高中数学指数与指数函数知识梳理
- 格式:doc
- 大小:456.00 KB
- 文档页数:7
高中数学必修1知识点总结—指数及指数函数1、 根式na (一般的,如果n x a =,那么x 叫做a 的n 次方根,其中*1,n n N >∈且.)35325325n n n ⎧=⎪⎨-=-⎪⎩正数的次方根是正数如当是奇数时,负数的次方根是负数如20,n a n an ⎧>±⎪⎨⎪⎩正数的次方根有个,且互为相反数如:则次方根为当是偶数时,负数没有偶次方根0的任何次方根都是0,记作0n2、nna的讨论 n nn a a =当是奇数时,;,0,0n n a a n a a a a ≥⎧==⎨-≤⎩当是偶数时, (2)分数指数幂的概念)分数指数幂的概念①正数的正分数指数幂的意义是:(0,,,mnmna a a m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是:11()()(0,,,m mmnnnaa m n N a a-+==>∈且1)n >.0的负分数指数幂没有意义.义. 注意口诀:底数取倒数,指数取相反数.底数取倒数,指数取相反数. (3)分数指数幂的运算性质)分数指数幂的运算性质①(0,,)rsr saa aa r s R +⋅=>∈ ②()(0,,)r s rsa a a r s R =>∈③()(0,0,)rr rab a b a b r R =>>∈一、 指数计算公式:()Q s r a ∈>,,0_____=⋅s r a a ________=sraa _____)(=s r a ______)(=r ab )1,,0_______(>∈>=*n N n m a anm,________=n na 练习 计算下列各式的值:计算下列各式的值:(1))4()3)((636131212132b a b a b a ÷- (2)()322175.003129721687064.0+⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛---(3)421033)21(25.0)21()4(--⨯+-- (4)33)3(625π-+-2.已知31=+-x x ,则=+-22x x 已知23=a,513=b,则=-ba 23=____________. 3. 若21025x x =,则10x x-等于_________________【2.1.2】指数函数及其性质(4)指数函数)指数函数函数名称函数名称指数函数指数函数定义定义函数(0x y a a =>且1)a ≠叫做指数函数叫做指数函数图象图象1a >01a <<定义域定义域 R 值域值域(0,)+∞过定点过定点 图象过定点(0,1),即当0x=时,1y =.奇偶性奇偶性 非奇非偶非奇非偶单调性单调性在R 上是增函数上是增函数在R 上是减函数上是减函数函数值的函数值的 变化情况变化情况1(0)1(0)1(0)x x x a x a x a x >>==<< 1(0)1(0)1(0)x x x a x a x a x <>==>< a 变化对变化对 图象的影响图象的影响 在第一象限内,a 越大图象越高;在第二象限内,a 越大图象越低.越大图象越低.题型1、求函数经过的点 1、2)(f 1-=+x a x )10(≠>a a 且过定点______________2、函数y=4+a x -1的图象恒过定点P 的坐标是________________3.已知指数函数图像经过点)3,1(-p ,则=)3(f题型2、 图像问题1.下列说法中:下列说法中:①任取x ∈R 都有3x >2x ; ②当a >1时,任取x ∈R 都有a x >a -x ;③函数y =(3)-x 是增函数;④函数y =2|x |的最小值为1 ;⑤在同一坐标系中,y =2x 与y =2-x 的图象对称于y 轴。
指数与指数函数知识点数学中的指数与指数函数是非常重要且常见的概念。
在我们的日常生活中,指数和指数函数可以用来描述各种自然现象、科学问题以及经济趋势等。
本文将详细介绍指数与指数函数的定义、性质以及一些常见应用,以加深读者对这一概念的理解。
一、指数的定义和性质在数学中,指数是一种表示幂次方的数学运算。
指数是由两个数构成,其中一个为底数,另一个为指数。
底数表示要进行幂运算的数字,指数表示底数要乘以自身多少次。
例如,2的3次方即为2的指数为3的结果,即2x2x2=8。
指数函数是指数的一种特殊形式,即以常数为底数的幂函数。
指数函数的一般形式为y=a^x,其中a是底数,x是指数,y是指数函数的值。
指数函数的图像通常具有特定的特征,例如,当底数大于1时,指数函数呈现递增趋势;当底数在0和1之间时,指数函数呈现递减趋势。
指数有一些基本的性质。
首先,任何数的0次方都等于1,即a^0=1。
其次,任何非零数的负指数都是倒数,即a^(-n)=1/(a^n)。
此外,指数相乘等于底数不变指数相加,即a^m * a^n = a^(m+n)。
二、指数函数的应用指数函数在各个领域都有广泛的应用。
以下是指数函数在生活和科学中的一些常见应用:1. 经济增长:经济学家常常使用指数函数来描述一个国家或地区的经济增长趋势。
经济增长往往呈现指数增长的形式,即以固定的增长率逐渐增加。
指数函数可以帮助经济学家预测未来的经济趋势和制定相应的政策。
2. 生物衰变:在生物学的研究中,指数函数可以用来描述物种的衰变过程。
例如,放射性物质的衰变速度可以用指数函数进行建模。
指数函数的形式可以提供准确地描述和计算物种在特定时间内的衰减情况。
3. 自然增长:人口学家使用指数函数来研究人口的自然增长过程。
