函数的图象及结合函数图象的变换来处理.答案:(1)利用函数y=2x的图象沿x 轴正半轴平移一个单位,纵坐标不变,再把所得图象沿y 轴的正半轴平移2个单位,横坐标不变,得到y=2x-1+2的图象,如图(1)(注:画出虚直线的目的是体现平移变换).(2)由y=0.5|x|=⎪⎩⎪⎨⎧<=≥-,0,25.0,0,5.0x x xx x作y=0.5x的图象但只取y 轴及其右侧部分,再作y=2x的图象但只取y 轴左侧部分,就得到函数y=0.5|x|的图象,如图(2)所示的实线(注:画出虚线的目的是衬托实线的特征).图(1) 图(2) 深化升华 由指数函数的图象,我们还可以总结出图象的变化规律: ①平移规律若已知y=a x 的图象,则把y=a x 的图象向左平移b (b >0)个单位,则得到y=a x+b的图象.把y=a x 的图象向右平移b (b >0)个单位,则得到y=a x-b 的图象,把y=a x的图象向上平移b(b >0)个单位,则得到y=a x +b 的图象.把y=a x的图象向下平移b (b >0)个单位,则得到y=a x-b 的图象. ②对称规律函数y=a x 的图象与y=a -x 的图象关于y 轴对称,y=a x 的图象与y=-a x的图象关于直线x轴对称.函数y=a x 的图象与y=-a -x的图象关于坐标原点对称.函数y=a |x|:其图象是关于y 轴对称的,所以只要先把y=a x的y轴右边的图象保留;再将y轴右边部分关于y轴对称;就得到了y=a |x|的图象.拓展延伸 一般地,把函数y=f (x )的图象向右平移m 个单位得函数y=f (x-m )的图象(m ∈R ,m <0就是向右平移|m|个单位);把函数y=f (x )的图象向上平移n 个单位,得到函数y=f (x )+n 的图象(n ∈R ,若n <0,就是向下平移|n|个单位=.函数y=f (x )的图象与y=f (-x )的图象关于y 轴对称,函数y=f (x )的图象与函数y=-f (x )的图象关于x 轴对称,函数y=f (x )的图象与函数y=-f (1-x )的图象关于原点对称.函数y=f(|x|):其图象是关于y 轴对称的,所以只要先把y轴右边的图象保留;再将y轴右边部分关于y轴对称;就得到了y=f(|x|)的图象.例5 用函数单调性定义证明函数f (x )=2x在(-∞,+∞)上单调递增. 思路解析:函数单调递增:x 1<x 2⇒f (x 1)<f (x 2);或先论证)()(21x f x f <1,又f (x 2)>0⇒f (x 1)<f (x 2).证明:在(-∞,+∞)上任取x 1<x 2,则)()(21x f x f =2121222x x x x -=,∵x 1-x 2<0,∴212xx -<1.又f (x 2)=2x2>0,∴f (x 1)<f (x 2).∴函数f (x )=2x在(-∞,+∞)上单调递增. 深化升华 在用函数单调性定义证明的过程中,除了作差法也可用作商法比较f (x 1)、f (x 2)的大小.例6 求下列函数的单调区间:(1)y=2425.0--x x ;(2)y=x112+.思路解析:将原函数“拆”成两个简单的函数,再依据复合函数的单调性求解. 解:(1)令u=x 2-4x-2,则y=0.5u.因为y=0.5u为减函数,所以y=2425.0--x x 与u=x 2-4x-2的单调性相反.又由u=x 2-4x-2=(x-2)2-6得u=x 2-4x-2在(-∞,2]为减函数,在[2,+∞)为增函数.所以y=2425.0--x x 在(-∞,2)为增函数,在[2,+∞]为减函数;(2)令u=1+x 1,则y=2u ,因为y=2u为增函数,所以y=x 112+的单调性与u=1+x 1的单调性相同.因为u=1+x1(x ≠0)所以在(-∞,0)及(0,+∞)上均为减函数,所以y=x 112+的单调递减区间为(-∞,0)和(0,+∞).拓展延伸 确定函数的单调性,利用复合函数的单调性的方法或可变形函数解析式,利用已有函数的单调性进行由里及外的层层判断,最终得出函数的单调性.但是要证明单调性必须用单调性定义.本题求函数值域也可以利用解析式变形,由里及外层层求出值域最终而得:y=1212+-x x =1-122+x .x ∈(-∞,+∞)⇒2x >0⇒2x+1>1⇒121+x <1,∴-2<-122+x<0.∴-1<y <1.∴值域为(-1,1).例7 已知函数f (x )=a x(a >0,且a ≠1),根据图象判断21[f (x 1)+f (x 2)]与f (221x x +)的大小,并加以证明.思路解析:对a >1及0<a <1两种情形的指数函数图象,分别取两点A (x 1,f (x 1))、B (x 2,f (x 2))连线段,其中21[f (x 1)+f (x 2)]就是这线段中点M 的函数值,f (221x x +)就是图象上弧线段与直线x=221x x +的交点M 的函数值,如下图.显然无论哪一种情形总有点N 在点M 下方. ∴f (221x x +)<21[f (x 1)+f (x 2)]. 证明:f (x 1)+f (x 2)-2f (221x x +)=2222)(2112121x x x x xx a aaa a -=-++.由x 1≠x 2,∴21x ≠22x .∴2221xxa a -≠0,∴222)(21xxa a ->0.∴f (x 1)+f (x 2)-2f (221x x +)>0. 深化升华 通过数形结合我们不难发现凸凹函数的性质. 若f (x )是凸函数,则f (221x x +)≥21[f (x 1)+f (x 2)]; 若f (x )是凹函数,则f (221x x +)≤21[f (x 1)+f (x 2)]. 例8 方程2x-1=2x 的实数解的个数为( )A. 0个B.1个C.2个D.3个 思路解析:这不是我们所学的代数等式,也不可能转化成代数式,只有数形结合观察图象交点才能解决.答案:2x-1=2x 可化为2x=2x+1,令⎩⎨⎧+==122x y y x 在同一坐标系中画出y=2x及y=2x+1的图象.如右图所示,可以看出它们图象有两个交点.故选C.深化升华 遇到等式两边的形式属于不同类型的函数而且直接处理无法进行时,这时应联想到用数形结合来解决.。
求与指数函数㊁对数函数有关的最值(值域)问题的关键是转化与化归思想的应用,下面归类举例说明此类问题的求解方法㊂一㊁求函数的最值例1 设函数f (x )=l o g ax (a >0且a ʂ1)的图像经过点(2,1),当2ɤx ɤ4时,求函数h (x )=f (2x )fx8的最值㊂解:由函数f (x )=l o g ax (a >0且a ʂ1)的图像经过点(2,1),可得l o g a2=1,解得a =2,所以函数f (x )=l o g 2x ,且定义域为{x |x >0}㊂所以函数h (x )=f (2x )fx8=l o g 2(2x )㊃l o g 2x 8=(l o g 2x +1)(l o g 2x -3),且x ɪ[2,4]㊂令t =l o g 2x ,t ɪ12,2,则函数h (x )等价于g (t )=(t +1)㊃(t -3)=t 2-2t -3,其对称轴为t =1㊂因为函数g (t )在t ɪ12,1上单调递减,在t ɪ[1,2]上单调递增,所以h (x )m i n =g (t )m i n =g (1)=-4㊂又因为g 12=-154,g (2)=-3,所以h (x )m a x =g (t )m a x =g (2)=-3㊂故函数h (x )的最大值为-3,最小值为-4㊂评注:解答本题的关键是通过换元变形,将原问题转化为熟悉的一元二次函数在区间上的最值问题,再借助 配方 变形即可得到最值㊂二㊁求函数的值域例2 已知函数f (x )=l o g 3x +1,x ɪ[1,9],求函数h (x )=[f (x )]2+f (x 2)的值域㊂解:因为函数f (x )的定义域为[1,9],所以1ɤx ɤ9,1ɤx 2ɤ9,解得1ɤx ɤ3,即x ɪ[1,3],所以函数h (x )=[f (x )]2+f (x 2)的定义域为[1,3]㊂h (x )=[f (x )]2+f (x 2)=(l o g 3x +1)2+l o g 3x 2+1=(l o g 3x )2+4l o g 3x +2㊂设t =l o g 3x ,因为x ɪ[1,3],所以t ɪ[0,1],所以函数h (x )等价于函数φ(t )=t 2+4t +2=(t +2)2-2,且φ(t )在t ɪ[0,1]上单调递增㊂当t =0,即x =1时,h (x )取得最小值,可得h (x )m i n =φ(0)=2;当t =1,即x =3时,h (x )取得最大值,可得h (x )m a x =φ(1)=7㊂故函数h (x )的值域是[2,7]㊂评注:求函数y =[f (x )]2+f (x 2)的定义域时,容易忽视1ɤx 2ɤ9的情况㊂在复合函数中,外层函数的定义域是内层函数的值域,若已知f (x )的定义域为[a ,b ],其复合函数f [g (x )]的定义域可由不等式a ɤg (x )ɤb 解出;若已知f [g (x )]的定义域为[a ,b ],求g (x )的定义域,相当于x ɪ[a ,b ],求g (x )的值域(即f (x )的定义域)㊂三㊁由给定的最值,求参数的值例3 设函数f (x )=a x -a -x(a >0且a ʂ1)㊂已知f (1)=83,函数g (x )=a 2x+a-2x-2m f (x )在区间[1,+ɕ)上的最小值为-2,求实数m 的值㊂解:依题意得f (1)=a -1a =83㊂因为a >0且a ʂ1,所以a =3,所以函数f (x )=3x -3-x ,所以函数g (x )=32x +3-2x -2m (3x-3-x )=(3x -3-x )2-2m (3x -3-x)+2,且x ɪ[1,+ɕ)㊂令t =3x -3-x ,由函数t =3x -3-x在[1,+ɕ)上单调递增,可得t ȡ83,即t ɪ83,+ɕ㊂83 创新题追根溯源 高一数学 2023年11月函数g (x )等价于函数h (t ),且h (t )=t 2-2m t +2在83,+ɕ上的最小值为-2㊂函数h (t )=t 2-2m t +2的图像的对称轴为t =m ,当m >83时,h (t )m i n =h (m )=-m 2+2,由-m 2+2=-2,解得m =ʃ2,不符合题意;当m ɤ83时,函数h (t )=t 2-2m t +2在83,+ɕ上单调递增,h (t )m i n =h 83=829-163m ,由829-163m =-2,解得m =2512㊂因为2512<83,所以实数m =2512,符合题意㊂故实数m =2512㊂评注:利用恒等式(a x -a -x )2=a 2x+a-2x-2进行转化是解题的关键㊂四㊁由给定的值域,求参数的取值范围例4已知函数f (x )=2x-a ,x <4,l o g 2x ,x ȡ4,若f (x )存在最小值,则实数a 的取值范围是( )㊂A.(-ɕ,4] B .[-2,+ɕ)C .(-ɕ,-2)D .(-ɕ,-2]解:已知函数f (x )=2x-a ,x <4,l o g 2x ,x ȡ4,当x <4时,f (x )=2x-a 的值域是(-a ,16-a );当x ȡ4时,由f (x )=l o g 2x ,可得f (x )m i n =2㊂由题意知,f (x )存在最小值,所以-a ȡ2,解得a ɤ-2,即实数a ɪ(-ɕ,-2]㊂应选D ㊂评注:准确理解指数函数和对数函数的图像与性质,有助于顺利破解与指数函数和对数函数有关的最值(值域)问题㊂已知函数f (x )=9x+m ㊃3x+19x +3x+1㊂(1)若对任意的x ɪR ,f (x )>0恒成立,求实数m 的取值范围㊂(2)若函数f (x )的最大值为2,求实数m 的值㊂(3)若对任意的x 1,x 2,x 3ɪR ,均存在以f (x 1),f (x 2),f (x 3)为三边长的三角形,求实数m 的取值范围㊂提示:(1)因为对任意的x ɪR ,f (x )>0恒成立,所以9x+m ㊃3x+19x +3x+1>0,可得9x+m ㊃3x +1>0,即-m <3x+13x 恒成立㊂因为3x >0,所以3x+13x ȡ2,当且仅当x =0时取等号,所以-m <2,可得m >-2,即实数m ɪ(-2,+ɕ)㊂(2)函数f (x )=9x +m ㊃3x+19x +3x+1=1+(m -1)㊃3x9x +3x +1=1+m -13x +3-x+1㊂因为3x +3-x ȡ2,所以3x +3-x+1ȡ3㊂当m -1<0,即m <1时,1>f (x )ȡ1+m -13,不符合题意;当m =1时,f (x )=1,不符合题意;当m -1>0,即m >1时,1<f (x )ɤ1+m -13,可得1+m -13=2,所以m =4㊂综上可得,实数m =4㊂(3)由题意知,f (x 1)+f (x 2)>f (x 3)对任意的x 1,x 2,x 3ɪR 恒成立㊂当m >1时,2<f (x 1)+f (x 2)ɤ2m +43,且1<f (x 3)ɤm +23,所以m +23ɤ2,可得1<m ɤ4;当m =1时,f (x 1)=f (x 2)=f (x 3)=1,符合题意;当m <1时,2m +43ɤf (x 1)+f (x 2)<2,且m +23ɤf (x 3)<1,所以2m +43ȡ1,可得-12ɤm <1㊂综上所述,实数m ɪ-12,4㊂作者单位:1.江苏省无锡市第六高级中学2.江苏省无锡市青山高级中学(责任编辑 郭正华)93创新题追根溯源高一数学 2023年11月。
高一数学必修一函数知识点分析1、函数:设A、B为非空集合,如果按照某个特定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,写作y=f(x),x∈A,其中,x叫做自变量,x的取值范围A叫做函数的定义域,与x相对应的y的值叫做函数值,函数值的集合B={f(x)∣x∈A }叫做函数的值域。
⑴ 若x处于分母位置,则分母x不能为0。
⑵ 偶次方根的被开方数不小于0。
⑶ 对数式的真数必须大于0。
⑷ 指数对数式的底,不得为1,且必须大于0。
⑸ 指数为0时,底数不得为0。
⑹ 如果函数是由一些基本函数通过四则运算结合而成的,那么,它的定义域是各个部分都有意义的x值组成的集合。
⑺ 实际问题中的函数的定义域还要保证实际问题有意义。
3、相同函数⑴ 表达式相同:与表示自变量和函数值的字母无关。
⑵ 定义域一致,对应法则一致。
4、函数值域的求法⑴ 观察法:适用于初等函数及一些简单的由初等函数通过四则运算得到的函数。
⑵ 图像法:适用于易于画出函数图像的函数已经分段函数。
⑶ 配方法:主要用于二次函数,配方成 y=(x-a)2+b 的形式。
⑷ 代换法:主要用于由已知值域的函数推测未知函数的值域。
5、函数图像的变换⑴ 平移变换:在x轴上的变换在x上就行加减,在y轴上的变换在y上进行加减。
⑵ 伸缩变换:在x前加上系数。
⑶ 对称变换:高中阶段不作要求。
6、映射:设A、B是两个非空集合,如果按某一个确定的对应法则f,使对于A中的任意仪的元素x,在集合B中都有唯一的确定的y与之对应,那么就称对应f:A→B为从集合A到集合B的映射。
⑴ 集合A中的每一个元素,在集合B中都有象,并且象是唯一的。
⑵ 集合A中的不同元素,在集合B中对应的象可以是同一个。
⑶ 不要求集合B中的每一个元素在集合A中都有原象。
7、分段函数⑴ 在定义域的不同部分上有不同的解析式表达式。
⑵ 各部分自变量和函数值的取值范围不同。
高一指数幂函数知识点一、基本概念指数幂函数是由指数函数与幂函数相结合而成的一类函数。
其中,指数函数是以指数为变量的函数,幂函数是以幂为变量的函数。
二、指数函数指数函数的一般形式为f(x) = a^x,其中a是常数且大于0且不等于1。
1. 指数函数的定义域是全体实数,值域是正数集合,且在x轴上的图像与y轴正半轴交于点(0,1)。
2. 指数函数的性质:- 当a>1时,函数递增且无上界;- 当0<a<1时,函数递减且无下界;- 当a=1时,函数恒为1;- 指数函数f(x) = a^x与x轴交于点(0,1);- 指数函数f(x) = a^x在x>0时单调递增,在x<0时单调递减。
三、幂函数幂函数的一般形式为f(x) = x^a,其中a是常数。
