k 1
即 un收敛. n1
首页
上页
返回
下页
结束
铃
(2)若 1,取正数 0,使 1, N 0,当n N时有
un1 1,
un
也即un1 un , 从而lim un 0, 故 un发散.
n
n1
(3)当lim un1 时, n un
取M 1 0, 存在N 0,当n N时, 有 un1 M 1, un
2
N,
当n>N时, 有不等式
l 1 l un l 1 l , 2 vn 2
即
1 2
lvn
un
3 2
lvn
,
再根据比较审敛法, 即得所要证的结论.
首页
上页
返回
下页
结束
铃
❖定理4(比较审敛法的极限形式)
设 un 和 vn 都 是 正 项 级 数 ,
n 1
n 1
(1)如果 lim un l (0l), n vn
级数∑vn收敛, 由已证结论, 级数∑un也收敛, 矛盾.
首页
上页
返回
下页
结束
铃
❖定理2(比较审敛法)
设∑un和∑vn都是正项级数, 且unkvn(k>0, nN). 若级数 ∑vn收敛, 则级数∑un收敛 若级数∑un发散, 则级数∑vn发散.
例
1
讨论
p级
数
n 1
1 np
( p 0) 的 收 敛 性 .
而级
数
n 1
1 n 1
发散
,
故级数 n 1
1 也发散. n(n 1)
首页
上页
返回
下页
结束
铃