指数函数可以帮助人口学家了解一个地区的人口趋势和人口变化的因素,为政府提供人口规划和政策制定方面的参考。
4. 电子电路:在电子学中,指数函数可以用来描述电路中的电流和电压变化。
【考点预测】1.指数及指数运算(1)高中数学53个题型归纳与方法技巧总结篇专题09指数与指数函数根式的定义:一般地,如果n x a =,那么x 叫做a 的n 次方根,其中(1n >,)n N *∈,n 称为根指数,a 称为根底数.(2)根式的性质:当n 为奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数.当n 为偶数时,正数的n 次方根有两个,它们互为相反数.(3)指数的概念:指数是幂运算(0)n a a ≠中的一个参数,a 为底数,n 为指数,指数位于底数的右上角,幂运算表示指数个底数相乘.(4)有理数指数幂的分类①正整数指数幂()n n a a a a a n N *=⋅⋅⋅⋅∈个;②零指数幂01(0)a a =≠;③负整数指数幂1(0nn aa a-=≠,)n N *∈;④0的正分数指数幂等于0,0的负分数指数幂没有意义.(5)有理数指数幂的性质①+(0m n m n a a a a >=,m ,)n Q ∈;②()(0m n m n a a a >=,m ,)n Q ∈;③()(0mm mab a a b >=,0b >,)m Q ∈(0mn a a >=,m ,)n Q ∈.2.指数函数⑥既不是奇函数,也不是偶函数【方法技巧与总结】1.指数函数常用技巧(1)当底数大小不定时,必须分“1a >”和“01a <<”两种情形讨论.(2)当01a <<时,x →+∞,0y →;a 的值越小,图象越靠近y 轴,递减的速度越快.当1a >时x →+∞,0y →;a 的值越大,图象越靠近y 轴,递增速度越快.(3)指数函数x y a =与1()xy a=的图象关于y 轴对称.【题型归纳目录】题型一:指数运算及指数方程、指数不等式题型二:指数函数的图像及性质题型三:指数函数中的恒成立问题题型四:指数函数的综合问题【典例例题】题型一:指数运算及指数方程、指数不等式例1.(2022·四川凉山·三模(文))计算:)2ln31e 1lg 4lg 0.254-⎛⎫+-++= ⎪⎝⎭______.例2.(2022·河北邯郸·一模)不等式10631x x x --≥的解集为___________.例3.(2022·陕西·榆林市教育科学研究所模拟预测(理))甲、乙两人解关于x 的方程220x x b c -+⋅+=,甲写错了常数b ,得到的根为2x =-或x =217log 4,乙写错了常数c ,得到的根为0x =或1x =,则原方程的根是()A .2x =-或2log 3x =B .1x =-或1x =C .0x =或2x =D .1x =-或2x =例4.(2022·全国·高三专题练习(文))已知函数()f x 是定义在R 上的奇函数,当0x ≥时,()4322x x f x a =-⨯+.则关于x 的不等式()6f x ≤-的解集为()A .(,2]-∞-B .(,1]-∞-C .[)()2,00,2- D .[)()2,02,-⋃+∞例5.(2022·全国·高三专题练习)化简:(1)126016(2018)449-⎛⎫+--⨯ ⎪⎝⎭(2111332ab a b -⎫⎪⎭a >0,b >0).(3)312211122211111a a aa a a a a -+--++++-.【方法技巧与总结】利用指数的运算性质解题.对于形如()f x a b =,()f x a b >,()f x a b <的形式常用“化同底”转化,再利用指数函数单调性解决;或用“取对数”的方法求解.形如20xx a Ba C ++=或2)00(x x a Ba C ++ 的形式,可借助换元法转化二次方程或二次不等式求解.题型二:指数函数的图像及性质例6.(2022·浙江绍兴·模拟预测)函数2()()-+=-x xx m f x a a ,的图象如图所示,则()A .0,01<<<m aB .0,1<>m aC .0,01m a ><<D .0,1>>m a 例7.(2022·全国·高三专题练习)函数()21xf x m =--恰有一个零点,则m 的取值范围是()A .()1,+∞B .{}()01,∞⋃+C .{}[)01,∞⋃+D .[)1,+∞例8.(2022·四川省泸县第二中学模拟预测(文))函数()11e xf x -=+,下列关于函数()f x 的说法错误的是()A .函数()f x 的图象关于原点对称B .函数()f x 的值域为()0,1C .不等式()12f x >的解集是()0,∞+D .()f x 是增函数例9.(2022·河南·三模(文))已知()1f x -为定义在R 上的奇函数,()10f =,且()f x 在[)1,0-上单调递增,在[)0,∞+上单调递减,则不等式()250xf -<的解集为()A .()22,log 6B .()()2,12,log 6-∞⋃C .()2log 6,+∞D .()()21,2log 6,⋃+∞例10.(2022·新疆阿勒泰·三模(理))函数11x y a -=+图象过定点A ,点A 在直线()31,0mx ny m n +=>>上,则121m n+-最小值为___________.例11.(2022·北京·高三专题练习)已知()212221x x xf x a +=+-+(其中a R ∈且a 为常数)有两个零点,则实数a 的取值范围是___________.例12.(2022·全国·高三专题练习)已知函数()22x x f x k -=+⋅(k 为常数,k ∈R )是R 上的奇函数.