1. 幂函数的定义域为x>0时全体实数,值域与定义域都为正数。
2. 幂函数的性质:- 当a>0时,函数递增;- 当a<0时,函数递减;- 幂函数f(x) = x^a在x大于0时单调递增,在x小于0时单调递减,若定义域包括0,则在x=0时取得极小值或极大值。
四、指数幂函数指数幂函数是指数函数与幂函数相结合而成的一类函数,其一般形式为f(x) = a^x^b,其中a和b均为常数,且a大于0且不等于1。
1. 指数幂函数的定义域为全体实数,值域取决于具体的a和b 值。
2. 指数幂函数的性质:- 当b>0时,函数递增;- 当b<0时,函数递减;- 若指数幂函数的底数大于1且指数大于0,则函数在定义域内单调递增;- 若指数幂函数的底数大于0且小于1且指数小于0,则函数在定义域内单调递增。
五、指数幂函数的图像及特殊情况1. 当指数幂函数的底数a大于1时,其图像呈现增长趋势,且趋近于正无穷大;当a等于1时,函数恒为1;当a介于0和1之间时,其图像呈现递减趋势,且趋近于0。
2. 当指数幂函数的指数b为正整数时,图像表现为正幂函数的形态;当b为负整数时,图像表现为倒数幂函数的形态。
授课类型T-指数函数C-函数的值域与最值T-指数函数教学目的1、掌握指数函数的概念和指数运算的性质2、掌握指数函数的图像和性质,并能够根据指数函数的性质解决一些变形的指数函数的问题;利用指数函数建议数学模型解决实际问题。
3、掌握函数值域与最值的解法教学内容1.一张白纸对折一次得两层,对折两次得4层,对折3次得8层,问若对折x 次所得层数为y ,则y 与x 的函数表达式是:2xy =.2.一根1米长的绳子从中间剪一次剩下12米,再从中间剪一次剩下14米,若这条绳子剪x 次剩下y 米,则y 与x 的函数表达式是:12xy ⎛⎫= ⎪⎝⎭.问题:这两个函数有何特点?同步讲解一、指数函数的概念你知道么?一般地,指数函数y=a x在底数a>1及0<a<1这两种情况下的图象和性质如下表所示:a>1 0<a<1 图象性质①定义域:R②值域:(0,+∞)③过点(0,1),即x=0时y=1④在R上是增函数,当x<0时,0<y<1;当x>0时,y>1④在R上是减函数,当x<0时,y>1;当x>0时,0<y<1利用指数函数的性质,比较下列各组中两个数的大小.(1)32和 1.72;(2)230.6-和340.6-.【分析与解答】(1)因为指数2xy=函数在(),-∞+∞上是增函数,又3 1.7>,所以3 1.722>.(2)因为指数函数0.6xy=在(),-∞+∞上是减函数,又2334->-,所以23340.60.6-->.求下列函数的定义域与值域。
(1)142xy-=(2)23xy-⎛⎫= ⎪⎝⎭(3)1421x xy+=++【分析与解答】根据指数函数的定义域为R,逐个分析。
【解】(1)由404x x-≠⇒≠所以定义域为}{,4x x R x∈≠且1410214xx-≠∴≠-Q所以值域为{}0,1y y y>≠(2)定义域为R。
2331322x xxy--≥⎛⎫⎛⎫⎛⎫∴==≥=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭Q故值域为{}1y y≥(3)定义域为R,令2xt=,则()220,2111t y t t t>=++=+>所以值域为{}1y y>函数()(),x xf x ag x b==的图像如图,试确定,a b的大小;若()()3127f g==,求()(),f xg x的解析式。
人教版高中数学知识点解析指数与对数函数的性质与运算法则指数与对数函数是高中数学中的重要概念,对于学生来说,掌握其性质与运算法则是非常关键的。
本文将对人教版高中数学教材中关于指数与对数函数的性质与运算法则进行解析。
希望通过本文的讲解,能够帮助学生更好地理解并掌握这部分内容,提高数学学习的效果。
一、指数函数的性质与运算法则指数函数是以一个固定的正常数作为底数,自变量为指数的函数。
在人教版高中数学教材中,指数函数的性质与运算法则如下:1. 指数函数的定义域与值域对于指数函数 y=a^x 而言,其定义域为全体实数,即 x∈R。
对于指数函数的值域与底数 a 相关,当 a>0 且a≠1 时,值域为 (0,+∞);当0<a<1 时,值域为 (0,+∞);当 a<0 时,值域为无解。
2. 指数函数的性质a) 当 a>1 时,指数函数 y=a^x 在 x 趋于正无穷和负无穷时,分别趋于正无穷和零。
b) 当 0<a<1 时,指数函数 y=a^x 在 x 趋于正无穷和负无穷时,分别趋于零和正无穷。
c) 无论 a 的值为何,指数函数 y=a^x 的图像必过点 (0,1)。
3. 指数函数的运算法则a) a^m * a^n = a^(m+n)b) (a^m)^n = a^(m*n)c) (a*b)^n = a^n * b^nd) a^-n = 1/(a^n)e) (a/b)^n = (a^n)/(b^n)二、对数函数的性质与运算法则对数函数是指数函数的逆运算,即 y=log(a, x),其中底数 a 为正常数且a≠1,x 为正常数。
在人教版高中数学教材中,对数函数的性质与运算法则如下:1. 对数函数的定义域与值域对于对数函数 y=log(a, x) 而言,其定义域为 x>0 且x≠1;值域为全体实数。
2. 对数函数的性质a) log(a, 1) = 0b) log(a, a) = 1c) log(a^m, a^n) = (m/n),其中 a>0 且a≠1,m、n 为任意实数。
新高一数学指数函数知识点一、指数函数的定义指数函数是指形如f(x) = a^x的函数,其中a是一个正实数且a≠1。
二、指数函数的性质1. 定义域:指数函数的定义域为实数集R。
2. 值域:当a>1时,指数函数的值域为(0, +∞);当0<a<1时,指数函数的值域为(0, 1)。
3. 增减性:当a>1时,指数函数是严格单调递增函数;当0<a<1时,指数函数是严格单调递减函数。
4. 连续性:指数函数在其定义域上连续。
5. 零点:指数函数在x=0处有且仅有一个零点,即a^0 = 1。
6. 渐近线:当x趋近负无穷时,指数函数趋近于0;当x趋近正无穷时,指数函数趋近于正无穷。
三、指数函数的图像1. 当a>1时,指数函数的图像是逐渐上升的曲线,经过点(0,1)。
2. 当0<a<1时,指数函数的图像是逐渐下降的曲线,经过点(0,1)。
3. 指数函数的图像在y轴上没有与x轴交点。
四、指数函数的基本性质1. a^m * a^n = a^(m+n):指数函数的乘法法则。
2. (a^m)^n = a^(m*n):指数函数的指数乘法法则。
3. a^m / a^n = a^(m-n):指数函数的除法法则。
4. (a*b)^m = a^m * b^m:指数函数的乘方法则。
5. a^0 = 1:任何正实数的0次幂等于1。
五、指数方程与指数不等式1. 指数方程:形如a^x = b的方程,其中a和b是已知的正实数。
解指数方程的基本步骤是取对数,将指数方程转化为对数方程求解。
2. 指数不等式:形如a^x > b或a^x < b的不等式,其中a和b是已知的正实数。
解指数不等式的基本步骤是通过对数性质将不等式转化为对数不等式,并得到解集合。
六、指数函数的应用1. 复利问题:指数函数常用于复利计算中。
例如,计算存款在多年后的本息和。
2. 指数增长问题:指数函数也可用于描述人口增长、细菌繁殖等指数型增长问题。
高中数学必修一重点知识总结指数函数部分1.指数函数和指数型函数的概念(1)函数x y a =(0a >且1a ≠)叫做指数函数。
其中,底数a 为常数,自变量x 在指数位置,定义域是R ,值域为()0,+∞。
【注意】幂函数:y x α=,自变量x 在底数位置,次数α为常数。
(2)形如x y ka b =+(0k ≠;0a >且1a ≠)的函数叫做指数型函数。
指数型函数是刻画指数增长或指数衰减变化规律的非常有用的函数模型。
2.指数函数图像3.指数函数图象的性质(1)图象都过()0,1点;定义域都为R ,值域都为()0,+∞。
(2)01a <<时在R 上单调递减;1a >时在R 上单调递增。
(3)当1a >时,底数越大,在y 轴右侧图象越靠近y 轴;当01a <<时,底数越小,在y 轴左侧图象越靠近y 轴。