(1)求实数k 的值;(2)若函数()y f x =在区间[]1,m 上的值域为15,4n ⎡⎤⎢⎥⎣⎦,求m n +的值.【方法技巧与总结】解决指数函数有关问题,思路是从它们的图像与性质考虑,按照数形结合的思路分析,从图像与性质找到解题的突破口,但要注意底数对问题的影响.题型三:指数函数中的恒成立问题例13.(2022·北京·高三专题练习)设()f x 是定义在R 上的偶函数,且当0x ≤时,()2xf x -=,若对任意的[],1x m m ∈+,不等式()()2f x f x m -≥恒成立,则正数m 的取值范围为()A .m 1≥B .1mC .01m <<D .01m <≤例14.(2022·北京·高三专题练习)已知函数()33x xf x -=-.(1)利用函数单调性的定义证明()f x 是单调递增函数;(2)若对任意[]1,1x ∈-,()()24f x mf x ⎡⎤+≥-⎣⎦恒成立,求实数m 的取值范围.例15.(2022·全国·高三专题练习(文))已知函数()3(21xf x a a =-+为实常数).(1)讨论函数()f x 的奇偶性,并说明理由;(2)当()f x 为奇函数时,对任意[]1,6x ∈,不等式()2xuf x ≥恒成立,求实数u 的最大值.例16.(2022·全国·高三专题练习(文))已知函数1()421x x f x a +=-+ .(1)若函数()f x 在[0x ∈,2]上有最大值8-,求实数a 的值;(2)若方程()0f x =在[1x ∈-,2]上有解,求实数a 的取值范围.例17.(2022·全国·高三专题练习)已知函数2()f x x =,1()2xg x m⎛⎫=- ⎪⎝⎭(1)当[1,3]x ∈-时,求()f x 的值域;(2)若对[]0,2x ∀∈,()1g x 成立,求实数m 的取值范围;(3)若对[]10,2x ∀∈,2[1,3]x ∃∈-,使得12()()g x f x 成立,求实数m 的取值范围.【方法技巧与总结】已知不等式能恒成立求参数值(取值范围)问题常用的方法:(1)函数法:讨论参数范围,借助函数单调性求解;(2)分离参数法:先将参数分离,转化成求函数的值域或最值问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.题型四:指数函数的综合问题例18.(2022·天津河西·二模)已知定义在R 上的函数()f x 满足:①()2()0f x f x -+=;②()()20f x f x ---=;③在[]1,1-上的解析式为()[](]πcos ,1,021,0,1x x f x x x ⎧∈-⎪=⎨⎪-∈⎩,则函数()f x 与函数1()2xg x ⎛⎫= ⎪⎝⎭的图象在区间[]3,3-上的交点个数为()A .3B .4C .5D .6例19.(2022·北京·二模)若函数()()223,02,0xx f x x x a⎧+≤⎪=⎨-<≤⎪⎩的定义域和值域的交集为空集,则正数a 的取值范围是()A .(]0,1B .()0,1C .()1,4D .()2,4例20.(2022·甘肃省武威第一中学模拟预测(文))已知函数()4sin 22x x f x =++,则124043202220222022f f f ⎛⎫⎛⎫⎛⎫+++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭______.例21.(2022·全国·高三专题练习)已知函数()f x 的定义域为R ,满足()()121f x f x +=-,且当(]1,1x ∈-时,()12x f x -=,则()2020f =______.例22.(2022·辽宁·建平县实验中学模拟预测)已知函数()221010,231,2x x x f x x x --⎧-≤⎪=⎨-->⎪⎩,则不等式()()10f x f x +-<的解集为___________.例23.(2022·江西·二模(文))设函数()2,111,12x a x f x x x --⎧≤⎪=⎨-+>⎪⎩,若()1f 是函数()f x 的最大值,则实数a 的取值范围为_______.【过关测试】一、单选题1.(2022·北京通州·模拟预测)已知函数1()33xxf x ⎛⎫=- ⎪⎝⎭,则()f x ()A .是偶函数,且在R 是单调递增B .是奇函数,且在R 是单调递增C .是偶函数,且在R 是单调递减D .是奇函数,且在R 是单调递减2.(2022·安徽淮南·二模(理))1947年,生物学家Max Kleiber 发表了一篇题为《body size and metabolicrate 》的论文,在论文中提出了一个克莱伯定律:对于哺乳动物,其基础代谢率与体重的34次幂成正比,即340F c M =,其中F 为基础代谢率,M 为体重.若某哺乳动物经过一段时间生长,其体重为原来的10倍,则基础代谢率1.7783≈)()A .5.4倍B .5.5倍C .5.6倍D .5.7倍3.(2022·陕西·西安中学模拟预测(文))英国著名数学家布鲁克-泰勒以微积分学中将函数展开成无穷级数的定理著称于世.在数学中,泰勒级数用无限连加式来表示一个函数,泰勒提出了适用于所有函数的泰勒级数,并建立了如下指数函数公式:23e 126!nxx x x x n =+++++++ ,其中R,N x n ∈∈的近似值为(精确到0.01)()A .1.63B .1.64C .1.65D .1.664.(2022·河南洛阳·二模(文))已知函数()()1331,1log 52,1x x f x x x +⎧-≥⎪=⎨-+-<⎪⎩,且()2f m =-,则()6f m +=()A .26B .16C .-16D .-265.(2022·四川成都·三模(理))若函数()9x f x =0x ,则()0091xx -=().A .13B .1CD .26.(2022·河南·开封高中模拟预测(文))若关于x 的不等式()221xxa x ⋅>+∈R 有实数解,则实数a 的取值范围是()A .()1,+∞B .()2,+∞C .[)1,+∞D .[)2,+∞7.(2022·四川·内江市教育科学研究所三模(理))已知函数()f x 满足:对任意x ∈R ,1122f x f x ⎛⎫⎛⎫+=-- ⎪ ⎪⎝⎭⎝⎭.当[1,0)x ∈-时,()31x f x =-,则()3log 90=f ()A .19B .19-C .1727D .1727-8.(2022·上海宝山·二模)关于函数131()(22xx f x x =-⋅和实数,m n 的下列结论中正确的是()A .若3m n -<<,则()()f m f n <B .若0m n <<,则()()f m f n <C .若()()f m f n <,则22m n <D .若()()f m f n <,则33m n <二、多选题9.(2022·湖南·模拟预测)在同一直角坐标系中,函数x y a =与()log 2a y x =-的图象可能是()A .B .C .D .10.(2022·全国·模拟预测)已知0a b >>,下列选项中正确的为()A 1=,则1a b -<B .若221a b -=,则1a b -<C .若22=1a b -,则1a b -<D .若22log log 1a b -=,则1a b -<11.(2022·广东肇庆·模拟预测)若a b >,则下列不等式中正确的有()A .0a b ->B .22a b>C .ac bc>D .22a b >12.(2022·全国·模拟预测)已知函数14sin ,01()2,1x x x f x x x -<≤⎧=⎨+>⎩,若存在三个实数,使得()()()123f x f x f x ==,则()A .123x x x ++的取值范围为()2,3B .()23x f x 的取值范围为5,23⎛⎫ ⎪⎝⎭C .123x x x 的取值范围为51,362⎛⎫⎪⎝⎭D .()13x f x 的取值范围为1,23⎛⎫⎪⎝⎭三、填空题13.(2022·安徽淮北·一模(理))2log142-⎛⎫++= ⎪⎝⎭___________.14.(2022·四川·模拟预测(理))已知两个条件:①,,()()()a b f a b f a f b ∈+=⋅R ;②()f x 在(0,)+∞上单调递减.请写出一个同时满足以上两个条件的函数____________.15.(2022·河南·模拟预测(文))函数()1423x x f x +=-+在1,2⎛⎤-∞ ⎥⎝⎦的值域为______.16.(2022·山西·二模(理))已知函数()322x xx f x -=-给出下列结论:①()f x 是偶函数;②()f x 在()0, +上是增函数;③若0t >,则点()(),t f t 与原点连线的斜率恒为正.其中正确结论的序号为______.四、解答题17.(2022·全国·高三专题练习)由于突发短时强降雨,某小区地下车库流入大量雨水.从雨水开始流入地下车库时进行监测,已知雨水流入过程中,地下车库积水量y (单位:3m )与时间t (单位:h )成正比,雨停后,消防部门立即使用抽水机进行排水,此时y 与t 的函数关系式为25ty k ⎛⎫=⨯ ⎪⎝⎭(k 为常数),如图所示.(1)求y 关于t 的函数关系式;(2)已知该地下车库的面积为25602m ,当积水深度小于等于0.05m 时,小区居民方可入内,那么从消防部门开始排水时算起,至少需要经过几个小时以后,小区居民才能进入地下车库?18.(2022·全国·高三专题练习)(1)计算:1294⎛⎫- ⎪⎝⎭(﹣9.6)0﹣22327283--⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭;(2)已知1122a a-+=3,求22112a a a a --++++的值.19.(2022·全国·高三专题练习)已知a >0,且a ≠1,若函数y =|ax -2|与y =3a 的图象有两个交点,求实数a 的取值范围.20.(2022·全国·高三专题练习)设函数()(0x x f x ka a a -=->且1)a ≠是定义域为R 的奇函数;(1)若()10f >,判断()f x 的单调性并求不等式(2)(4)0f x f x ++->的解集;(2)若()312f =,且22()4()x xg x a a f x -=+-,求()g x 在[1,)+∞上的最小值.21.(2022·北京·高三专题练习)定义在D 上的函数()f x ,如果满足:对任意,x D ∈存在常数0,M >都有()M f x M -≤≤成立,则称()f x 是D 上的有界函数,其中M 称为函数()f x 的上界.已知()422x x f x a =+⋅-.(1)当2a =-时,求函数()f x 在()0,∞+上的值域,并判断函数()f x 在()0,∞+上是否为有界函数﹐请说明理由﹔(2)若函数()f x 在(),0-∞上是以2为上界的有界函数,求实数a 的取值范围.22.(2022·全国·高三专题练习)已知函数()(0,0,1,1)x x f x a b a b a b =+>>≠≠.(1)设12,2a b ==,求方程()2f x =的根;(2)设12,2a b ==,若对任意x ∈R ,不等式()()26f x f x m ≥-恒成立,求实数m 的最大值;(3)若01,1a b <<>,函数()()2g x f x =-有且只有1个零点,求ab 的值.。