4.指数函数的对称性(4)底数互为倒数的两个指数函数的图象关于y 轴对称。
即x y a =与1xy a ⎛⎫= ⎪⎝⎭图象关于于y 轴对称。
4.常见题型(1)根据指数函数解析式的特点(系数为1,次数只有一个x 等)求参数值。
(2)给几个指数函数的解析式找出它们分别对应的图象。
(3)根据几个指数函数的图象,判断它们底数的大小关系。
(4)根据指数函数恒过过定点(0,1)的性质,求指数型函数或相关复合函数中的参数值。
(5)构造指数函数后,利用指数函数的单调性比较两个形式复杂的实数的大小。
(6)求与指数函数复合后的函数的定义域、值域、单调区间、最值、奇偶性等。
(7)画出指数函数整体加绝对值、或是次数加绝对值后的函数图象,并结合图象的性质做题。
人教版高一数学必修一第4单元指数函数与对数函数(讲解和习题)基础知识讲解一.指数函数的定义、解析式、定义域和值域【基础知识】1、指数函数的定义:一般地,函数y=a x(a>0,且a≠1)叫做指数函数,其中x是自变量,函数的定义域是R,值域是(0,+∞).2、指数函数的解析式:y=a x(a>0,且a≠1)【技巧方法】①因为a>0,x是任意一个实数时,a x是一个确定的实数,所以函数的定义域为实数集R.①规定底数a大于零且不等于1的理由:如果a=0,当x>0时,a x恒等于0;当x≤0时,a x无意义;如果a<0,比如y=(﹣4)x,这时对于x=,x=在实数范围内函数值不存在.如果a=1,y=1x=1是一个常量,对它就没有研究的必要,为了避免上述各种情况,所以规定a>0且a≠1.二.指数函数的图象与性质【基础知识】1、指数函数y=a x(a>0,且a≠1)的图象和性质:y =a x a >1 0<a <1图象定义域 R 值域 (0,+∞) 性质过定点(0,1)当x >0时,y >1; x <0时,0<y <1当x >0时,0<y <1;x <0时,y >1在R 上是增函数在R 上是减函数2、底数与指数函数关系①在同一坐标系内分别作函数的图象,易看出:当a >l 时,底数越大,函数图象在第一象限越靠近y 轴;同样地,当0<a <l 时,底数越小,函数图象在第一象限越靠近x 轴. ①底数对函数值的影响如图.①当a >0,且a ≠l 时,函数y =a x 与函数y =的图象关于y 轴对称.3、利用指数函数的性质比较大小:若底数相同而指数不同,用指数函数的单调性比较: 若底数不同而指数相同,用作商法比较;若底数、指数均不同,借助中间量,同时要注意结合图象及特殊值.三.二次函数的性质与图象【二次函数】二次函数相对于一次函数而言,顾名思义就知道它的次数为二次,且仅有一个自变量,因变量随着自变量的变化而变化.它的一般表达式为:y=ax2+bx+c(a≠0)【二次函数的性质】二次函数是一个很重要的知识点,不管在前面的选择题填空题还是解析几何里面,或是代数综合体都有可能出题,其性质主要有初中学的开口方向、对称性、最值、几个根的判定、韦达定理以及高中学的抛物线的焦点、准线和曲线的平移.这里面略谈一下他的一些性质.①开口、对称轴、最值与x轴交点个数,当a>0(<0)时,图象开口向上(向下);对称轴x=﹣;最值为:f(﹣);判别式①=b2﹣4ac,当①=0时,函数与x轴只有一个交点;①>0时,与x轴有两个交点;当①<0时无交点.①根与系数的关系.若①≥0,且x1、x2为方程y=ax2+bx+c的两根,则有x1+x2=﹣,x1•x2=;①二次函数其实也就是抛物线,所以x2=2py的焦点为(0,),准线方程为y=﹣,含义为抛物线上的点到到焦点的距离等于到准线的距离.①平移:当y=a(x+b)2+c向右平移一个单位时,函数变成y=a(x﹣1+b)2+c;四.指数型复合函数的性质及应用【基础知识】指数型复合函数性质及应用:指数型复合函数的两个基本类型:y=f(a x)与y=a f(x)复合函数的单调性,根据“同增异减”的原则处理U=g(x)y=a u y=a g(x)增增增减减增增减减减增减.五.指数函数的单调性与特殊点【基础知识】1、指数函数单调性的讨论,一般会以复合函数的形式出现,所以要分开讨论,首先讨论a 的取值范围即a>1,0<a<1的情况.再讨论g(x)的增减,然后遵循同增、同减即为增,一减一增即为减的原则进行判断.2、同增同减的规律:(1)y=a x如果a>1,则函数单调递增;(2)如果0<a<1,则函数单调递减.3、复合函数的单调性:(1)复合函数为两个增函数复合:那么随着自变量X的增大,Y值也在不断的增大;(2)复合函数为两个减函数的复合:那么随着内层函数自变量X的增大,内层函数的Y值就在不断的减小,而内层函数的Y值就是整个复合函数的自变量X.因此,即当内层函数自变量X的增大时,内层函数的Y值就在不断的减小,即整个复合函数的自变量X不断减小,又因为外层函数也为减函数,所以整个复合函数的Y值就在增大.因此可得“同增”若复合函数为一增一减两个函数复合:内层函数为增函数,则若随着内层函数自变量X的增大,内层函数的Y值也在不断的增大,即整个复合函数的自变量X不断增大,又因为外层函数为减函数,所以整个复合函数的Y值就在减小.反之亦然,因此可得“异减”.六.函数零点的判定定理【基础知识】1、函数零点存在性定理:一般地,如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)•f(b)<0,那么函数y=f(x)在区间(a,b)内有零点,即存在c①(a,b),使得f(c)=O,这个c也就是f(x)=0的根.特别提醒:(1)根据该定理,能确定f(x)在(a,b)内有零点,但零点不一定唯一.(2)并不是所有的零点都可以用该定理来确定,也可以说不满足该定理的条件,并不能说明函数在(a,b)上没有零点,例如,函数f(x)=x2﹣3x+2有f(0)•f(3)>0,但函数f(x)在区间(0,3)上有两个零点.(3)若f(x)在[a,b]上的图象是连续不断的,且是单调函数,f(a).f(b)<0,则f(x)在(a,b)上有唯一的零点.2、函数零点个数的判断方法:(1)几何法:对于不能用求根公式的方程,可以将它与函数y=f(x)的图象联系起来,并利用函数的性质找出零点.特别提醒:①“方程的根”与“函数的零点”尽管有密切联系,但不能混为一谈,如方程x2﹣2x+1=0在[0,2]上有两个等根,而函数f(x)=x2﹣2x+1在[0,2]上只有一个零点;①函数的零点是实数而不是数轴上的点.(2)代数法:求方程f(x)=0的实数根.七.指数式与对数式的互化【基础知识】a b=N①log aN=b;指数方程和对数方程主要有以下几种类型:(1)a f(x)=b①f(x)=log a b;log a f(x)=b①f(x)=a b(定义法)(2)a f(x)=a g(x)①f(x)=g(x);log a f(x)=log a g(x)①f(x)=g(x)>0(同底法)(3)a f(x)=b g(x)①f(x)log m a=g(x)log m b;(两边取对数法)(4)log a f(x)=log b g(x)①log a f(x)=;(换底法)(5)A log x+B log a x+C=0(A(a x)2+Ba x+C=0)(设t=log a x或t=a x)(换元法)八.对数的运算性质【基础知识】对数的性质:①=N;①log a a N=N(a>0且a≠1).log a(MN)=log a M+log a N;log a=log a M﹣log a N;log a M n=n log a M;log a=log a M.九.换底公式的应用【基础知识】换底公式及换底性质:(1)log a N=(a>0,a≠1,m>0,m≠1,N>0).(2)log a b=,(3)log a b•log b c=log a c,十.对数函数的定义域【基础知识】一般地,我们把函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞),值域是R.十一.对数函数的值域与最值【基础知识】一般地,我们把函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞),值域是R.