指数与指数函数高考知识点指数和指数函数是高考数学中的重要知识点,涉及到数学中的指数概念、指数运算、指数函数及其性质等内容。
本文将以深入浅出的方式,详细介绍指数与指数函数的相关知识。
一、指数的概念及性质指数是数学中常用的表示方式,用于表示一个数的乘方。
指数的定义为:若a为非零实数,n为自然数(n≠0),则aⁿ称为以a为底的指数。
其中,a称为底数,n称为指数。
指数的性质有以下几点:1. 任何非零数的0次方都等于1,即a⁰=1(a≠0);2. 任何非零数的1次方都等于它本身,即a¹=a(a≠0);3. 指数相同、底数相等的两个指数相等,即aⁿ=aᵐ(a≠0,n≠0,m≠0);4. 任何数的负整数次方都可以表示为其倒数的相应正整数次方,即a⁻ⁿ=1/(aⁿ)(a≠0,n≠0);5. 不同底数、相同指数的指数大小可以通过底数的大小来判断,当0<a<b时,aⁿ<bⁿ(a,b,n都是实数且n>0)。
二、指数运算法则指数运算是指在进行乘方运算时,如何将指数进行运算。
在指数运算中,有以下几条法则:1. 乘法法则:同底数的指数相加,保持底数不变,指数相加,即aⁿ⋅aᵐ=aⁿ⁺ᵐ(a≠0,n≠0,m≠0);2. 除法法则:同底数的指数相减,保持底数不变,指数相减,即aⁿ/aᵐ=aⁿ⁻ᵐ(a≠0,n≠0,m≠0);3. 乘方法则:一个数的乘方再乘以另一个数的乘方,底数不变,指数相乘,即(aⁿ)ᵐ=aⁿᵐ(a≠0,n≠0,m≠0);4. 开方法则:一个数的乘方再开方,底数不变,指数取两个数的最小公倍数,即(aⁿ)^(1/ᵐ)=aⁿ/ᵐ(a≠0,n≠0,m≠0)。
三、指数函数的定义与图像指数函数是一种特殊的函数形式,具有以下定义:形如y=aᵘ(a>0,且a≠1)的函数称为指数函数。
在指数函数中,a称为底数,u称为自变量,y称为因变量。
指数函数的图像特点如下:1. 当底数0<a<1时,函数图像呈现下降趋势,越接近x轴,函数值越接近于0;2. 当底数a>1时,函数图像呈现上升趋势,越接近x轴,函数值越接近于0;3. 当底数a=1时,函数图像为水平直线y=1,与自变量无关。
第8课时 指数运算性质及指数函数知识点一 分数指数幂 给定正实数a ,对于任意给定的整数m ,n (m ,n 互素),存在唯一的正实数b ,使得b n =a m,我们把b 叫作a 的mn次幂,记作b =mn a .指数运算性质 一般地,在研究实数指数幂的运算性质时,约定底数为大于零的实数.当a >0,b >0时,有: (1)a m ·a n = ;(2)(a m )n = ;(3)(ab )n = ,其中m ,n ∈R . 例1 计算下列各式(式中字母都是正数).(1)10.5233277(0.027)21259-⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭;2)211511336622(2)(6)(3)a b a b a b ÷--;2152.530.064-0⎡⎤-π.⎢⎥⎣⎦() 知识点二 指数函数一般地,函数 叫作指数函数,其中x 是自变量,函数的定义域是R .注意①底数是大于0且不等于1的常数;②指数函数的自变量必须位于指数的位置上;③a x 的系数必须为1;④指数函数等号右边不会是多项式,如y =2x +1不是指数函数. 知识点三 指数函数的图像和性质例2 (1)下列函数中是指数函数的是________.(填序号) ①y =2·(2)x ;②y =2x -1;③y =⎝⎛⎭⎫π2x;④y =13x-;⑤y =13x . (2)若函数y =(a 2-3a +3)·a x 是指数函数,则实数a =________. (3)若函数y =(2a -3)x 是指数函数,则实数a 的取值范围是________. 例3 (1)函数y =a x -1a(a >0,且a ≠1)的图像可能是( )(2)函数f (x )=1+a x -2(a >0,且a ≠1)恒过定点________.(3)已知函数y =3x 的图像,怎样变换得到y =⎝⎛⎭⎫13x +1+2的图像?并画出相应图像.跟踪训练3 (1)已知函数f (x )=4+a x +1(a >0,且a ≠1)的图像经过定点P ,则点P 的坐标是( ) A.(-1,5) B.(-1,4) C.(0,4) D.(4,0) 例4 比较下列各题中两个值的大小. (1)1.7-2.5,1.7-3;(2)1.70.3,1.50.3;(3)1.70.3,0.83.1.跟踪训练4 比较下列各题中的两个值的大小.(1)0.8-0.1,1.250.2;(2)⎝⎛⎭⎫1π-π,1;(3)0.2-3,(-3)0.2.例5 (1)不等式4x <42-3x的解集是________.(2)解关于x 的不等式:a 2x +1≤a x -5(a >0,且a ≠1).例6 判断f (x )=2213x x⎛⎫ ⎪⎝⎭-的单调性,并求其值域.反思感悟研究y =a f (x )型单调区间时,要注意a >1还是0<a <1.当a >1时,y =a f (x )与f (x )的单调性相同.当0<a <1时,y =a f (x )与f (x )的单调性相反.跟踪训练6 求函数y =223x x a +-的单调区间.课后作业1.化简238的值为( ) A.2 B.4 C.6 D.82.下列根式与分数指数幂的互化正确的是( ) A.-x =12()x -(x >0) B.1263=y y (y <0) C.33441=xx ⎛⎫⎪⎝⎭-(x >0) D.133=x x -(x ≠0) 3.式子a 2a ·3a 2(a >0)经过计算可得到( ) A.a B.1a6 C.5a 6 D.6a 5 4.计算124-⎝⎛⎭⎫12-1=________.5.下列各函数中,是指数函数的是( ) A.y =(-3)x B.y =-3x C.y =3x -1D.y =⎝⎛⎭⎫13x6.若函数y =(2a -1)x (x 是自变量)是指数函数,则a 的取值范围是( ) A.a >0,且a ≠1 B.a ≥0,且a ≠1 C.a >12,且a ≠1 D.a ≥127.函数f (x )=a x -b的图像如图所示,其中a ,b 均为常数,则下列结论正确的是( )A.a >1,b <0B.a >1,b >0C.0<a <1,b >0D.0<a <1,b <08.函数y =a x -3+3(a >0,且a ≠1)的图像恒过定点_________________________________. 9.函数f (x )=1-2x +1x +3的定义域为________. 10.下列各式中成立的是( )A.⎝⎛⎭⎫m n 7=177n m B.12(-3)4=3-3 C.4x 3+y 3=34()x y + D.39=3311.下列大小关系正确的是( )A.0.43<30.4<π0B.0.43<π0<30.4C.30.4<0.43<π0D.π0<30.4<0.43 12.方程42x -1=16的解是( )A.x =-32B.x =32 C.x =1 D.x =213.函数f (x )=2112x ⎛⎫⎪⎝⎭-的递增区间为( )A.(-∞,0]B.[0,+∞)C.(-1,+∞)D.(-∞,-1) 14.函数y =⎝⎛⎭⎫12x,y =2x ,y =3x的图像(如图)分别是________.(用序号作答)15.设0<a <1,则关于x 的不等式22232223x x x x aa -++->的解集为________.16.已知a =0.80.7,b =0.80.9,c =1.20.8,则a ,b ,c 的大小关系是( ) A.a >b >c B.b >a >c C.c >b >a D.c >a >b 17.已知函数f (x )=3x -⎝⎛⎭⎫13x ,则f (x )( ) A.是奇函数,且在R 上是增函数 B.是偶函数,且在R 上是增函数 C.是奇函数,且在R 上是减函数 D.是偶函数,且在R 上是减函数18.计算:⎝⎛⎭⎫2590.5-⎝⎛⎭⎫27813--⎝⎛⎭⎫-780+160.25=__________________________________.19.已知函数f (x )=2|x -a |(a 为常数),若f (x )在区间[1,+∞)上是增函数,则a 的取值范围是________. 20.已知函数f (x )=4x -14x +1.(1)解不等式f (x )<13;(2)求函数f (x )的值域.能力提升 已知定义在R 上的函数f (x )=a +14x +1是奇函数.(1)求a 的值;(2)判断f (x )的单调性(不需要写出理由);(3)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求实数k 的取值范围.。
高中相关指数的知识点总结一、指数的概念1. 数学中,指数是幂的形式,指数是用来表示一个数用自己乘以自己多少次。
2. 指数的写法:a^n (读为a的n次方),a称为底数,n称为指数。
3. 指数的含义:a^n表示a相乘的次数,例如2^3=2*2*2=8。
4. 0的0次幂:0的0次幂在数学中没有意义。
5. 负指数:如果指数为负数,就表示底数的倒数,例如2^-3=1/2^3=1/8。
6. 分数指数:如果指数为分数,就表示开方,例如2^(1/2)=√2。
7. 指数的定义:一个数的n次方是这个数自己连乘n次,a^n=a*a*a*...*a (n个a相乘)。
二、指数的运算规则1. 指数的乘法:a^m * a^n = a^(m+n)。
2. 指数的除法:a^m / a^n = a^(m-n)。
3. 指数的乘方:(a^m)^n = a^(m*n)。
4. 指数的开方:a^(m/n) = n√(a^m)。
5. 不同底数指数相乘:a^m * b^m = (a*b)^m。
6. 不同底数指数相除:a^m / b^m = (a/b)^m。
7. 不同底数指数相加减:不能进行运算,要化为同底数。
三、指数函数1. 指数函数的定义:y=a^x,其中a为底数,x为指数,a>0且a≠1。
2. 指数函数的特点:a>1时,曲线上升;0<a<1时,曲线下降。
3. 指数函数的图像:随着底数a的不同而不同,但都经过点(0,1)。
4. 指数函数的性质:a^0=1,a^1=a,a^(-x)=1/a^x。
5. 指数函数的定义域:定义域为实数集R。
6. 指数函数的值域:值域为正实数集R+。
7. 指数函数的增减性:a^x随着x的增大而增大,a^(-x)随着x的增大而减小。
8. 指数函数的奇偶性:若a为正数,则奇函数;若a为负数,则偶函数。
四、对数函数1. 对数函数的定义:y=loga(x),其中a>0,a≠1,x>0。
2. 对数函数与指数函数的关系:y=loga(x)是指数方程a^y=x的解。
高考数学复习初等函数知识点:指数与指数函数一样地,形如y=a^x(a>0且a≠1) (x∈R)的函数叫做指数函数,下面是高考数学复习初等函数知识点:指数与指数函数,期望对考生有关心。
指数函数的一样形式为,从上面我们关于幂函数的讨论就能够明白,要想使得x能够取整个实数集合为定义域,则只有使得如图所示为a的不同大小阻碍函数图形的情形。