定点:函数图象恒过定点(1,0)十二.对数值大小的比较【基础知识】1、若两对数的底数相同,真数不同,则利用对数函数的单调性来比较.2、若两对数的底数和真数均不相同,通常引入中间变量(1,﹣1,0)进行比较3、若两对数的底数不同,真数也不同,则利用函数图象或利用换底公式化为同底的再进行比较.(画图的方法:在第一象限内,函数图象的底数由左到右逐渐增大)十三.对数函数的单调性与特殊点【基础知识】对数函数的单调性和特殊点:1、对数函数的单调性当a>1时,y=log a x在(0,+∞)上为增函数当0<a <1时,y =log a x 在(0,+∞)上为减函数 2、特殊点对数函数恒过点(1,0)十四.对数函数图象与性质的综合应用 【基础知识】1、对数函数的图象与性质:a >10<a <1图象定义域 (0,+∞)值域 R 定点 过点(1,0)单调性在(0,+∞)上是增函数在(0,+∞)上是减函数函数值正负当x >1时,y >0;当0<x <1,y <0当x >1时,y <0;当0<x <1时,y >02、由对数函数的图象确定参数的方法已知对数型函数的图象研究其解析式及解析式中所含参数的取值范围问题,通常是观察图象,获得函数的单调性、对称性、奇偶性、经过的特殊点等,由此确定函数解析式以及其中所含参数的取值范围.【技巧方法】1、4种方法﹣﹣解决对数运算问题的方法(1)将真数化为底数(或已知对数的数)的幂的积,再展开;(2)将同底对数的和、差、倍合并;(3)利用换底公式将不同底的对数式转化成同底的对数式,要注意换底公式的正用、逆用及变形应用;(4)利用常用对数中的lg 2+lg 5=1.2、3个基本点﹣﹣对数函数图象的三个基本点(1)当a>1时,对数函数的图象“上升”;当0<a<1时,对数函数的图象“下降”.(2)对数函数y=log a x(a>0,且a≠1)的图象过定点(1,0),且过点(a,1),(,﹣1)函数图象只在第一、四象限.(3)底数的大小与对数函数的图象位置之间的关系.3、2个应用﹣﹣对数函数单调性的应用(1)比较对数式的大小:①若底数为同一常数,则可由对数函数的单调性直接进行判断;若底数为同一字母,需对底数进行分类讨论.①若底数不同,真数相同,则可以先用换底公式化为同底后,再进行比较.①若底数与真数都不同,则常借助1,0等中间量进行比较.(2)解对数不等式:形如log a x>log a b的不等式,借助y=log a x的单调性求解,如果a的取值不确定,需分a>1与0<a<1两种情况讨论.形如log a x>b的不等式,需先将b化为以a为底的对数式的形式.十五.指数函数与对数函数的关系【基础知识】指数函数和对数函数的关系:(1)对数函数与指数函数互为反函数,它们的定义域、值域互换,图象关于直线y=x对称.(2)它们都是单调函数,都不具有奇偶性.当a>l时,它们是增函数;当O<a<l时,它们是减函数.(3)指数函数与对数函数的联系与区别:十六.反函数【基础知识】【定义】一般地,设函数y=f(x)(x①A)的值域是C,根据这个函数中x,y的关系,用y把x表示出,得到x=g(y).若对于y在中的任何一个值,通过x=g(y),x在A中都有唯一的值和它对应,那么,x=g(y)就表示y是自变量,x是因变量是y的函数,这样的函数y=g(x)(y①C)叫做函数y=f(x)(x①A)的反函数,记作y=f(﹣1)(x)反函数y=f (﹣1)(x)的定义域、值域分别是函数y=f(x)的值域、定义域.【性质】反函数其实就是y=f(x)中,x和y互换了角色(1)函数f(x)与他的反函数f﹣1(x)图象关于直线y=x对称;函数及其反函数的图形关于直线y=x对称(2)函数存在反函数的重要条件是,函数的定义域与值域是一一映射;(3)一个函数与它的反函数在相应区间上单调性一致;(4)大部分偶函数不存在反函数(当函数y=f(x),定义域是{0} 且f(x)=C(其中C 是常数),则函数f(x)是偶函数且有反函数,其反函数的定义域是{C},值域为{0} ).奇函数不一定存在反函数,被与y轴垂直的直线截时能过2个及以上点即没有反函数.若一个奇函数存在反函数,则它的反函数也是奇函数.(5)一切隐函数具有反函数;(6)一段连续的函数的单调性在对应区间内具有一致性;(7)严格增(减)的函数一定有严格增(减)的反函数【反函数存在定理】;(8)反函数是相互的且具有唯一性;(9)定义域、值域相反对应法则互逆(三反);(10)原函数一旦确定,反函数即确定(三定)(在有反函数的情况下,即满足(2)).十七.对数函数图象与性质的综合应用【基础知识】1、对数函数的图象与性质:a>10<a<1图象定义域(0,+∞)值域R定点过点(1,0)单调性在(0,+∞)上是增函数在(0,+∞)上是减函数函数值正负当x>1时,y>0;当0<x<1,y<0当x>1时,y<0;当0<x<1时,y>02、由对数函数的图象确定参数的方法已知对数型函数的图象研究其解析式及解析式中所含参数的取值范围问题,通常是观察图象,获得函数的单调性、对称性、奇偶性、经过的特殊点等,由此确定函数解析式以及其中所含参数的取值范围.【解题方法点拨】1、4种方法﹣﹣解决对数运算问题的方法(1)将真数化为底数(或已知对数的数)的幂的积,再展开;(2)将同底对数的和、差、倍合并;(3)利用换底公式将不同底的对数式转化成同底的对数式,要注意换底公式的正用、逆用及变形应用;(4)利用常用对数中的lg 2+lg 5=1.2、3个基本点﹣﹣对数函数图象的三个基本点(1)当a>1时,对数函数的图象“上升”;当0<a<1时,对数函数的图象“下降”.(2)对数函数y=log a x(a>0,且a≠1)的图象过定点(1,0),且过点(a,1),(,﹣1)函数图象只在第一、四象限.(3)底数的大小与对数函数的图象位置之间的关系.3、2个应用﹣﹣对数函数单调性的应用(1)比较对数式的大小:①若底数为同一常数,则可由对数函数的单调性直接进行判断;若底数为同一字母,需对底数进行分类讨论.①若底数不同,真数相同,则可以先用换底公式化为同底后,再进行比较.①若底数与真数都不同,则常借助1,0等中间量进行比较.(2)解对数不等式:形如log a x>log a b的不等式,借助y=log a x的单调性求解,如果a的取值不确定,需分a>1与0<a<1两种情况讨论.形如log a x>b的不等式,需先将b化为以a为底的对数式的形式.十八.函数的零点【基础知识】一般地,对于函数y=f(x)(x①R),我们把方程f(x)=0的实数根x叫作函数y=f (x)(x①D)的零点.即函数的零点就是使函数值为0的自变量的值.函数的零点不是一个点,而是一个实数.十九.函数零点的判定定理【基础知识】1、函数零点存在性定理:一般地,如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)•f(b)<0,那么函数y=f(x)在区间(a,b)内有零点,即存在c①(a,b),使得f(c)=O,这个c也就是f(x)=0的根.【技巧方法】(1)根据该定理,能确定f(x)在(a,b)内有零点,但零点不一定唯一.(2)并不是所有的零点都可以用该定理来确定,也可以说不满足该定理的条件,并不能说明函数在(a,b)上没有零点,例如,函数f(x)=x2﹣3x+2有f(0)•f(3)>0,但函数f(x)在区间(0,3)上有两个零点.(3)若f(x)在[a,b]上的图象是连续不断的,且是单调函数,f(a).f(b)<0,则f(x)在(a,b)上有唯一的零点.2、函数零点个数的判断方法:(1)几何法:对于不能用求根公式的方程,可以将它与函数y=f(x)的图象联系起来,并利用函数的性质找出零点.特别提醒:①“方程的根”与“函数的零点”尽管有密切联系,但不能混为一谈,如方程x2﹣2x+1=0在[0,2]上有两个等根,而函数f(x)=x2﹣2x+1在[0,2]上只有一个零点;①函数的零点是实数而不是数轴上的点.(2)代数法:求方程f(x)=0的实数根.二十.函数的零点与方程根的关系【基础知识】函数的零点表示的是函数与x轴的交点,方程的根表示的是方程的解,他们的含义是不一样的.但是,他们的解法其实质是一样的.二十一. 二分法【基础知识】二分法即一分为二的方法.设函数f(x)在[a,b]上连续,且满足f(a)•f(b)<0,我们假设f(a)<0,f(b)>0,那么当x1=时,若f(x1)=0,这说x1为零点;若不为0,假设大于0,那么继续在[x1,b]区间取中点验证它的函数值为0,一直重复下去,直到找到满足要求的点为止.这就是二分法的基本概念.习题演练一.选择题(共12小题)1.已知函数()21x f x x =--,则不等式()0f x >的解集是( ) A .()1,1- B .()(),11,-∞-+∞C .()0,1D .()(),01,-∞⋃+∞2.下列式子计算正确的是( ) A .m 3•m 2=m 6 B .(﹣m )2=21m - C .m 2+m 2=2m 2D .(m +n )2=m 2+n 23.在同一直角坐标系中,函数11,log (02a x y y x a a ⎛⎫==+> ⎪⎝⎭且1)a ≠的图象可能是( ) A . B .C .D .4.设2,8()(8),8x x f x f x x ⎧≤=⎨->⎩,则(17)f =( )A .2B .4C .8D .165.函数13x y a +=-(0a >,且1a ≠)的图象一定经过的点是( ) A .()0,2-B .()1,3--C .()0,3-D .()1,2--6.设0.3log 0.6m =,21log 0.62n =,则( ) A .m n m n mn ->+> B .m n mn m n ->>+ C .m n m n mn +>->D .mn m n m n >->+7.已知函数1()ln 1f x x x =--,则()y f x =的图象大致为( ).A .B .C .D .8.已知2log a e =,ln 2b =,121log 3c =,则a ,b ,c 的大小关系为 A .a b c >> B .b a c >>C .c b a >>D .c a b >>9.函数()2xf 的定义域为[1,1]-,则()2log y f x =的定义域为( )A .[1,1]-B.C .1,22⎡⎤⎢⎥⎣⎦D .[1,4]10.设函数()ln |21|ln |21|f x x x =+--,则f (x )( ) A .是偶函数,且在1(,)2+∞单调递增B .是奇函数,且在11(,)22-单调递减C .是偶函数,且在1(,)2-∞-单调递增D .是奇函数,且在1(,)2-∞-单调递减11.已知函数()ln 1,01,0xx x f x e x ⎧+>=⎨+≤⎩,()22g x x x =--,若方程()()0f g x a -=有4个不相等的实根,则实数a 的取值范围是( ) A .(),1-∞B .(]0,1C .(]1,2D .[)2,+∞12.在下列区间中,函数()43xf x e x =+-的零点所在的区间为( )A .1,04⎛⎫-⎪⎝⎭B .10,4⎛⎫ ⎪⎝⎭C .11,42⎛⎫⎪⎝⎭D .13,24⎛⎫⎪⎝⎭二.填空题(共6小题)13.计算:13021lg8lg 25327e -⎛⎫-++= ⎪⎝⎭__________.14.不等式2log 5x a -<对任意[]4,16x ∈恒成立,则实数a 的取值范围为____________. 15.已知当(]1,2x ∈时,不等式()21log a x x -≤恒成立,则实数a 的取值范围为________.16.若关于x 的方程11224a x x =-++-的解集为空集,求实数a 的取值范围______. 17.已知函数223,3()818,3x x f x x x x -⎧<=⎨-+≥⎩,则函数()()2g x f x =-的零点个数为_________.18.已知定义在R 上的函数()f x 满1(2)()f x f x +=,当[0,2)x ∈时,()x f x x e =+,则(2019)f =_______.三.解析题(共6小题)19.已知函数()log (1)log (3)(01)a a f x x x a =-++<<.(1)求函数()f x 的定义域; (2)求函数()f x 的零点;(3)若函数()f x 的最小值为-4,求a 的值.20.已知定义域为R 的函数,12()2x x bf x a+-+=+是奇函数.(1)求a ,b 的值;(2)若对任意的t R ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,求实数k 的取值范围.21.设()log (1)log (3)(0,1)a a f x x x a a =++->≠,且(1)=2f . (1)求a 的值;(2)求()f x 在区间30,2⎡⎤⎢⎥⎣⎦上的最大值.22.已知实数0a >,定义域为R 的函数()x x e af x a e=+是偶函数,其中e 为自然对数的底数.(①)求实数a 值;(①)判断该函数()f x 在(0,)+∞上的单调性并用定义证明;(①)是否存在实数m ,使得对任意的t R ∈,不等式(2)(2)f t f t m -<-恒成立.若存在,求出实数m 的取值范围;若不存在,请说明理由.23.函数()f x 对任意的实数m ,n ,有()()()f m n f m f n +=+,当0x >时,有()0f x >. (1)求证:()00=f .(2)求证:()f x 在(),-∞+∞上为增函数.(3)若()11f =,解不等式()422x xf -<.24.甲商店某种商品4月份(30天,4月1日为第一天)的销售价格P (元)与时间t (天)的函数关系如图所示(1),该商品日销售量Q (件)与时间t (天)的函数关系如图(2)所示.(1)(2)(1)写出图(1)表示的销售价格与时间的函数关系式()P f t =,写出图(2)表示的日销售量与时间的函数关系式()Q g t =及日销售金额M (元)与时间的函数关系式()M h t =. (2)乙商店销售同一种商品,在4月份采用另一种销售策略,日销售金额N (元)与时间t (天)之间的函数关系式为22102750N t t =--+,试比较4月份每天两商店销售金额的大小关系。
高一数学函数知识点总结函数的图象函数的图象是函数的直观体现,应加强对作图、识图、用图能力的培养,培养用数形结合的思想方法解决问题的意识.高一数学函数知识点总结(二)函数的值域与最值(1)直接法:亦称观察法,对于结构较为简单的函数,可由函数的解析式应用不等式的性质,直接观察得出函数的值域.(2)换元法:运用代数式或三角换元将所给的复杂函数转化成另一种简单函数再求值域,若函数解析式中含有根式,当根式里一次式时用代数换元,当根式里是二次式时,用三角换元.(3)反函数法:利用函数f(____)与其反函数f-1(____)的定义域和值域间的关系,通过求反函数的定义域而得到原函数的值域,形如(a≠0)的函数值域可采用此法求得.(4)配方法:对于二次函数或二次函数有关的函数的值域问题可考虑用配方法.(5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函数的值域,不过应注意条件“一正二定三相等”有时需用到平方等技巧.(6)判别式法:把y=f(____)变形为关于____的一元二次方程,利用“△≥0”求值域.其题型特征是解析式中含有根式或分式.(7)利用函数的单调性求值域:当能确定函数在其定义域上(或某个定义域的子集上)的单调性,可采用单调性法求出函数的值域.(8)数形结合法求函数的值域:利用函数所表示的几何意义,借助于几何方法或图象,求出函数的值域,即以数形结合求函数的值域.2、求函数的最值与值域的区别和联系求函数最值的常用方法和求函数值域的方法基本上是相同的,事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同,因而答题的方式就有所相异.如函数的值域是(0,____],最大值是16,无最小值.再如函数的值域是(-∞,-____]∪[2,+∞),但此函数无最大值和最小值,只有在改变函数定义域后,如____>0时,函数的最小值为2.