能够看到:(1) 指数函数的定义域为所有实数的集合,那个地点的前提是a大于0,关于a不大于0的情形,则必定使得函数的定义域不存在连续的区间,因此我们不予考虑。
(2) 指数函数的值域为大于0的实数集合。
(3) 函数图形差不多上下凹的。
(4) a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。
(5) 能够看到一个明显的规律,确实是当a从0趋向于无穷大的过程中(因此不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。
其中水平直线y=1是从递减到递增的一个过渡位置。
(6) 函数总是在某一个方向上无限趋向于X轴,永不相交。
(7) 函数总是通过(0,1)这点。
家庭是幼儿语言活动的重要环境,为了与家长配合做好幼儿阅读训练工作,小孩一入园就召开家长会,给家长提出早期抓好幼儿阅读的要求。
我把幼儿在园里的阅读活动及阅读情形及时传递给家长,要求小孩回家向家长朗诵儿歌,表演故事。
我和家长共同配合,一道训练,幼儿的阅读能力提高专门快。
宋以后,京师所设小学馆和武学堂中的教师称谓皆称之为“教谕”。
至元明清之县学一律循之不变。
明朝入选翰林院的进士之师称“教习”。
到清末,学堂兴起,各科教师仍沿用“教习”一称。
事实上“教谕”在明清时还有学官一意,即主管县一级的教育生员。
而相应府和州掌管教育生员者则谓“教授”和“学正”。
“教授”“学正”和“教谕”的副手一律称“训导”。
于民间,专门是汉代以后,关于在“校”或“学”中传授经学者也称为“经师”。
指数与指数函数【考纲要求】1.理解分数指数的概念,掌握有理指数幂的运算性质2.掌握无理指数幂的概念,将指数的取值范围推广到实数集;3.掌握指数函数的概念,了解对底数的限制条件的合理性,明确指数函数的定义域;4.掌握指数函数图象:5.通过对指数函数的概念、图象、性质的学习,培养观察、分析归纳的能力,进一步体会数形结合的思想方法; 【知识网络】【考点梳理】考点一、整数指数幂的概念及运算性质 (1)整数指数幂的概念()()),0(1010*Z*n a a a a a Z n a a a a nn an n ∈≠=≠=∈⋅⋅⋅=-个(2)运算法则 ①nm nma a a +=⋅;②()mn nma a =;③()0≠>=-a n m a aa nm n m ,; ④()mm mb a ab =.指数与指数函数图象与性质指数运算性质指数函数的图像与指数的概念考点二、根式的概念和运算法则 (1)n 次方根的定义:若x n =y(n ∈N *,n>1,y ∈R),则x 称为y 的n 次方根. 要点诠释:n 为奇数时,正数y 的奇次方根有一个,是正数,记为n y ;负数y 的奇次方根有一个,是负数,记为ny ;零的奇次方根为零,记为00=n ;n 为偶数时,正数y 的偶次方根有两个,记为;负数没有偶次方根;零的偶次方根为零,记为0=.(2)根式的意义与运算法则y y n n =)(⎩⎨⎧=)(||)(,为偶数为奇数n a n a a nn 考点三、分数指数幂的概念和运算法则 为避免讨论,我们约定a>0,n ,m ∈N *,且mn为既约分数,分数指数幂可如下定义: 1na =m m na ==-1m nm naa=考点四、有理数指数幂的运算性质()Q b a ∈>>βα,00,,(1);a a aαβαβ+⋅=(2)();a a αβαβ= (3)();ab a b ααα=当a>0,p 为无理数时,a p是一个确定的实数,上述有理数指数幂的运算性质仍适用. 要点诠释:(1)根式问题常利用指数幂的意义与运算性质,将根式转化为分数指数幂运算;(2)根式运算中常出现乘方与开方并存,要注意两者的顺序何时可以交换、何时不能交换.如2442)4()4(-≠-;(3)幂指数不能随便约分.如2142)4()4(-≠-. 考点五、指数函数 (1)定义:函数y=a x(a>0且a ≠1)叫做指数函数,其中x 是自变量,a 为常数,函数定义域为R. (2)图象及性质:y=a x0<a<1时图象a>1时图象图象性质 ①定义域R ,值域 (0,+∞)②a 0=1, 即x=0时,y=1,图象都经过(0,1)点 ③a x =a ,即x=1时,y 等于底数 a④在定义域上是单调减函数 ④在定义域上是单调增函数 ⑤x<0时,a x>1x>0时,0<a x<1⑤x<0时,0<a x<1x>0时,a x>1⑥ 既不是奇函数,也不是偶函数【典型例题】类型一、指数运算、化简、求值 例1.已知c ba==53,且211=+ba ,求c 的值。
【解析】213log 31log 31log 3111log 52log 3log 52log 15215015a a c c c c c c c c a ab a bc c c ==∴=∴==+=∴+=∴=∴=>∴=由得同理可得【总结升华】运算顺序(能否应用公式);举一反三:【变式】计算下列各式:(1)1200.2563433721.5()82(23)()63-⨯-+-;(2)63425.0031)32(28)67()81(⨯+⨯+-⨯-; (3)33323323134)21(428a ab bab a b a a ⨯-÷++-. 【解析】(1)原式1131231334422()2223()242711033=+⨯+⨯-=+⨯=;(2)原式=62163141413)31)(1()3()2(2)2(18⨯+⨯+⨯--1123222324143=⨯++=+;(3)原式313131312313131231312)2(2)()8(a b a ab b a a b a a ⨯-⨯++-=a b a b a a=--=++331331313131)2()()8(.