可见定义域对函数的值域或最值的影响.3、函数的最值在实际问题中的应用函数的最值的应用主要体现在用函数知识求解实际问题上,从文字表述上常常表现为“工程造价最低”,“利润最大”或“面积(体积)最大(最小)”等诸多现实问题上,求解时要特别关注实际意义对自变量的制约,以便能正确求得最值.高一数学函数知识点总结(三)函数的解析式与定义域1、函数及其定义域是不可分割的整体,没有定义域的函数是不存在的,因此,要正确地写出函数的解析式,必须是在求出变量间的对应法则的同时,求出函数的定义域.求函数的定义域一般有三种类型:(1)有时一个函数来自于一个实际问题,这时自变量____有实际意义,求定义域要结合实际意义考虑;(2)已知一个函数的解析式求其定义域,只要使解析式有意义即可.如:①分式的分母不得为零;②偶次方根的被开方数不小于零;③对数函数的真数必须大于零;④指数函数和对数函数的底数必须大于零且不等于1;⑤三角函数中的正切函数y=tan____(____∈R,且k∈Z),余切函数y=cot____(____∈R,____≠kπ,k∈Z)等.应注意,一个函数的解析式由几部分组成时,定义域为各部分有意义的自变量取值的公共部分(即交集).(3)已知一个函数的定义域,求另一个函数的定义域,主要考虑定义域的深刻含义即可.已知f(____)的定义域是[a,b],求f[g(____)]的定义域是指满足a≤g(____)≤b的____的取值范围,而已知f[g(____)]的定义域[a,b]指的是____∈[a,b],此时f(____)的定义域,即g(____)的值域.2、求函数的解析式一般有四种情况(1)根据某实际问题需建立一种函数关系时,必须引入合适的变量,根据数学的有关知识寻求函数的解析式.(2)有时题设给出函数特征,求函数的解析式,可采用待定系数法.比如函数是一次函数,可设f(____)=a____+b(a≠0),其中a,b为待定系数,根据题设条件,列出方程组,求出a,b即可.(3)若题设给出复合函数f[g(____)]的表达式时,可用换元法求函数f(____)的表达式,这时必须求出g(____)的值域,这相当于求函数的定义域.(4)若已知f(____)满足某个等式,这个等式除f(____)是未知量外,还出现其他未知量(如f(-____),等),必须根据已知等式,再构造其他等式组成方程组,利用解方程组法求出f(____)的表达式.高一数学函数知识点总结(四)函数的单调性1、单调函数对于函数f(____)定义在某区间[a,b]上任意两点____1,____2,当____1>____2时,都有不等式f(____1)>(或<)f(____2)成立,称f(____)在[a,b]上单调递增(或递减);增函数或减函数统称为单调函数.对于函数单调性的定义的理解,要注意以下三点:(1)单调性是与“区间”紧密相关的概念.一个函数在不同的区间上可以有不同的单调性.(2)单调性是函数在某一区间上的“整体”性质,因此定义中的____1,____具有任意性,不能用特殊值代替.(3)单调区间是定义域的子集,讨论单调性必须在定义域范围内.(4)注意定义的两种等价形式:设____1、____2∈[a,b],那么:①在[a、b]上是增函数;在[a、b]上是减函数.②在[a、b]上是增函数.在[a、b]上是减函数.需要指出的是:①的几何意义是:增(减)函数图象上任意两点(____1,f(____1))、(____2,f(____2))连线的斜率都大于(或小于)零.(5)由于定义都是充要性命题,因此由f(____)是增(减)函数,且(或____1>____2),这说明单调性使得自变量间的不等关系和函数值之间的不等关系可以“正逆互推”.5、复合函数y=f[g(____)]的单调性若u=g(____)在区间[a,b]上的单调性,与y=f(u)在[g(a),g(b)](或g(b),g(a))上的单调性相同,则复合函数y=f[g(____)]在[a,b]上单调递增;否则,单调递减.简称“同增、异减”.在研究函数的单调性时,常需要先将函数化简,转化为讨论一些熟知函数的单调性。
高中数学指数函数的性质与运算规律解析指数函数是高中数学中的重要内容,它在数学和实际问题中都有广泛的应用。
本文将从指数函数的性质和运算规律两个方面进行解析,通过具体的例题分析,帮助高中学生和他们的父母更好地理解和掌握指数函数的知识。
一、指数函数的性质1. 定义:指数函数是以底数为常数的指数幂的函数,一般形式为f(x) = a^x,其中a>0且a≠1。
2. 定义域和值域:指数函数的定义域为全体实数集R,值域为正实数集R+。
3. 基本性质:a) 当a>1时,指数函数是增函数;当0<a<1时,指数函数是减函数。
b) 当x趋近于无穷大时,指数函数趋近于正无穷;当x趋近于负无穷大时,指数函数趋近于0。
c) 指数函数在x轴上有一个特殊点(0,1),即a^0=1。
d) 指数函数的图像一般是递增或递减的曲线,且经过点(0,1)。
4. 性质应用举例:例题1:已知函数f(x) = 2^x,求f(3)的值。
解析:根据指数函数的性质,我们知道2^3 = 8,所以f(3) = 8。
例题2:已知函数f(x) = (1/3)^x,求f(-2)的值。
解析:根据指数函数的性质,我们知道(1/3)^(-2) = 9,所以f(-2) = 9。
通过以上例题的分析,我们可以看到指数函数的性质在解题过程中起到了重要的作用。
对于高中学生来说,掌握指数函数的性质是理解和解决问题的关键。
二、指数函数的运算规律1. 指数函数的乘法规律:对于任意实数x和y,以及任意正数a,有a^x * a^y= a^(x+y)。
例题3:已知函数f(x) = 2^x,g(x) = 2^(x+1),求f(x) * g(x)。
解析:根据乘法规律,我们可以得到f(x) * g(x) = 2^x * 2^(x+1) = 2^(2x+1)。
2. 指数函数的除法规律:对于任意实数x和y,以及任意正数a,有(a^x) / (a^y) = a^(x-y)。
例题4:已知函数f(x) = 3^x,g(x) = 3^(x-1),求f(x) / g(x)。
高中数学必修一指数函数、对数函数知识点考点内容典型题整数和有理指数幂的运算a 0=1(a≠0);a-n=1a n(a≠0, n∈N*)amn=n a m (a>0 , m,n∈N*, 且n>1)(a>0 , m,n∈N*, 且n>1)当n∈N*时,(n a)n=a当为奇数时,n a n=a当为偶数时,n a n=│a│=a (a≥0)-a (a<0)运算律:a m a n=a m + n(a m)n=a m n(ab)n=a n b n1.计算: 2-1×6423= .2. 224282=;333363= .3343427=;39336= .3.︒--++-45sin2)12()12(014.指数函数的概念、图象与性质1、解析式:y=a x(a>0,且a≠1)2、图象:3、函数y=a x(a>0,且a≠1)的性质:①定义域:R ,即(-∞,+∞)值域:R+ , 即(0,+∞)②图象与y轴相交于点(0,1).③单调性:在定义域R上当a>1时,在R上是增函数当0<a<1时,在R上是减函数④极值:在R上无极值(最大、最小值)当a>1时,图象向左与x轴无限接近;当0<a<1时,图象向右与x轴无限接近.⑤奇偶性:非奇非偶函数.5.指数函数y=a x(a>0且a≠1)的图象过点(3,π) , 求f (0)、f (1)、f (-3)的值.6.求下列函数的定义域:①22xy-=;②2415-=-xy.7.比较下列各组数的大小:①1.22.5 1.22.51 , 0.4-0.1 0.4-0.2 ,②0.30.4 0.40.3, 233 322.③(23)-12,(23)-13,(12)-128.求函数176221+-⎪⎭⎫⎝⎛=xxy的最大值.9.函数xay)2(-=在(-∞,+∞)上是减函数,则a的取值范围( )A.a<3B.cC.a>3D.2<a<310.函数xay)1(2-=在(-∞,+∞)上是减函数,则a适合的条件是( )A.|a|>1B.|a|>2C.a>2D.1<|a|<2知识点内容典型题对数的概念定义:设a>0且a≠1,若a的b次幂为N,即a b=N,则b叫做以a为底N的对数,记作log a N=b.