类型二、函数的定义域、值域 例2.求下列函数的定义域、值域.(1)212x xy =+;(2)y=4x -2x+1;(3)||3()2x y -=;(4)y =为大于1的常数)【解析】(1)函数的定义域为R (∵对一切x ∈R ,2x≠-1).∵ xx x y 2111211)21(+-=+-+=,又∵ 2x >0, 1+2x>1, ∴ 12110<+<x , ∴ 02111<+-<-x, ∴ 121110<+-<x, ∴值域为(0,1). (2)定义域为R ,43)212(12)2(22+-=+-=xx x y ,∵ 2x >0, ∴ 212=x即 x=-1时,y 取最小值43,同时y 可以取一切大于43的实数,∴ 值域为[+∞,43).(3)定义域为R ,∵|x|≥0, ∴ -|x|≤0, ∴ 1)23(0||≤=<-x y ,∴ 值域为(0,1].(4)∵011112≥+-=-+x x x x ∴ 定义域为(-∞,-1)∪[1,+∞), 又∵111011≠+-≥+-x x x x 且,∴ a ay a y x xx x≠=≥=-+-+1121121且,∴值域为[1,a)∪(a ,+∞).【总结升华】求值域时有时要用到函数单调性;第(3)小题中值域切记不要漏掉y>0的条件,第(4)小题中112111≠+-=+-x x x 不能遗漏. 举一反三:【变式】求下列函数的定义域:(1)y =y =0,1)y a a =>≠【解析】(1)(]-3∞, 需满足3-x ≥0,即3x ≤ (3)[)0,+∞为使得函数有意义,需满足2x-1≥0,即2x≥1,故x ≥0 (4)a>1时,(]-0∞,;0<a<1时,[)0+∞,. 类型三、指数函数的单调性例3.判断下列各数的大小关系:(1)24-231(),3,()331 (2)22.5,(2.5)0, 2.51()2(3)1.080.3与0.983.1(4)0,1)a a >≠【解析】 (1)2-24311()<()<333 (2) 2.50 2.51()<(2.5)<22(3)1.080.3>1>0.983.1(4)a>1时,<0<a<1时,>【总结升华】(1)注意利用单调性解题的规范书写;(2)不是同底的尽量化为同底数幂进行比较(因为同底才能用单调性);(3)不能化为同底的,借助一个中间量来比较大小(常用的中间量是0和1). 举一反三:【变式1】(2015 西安模拟)已知3a π=,3b π=,c e π=,则,,a b c 的大小关系为( ) .Aa b c >> .B a c b >> .C b c a >> .C b a c >> 【答案】D【解析】解:因为函数()y x π=是R 上的增函数,且31e >> 所以31e ππ>>即1b c >>构造函数()33x f x x =-则()30f =,()'233ln3x f x x =-()'32727ln30f∴=-<()'44881ln30f =-<所以函数()f x 在()3,4上单调递减. ()()30f f π∴<=330ππ∴-<即33ππ<a b ∴<又3e e πππ<< c a ∴<综上b a c >>.【变式2】求函数2323x x y -+-=的值域及单调区间.【解析】设u=-x 2+3x-2, y=3u,其中y=3u为R 上的单调增函数,u=-x 2+3x-2在3(,]2x ∈-∞上单增,u=-x 2+3x-2在3[,)2x ∈+∞上单减,则2323xx y -+-=在3(,]2x ∈-∞上单增,在3[,)2x ∈+∞上单减.又u=-x 2+3x-22311()244x =--+≥, 2323x x y -+-=的值域为14(0,3].例4.化简:4233-2a a a +【解析】212422121333333331233-,1-2---,01a a a a a a a a a a a a a ⎧>⎛⎫⎪+===⎨ ⎪⎝⎭⎪<<⎩类型四、判断函数的奇偶性例5.判断下列函数的奇偶性:)()21121()(x x f xϕ+-= (()x ϕ为奇函数) 【解析】f(x)定义域关于原点对称(∵()x ϕ定义域关于原点对称, 且f(x)的定义域是()x ϕ定义域除掉0这个元素),令21121)(+-=x x g ,则211222*********)(+--=+-=+-=--x x x x xx g )()21121(21121121121)12(x g xx x x -=+--=+---=+----= ∴ g(x)为奇函数, 又 ∵()x ϕ为奇函数,∴ f(x)为偶函数. 举一反三:【变式】判断函数的奇偶性:()221xx xf x =+-. 【解析】定义域{x|x ∈R 且x ≠0},又112121()()()()222211221x x xx x f x x x x --=-+=-+=---- 21111111()(1)()()222212121x xx x x x x f x -+=-=+-=+=---, ∴ f(-x)=f(x),则f(x)偶函数. 类型五、指数函数的图象问题例6.(2015 贵阳二模)函数(0,1)xy a a a =>≠与by x =的图象如图,则下列不等式一定成立的是().0a Ab > .0B a b +> .1b C a > .log 2a D b >【答案】D【解析】由图像可知,a >1,b <0;所以log 20a b >> 故选D.【总结升华】用函数图象解决问题是中学数学的重要方法,利用其直观性实现数形结合解题,所以要熟悉基本函数的图象,并掌握图象的变化规律,比如:平移、伸缩、对称等.。