(a叫做底数,N叫做真数,式子log a N叫做对数式.)a b=N log a N=b(a>0且a≠1)当a=10时,x10log简记为lg x,称为常用对数;当a=e(e≈2.718…)时,x elog简记为ln x,称为自然对数.11.把5.09017.0=x化为对数式为 .12.把lg x=0.35化为指数式为 .13.把ln x=2.1化为指数式为 .14. log3 x=-21,则x= .15.已知:8a=9,2b=5,求log9125.对数运算的法则设a>0,b>0,a≠1,b≠1,M>0,N>0①a b=N log a N=b②负数和零没有对数;③log a1=0,log a a=1④N aa log=N ,Na Na=log⑤alog(M·N)=alog M+alog N⑥alogNM=alog M-alog N⑦alog nM=n alog M⑨换底公式:blog N=bNaaloglog换底公式的推论:alog b=a blog1( alog b·blog a=1 )logab =loga nb nloga mb n=nmlogab16.5log8log251log932⋅= .17.若x=log a3,则a3x-a-3xa x-a-x的值是.18.计算2log49= .19.计算下列各式:①16log91log42log2)81(383log21322⋅⋅+⋅-②)243log81log27log9log3(log693216842)32(log++++③2.1lg1000lg8lg27lg-+④⎪⎭⎫⎝⎛++36log43log32loglog4212220.已知lg(x-y)+lg(x+2y)=lg x+lg y+lg2则yx= .21.已知:log1227=a,求log616的值.22.已知p=3log8,q=5log3,则lg5=( )A.53qp+B.qppq++31C.pqpq313+D.22qp+知识点内容典型题对数函数的概念及性质1.解析式:y=log a x(a>0,且a≠1)2.图象:y=log a x与y=a x(a>0,a≠1)互为反函数,故二者图象关于直线y=x对称.(如下图)3. y=log a x(a>0,且a≠1)性质:①定义域:R+,即(0,+∞)值域:R,即(-∞,+∞);②过x轴上的定点(1,0);③单调性:a>1时,在(0,+∞)上是增函数;0<a<1时,在(0,+∞)上是减函数④极值:在(0,+∞)上无最大(小)值,a>1,图象在左下方与y轴无限接近;0<a<1,图象在左上方与y轴无限接近.⑤奇偶性:非奇非偶.23.函数y=lg x的定义域为 .24.函数y=log13(x-1)的定义域是25.求函数y=log 2 (x2-4x-5)的定义域.26.对满足m>n的任意两个非零实数,下列不等式恒成立的是()A.m>nB.lg(m2 ) >lg(n2 )C.m4>n4D.(12)m<(12)n27.比较各组数的大小:①log120.2log120.21,lg1.1 lg1.11②7.06,67.0,6log7.0从小到大为③ log89 log98 ,④ log25 log75⑤ log35 log6428.已知f(x)的图象与g(x)=(14)x的图象关于直线y=x对称,则f (x)= .指数和对数不等式基本思路:利用指数、对数函数的图象(实质是判断利用函数的增减性),把原不等式转化为一元一次(或二次)不等式(组).①a f(x)>a g(x) (a>0,a≠1)型若a>1,f(x)>g(x)若0<a<1,f(x)<g(x)②log a f(x)>log a g(x) (a>0,a≠1)型若a>1,f(x)>g(x)若0<a<1,f(x)<g(x)29.解不等式:123.0++xx>xx5223.0+-30.若3log2a-<0,则a的取值范围是 .31.若32loga<1,则a的取值范围是 .32.解不等式:log12(x2-4x-5)<log12(x2+1)33.解不等式:log x(2x+1)>log x2。
--------函数的值域和最值
一、相关概念 1、值域:函数A x x f y ∈=
,)(,我们把函数值的集合}/)({A x x f ∈称为函数的值域。
2、最值:求函数最值常用方法和函数值域的方法基本相同。
事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值。
因此,求函数的最值和值域,其实质是相同的,只是提问不同而已。
二、基本函数的值域
1、 一次函数)(0≠+=a b kx y 的值域为R ;
2、 二次函数)(02
≠++=a c bx ax y ;]44(0);44[022a
b a
c ,,a ,a b ac ,a --∞<∞+->值域是时值域是时
教师:你还有哪些收获和感悟
调性。
例6 求函数y=1
1+-x x
e e ,2sin 11sin y θθ-=+,的值域
8、数形结合法。
例7求函数的值域|4||1|++-=x x y (方法一可用到图象法) 方法二:(单调性)
为减函数时32,4--=-≤x y x ;53)4(2=--⨯-≥∴y 为增函数时当32,1
+=≥x y x ;5312=+⨯≥∴y ;514=<<-,y x 时当所以此函数的值域为[)∞+
,5
题型Ⅰ求一元二次函数为背景的函数的值域
求函数2
2
()4422f x x ax a a =-+-+在[0, 2]上的最值 【分析与解答】: 2
2
()4()222
a f x x a =--+
(1)当a 2≤0,即a ≤0时,f (x )在上递增.∴ f (x )max =f (2)=a 2-10a +(x )min =f (0)=a 2
-2a +2.
(2)当a
2
≥2,即a ≥4时,f (x )在上递减.∴ f (x )max =f (0)=a 2-2a +(x )min =f (2)=a 2
-10a +18.
(3)当0≤a
2≤2时,即0≤a ≤4时,f (x )min =f ⎝ ⎛⎭⎪⎫
a 2=-2a +2.①当0≤a
2≤1时,即0≤a ≤2时,f (x )max =f (2)=a 2
-10a
+18;②当1≤a
2
≤2时,即2≤a ≤4时,f (x )max =a 2
-2a +2.
题型Ⅱ求以分式为背景的函数的值域
求函数2222
1
x x y x x -+=++ 的值域若是求(2,3)x ∈ 的值域呢
【分析与解答】
(1)方法一:222
2(1)33211
x x x x
y x x x x ++-==-++++ 转化成分子为一次,分母为二次的函数的值域,得[1,5]y ∈ ;
(2012四川文)函数的图象可能是( )
【解析】采用特殊值验证法. 函数恒过(1,0),只有C 选项符合.
【点评】函数大致图像问题,解决方法多样,其中特殊值验证、排除法比较常用,且简单易用.
(2012北京文)已知,.若或,
则的取值范围是________ .
【解析】首先看没有参数,从入手,显然时,,
时,,而对或成立即可,故只要时,(*)恒成立即可.当时,,不符合(*),所以舍去;当时,由得,并不对成立,舍去;当时,由,注意,故,所以,即,又,故,所以,又,故,综上,的取值范围是.
【点评】 本题考查学生函数的综合能力,涉及到二次函数的图像的开口,根的大小,涉及到指数函数,还涉及到简易逻辑中的“或”,还考查了分类讨论的思想,对进行讨论.
一、选择题:
1.下列各式中成立的一项
( ) A .7177)(m n m
n = B .31243)3(-=- C .43433)(y x y x +=+
D . 3339= 2.化简)3
1()3)((656131212132
b a b a b a ÷-的结果 ( ) A .a 6 B .a - C .a 9- D .2
9a 3.设指数函数)1,0()(≠>=a a a x f x
,则下列等式中不正确的是 ( ) A .f (x +y )=f(x )·f (y ) B .)
()(y f x f y x f =-)(
建议时间:2-3分钟
“数学是思维的体操”,通过这节课的学习,你在数学能力方面有什么感悟和收获呢请记录在下面吧!
每一天都是全新的一天,每一天都是进步的一天。
从今天起步,在明天收获!。