粉料仓计算书
- 格式:doc
- 大小:252.50 KB
- 文档页数:9
料仓、堆场设计一、料仓设计设计为2条生产线,总量120万立方,每条生产线为60万立方。
每条生产线生产量为:600000÷260=2308 m 3/天常见粉料仓(罐)规格有50吨、100吨、150吨、200吨、300吨……。
表2.1 物料平衡表1.水泥为散装水泥,假设满足2天的需求量。
水泥单条生产线用量为:t 1126221126=⨯ 据了解,水泥仓有300T 的规格,故每条生产线选择4个,满足要求。
2.粉煤灰筒仓,假设存储期为3天。
单条生产线用量为:t 23932159=⨯ 故每条生产线选择一个型号为:JLSNC 300T 。
3.矿渣筒仓,假设存储期为2天。
单条生产线用量为:t 22722227=⨯ 故每条生产线选择一个型号为:JLSNC 300T 。
二、砂、石堆场设计砂、石储存周期本设计采用砂石的运输方式为:公路运输。
由表可知砂石的存储天数为10天。
1.存储量的计算砂石根据每日用量和存储周期计算其储存量。
1d 1T G Q =式中:Q 1——存储量,t ; G d ——每日用量,t/d ; T 1——储存周期,天。
已知砂用量为2901 t/天,碎石用量为6439t/天。
t Q s 29010102901=⨯=t Q g 64390106439=⨯= t Q Q Q g s 93400=+=堆场10天的砂石存储量为93400吨。
2.堆场面积计算原料堆积方式及面积砂、石堆积体积为:vm=ρ 3181316.129010m Q V sss ===ρ 3357728.164390m Q V ggg ===ρ 在实际堆场中,砂石堆积为圆锥形,根据公式计算堆积面积为:2217575.21813133m h V S s =⨯==砂 2429265.23577233m hV S g =⨯==石 总面积: 264683m S S S =+=石砂。
图1 条形根底配筋示意图图1 条形根底配筋示意图〔箍筋按照构造进行配筋,计算如下〕〔2〕、箍筋计算如上图1所示进行配筋,初步考虑为2道箍筋,采用φ10@150mm进行布置。
即S=150mm,N=2,φ=10mm;得:实际配筋率ρsv=Nsv1/Sb=0.209%>ρsvmin=4*ft/fyv=0.145%,满足最小配筋率要求。
2、软弱地基承载力验算a、设计条件考虑根底长度L=13000mm,根底底面宽度B=500mm,根底高度为h=400mm,荷载Fk=N=2.5×0.5×25=31.25KN/m,地基承载力特征值fak=200Kpa,地基承载力深度修正系数ηd=1.2,根底砼容重γc=25kN/m,软弱下卧层埋置深度dz初步考虑为2.0m,根底埋置深度为0.5m。
第一层土〔持力层上面〕土层厚度d1=500mm,第一层土的重度γ1=18kN/m^3,持力层土的重度γ2=18kN/m^3,下层土〔软弱下卧层〕压缩模量Es2=4Mpa,地下水埋深dw=1.5m。
b、计算根据以上条件,可得下卧层顶面以上平均重度γm=15.5KN/m;软弱下卧层顶面处经深度修正后地基承载力特征值faz=200+1.2*15.5〔2-0.5〕=227.9kPa根底自重Gk = Gk1 + Gk2= γc * Vc =γc * L * B * h+γ1 * L * B * ( d - h)=76.7KN。
Es1/Es2=1.75根底埋深比拟浅,取地基扩散角取0。
pk = (Fk + Gk) / A=16.61KPa;pc =γ1 * d1 + γ2 * (d - d1)=9.00KPa;pz=L*B*(pk-pc)/[(B+2*z*tanθ)*(L+2*z*tanθ)]=7.61KPa;pcz =γm * dz=31kpa;pz + pcz =38.61<faz=227.90 kpa,满足要求。
精心整理料仓隔墙设计计算书一、工程概况根据本标段混凝土使用地为乐平互通式立体交叉、龙眼园高架桥、三花路高架桥、太院高架桥、芦泡涌大桥、卫东高架桥及涵洞和附属工程,为满足混凝土质量和施工需求,结和现场实际施工情况现于西二环MK62+50位置的线路右侧建立混凝土拌和站,共占地约11000m2。
料仓8个约2800m2,ρ=As/(b*h0)=804/(500*365)=0.44%受拉钢筋为4@φ12,得Asy=452mm2,Ny=4,φy=12mm;ρy=Asy/(b*h0)=452/(500*365)=0.25%得ξ=ρ*fy/(α1*fc)=0.049<ξb=0.55…………………(α1=1.00)得受压区高度x=ξ*h0=0.049*365=18mm<2ca,满足要求。
图1条形基础配筋示意图图1条形基础配筋示意图(箍筋按照构造进行配筋,计算如下)(2)、箍筋计算如上图1所示进行配筋,初步考虑为2道箍筋,采用φ10@150mm进行布置。
即S=150mm,N=2,φ=10mm;得:实际配筋率ρsv=Nsv1/Sb=0.209%>ρsvmin=4*ft/fyv=0.145%,满足最小配筋率要求。
2、软弱地基承载力验算a、设计条件考虑基础长度L=13000mm,基础底面宽度B=500mm,基础高度为h=400mm,荷载Fk=N=2.5×0.5×γ,下层b、计算pkpcpzpcz3条形基础抗弯承载力Mu=α1*fc*b*h0^2*ξ*(1-0.5*ξ)+fy*Asy*(h0-ca))/1000000=79.6KN*mMu>N=2.5×0.5×25=31.25KN/m,满足隔墙自身受力要求。
需要的承载力为Ny=Mu*b=39.8Kpa<地基承载力N=200Kpa,满足地基承载力要求。
四、挡墙计算相关参数:查得砂堆积密度1.4~1.7吨/立方,碎石堆积1.4~1.5吨/立方。
粉罐基础承载力简算书编制:审核:审批:中铁xx局xx铁路xx标项目部拌合站二〇一六年六月目录一、计算公式 (1)1、地基承载力 (1)2、风荷载强度 (1)3、基础抗倾覆计算 (2)4、基础抗滑稳定性验算 (2)5、基础承载力 (2)二、储料罐基础验算 (2)1、储料罐地基开挖及浇筑 (2)2、储料罐基础验算过程 (3)2.1 地基承载力 (3)2.2 基础抗倾覆 (4)2.3 基础滑动稳定性 (5)2.4 储蓄罐支腿处混凝土承压性 (5)拌合站粉仓基础承载力计算书xx铁路标混凝土拌和站配备2HZS120拌和机,拌合楼处位于线路DKxxx+xxx右侧,占地面积21亩,靠近有公路、县道和乡道。
每台拌和机配5个粉罐,每个水泥罐自重8t,装满水泥重100t,合计108t;水泥罐直径2.8m。
水泥罐基础采用C25钢筋砼扩大基础满足5个水泥罐同时安装。
5个罐放置在圆环形基础上,圆环内圆弧长14.651米,外圆弧长21.026米,立柱基础高3.3m,外露0.3m,埋入扩大基础1m。
扩大基础采用φ18@300mm×300mm上下两层钢筋网片,架立筋采用φ18@450mm×450mm钢筋双排双向布置,基础顶预埋地脚钢板与水泥罐支腿满焊。
水泥罐总高18.5米,罐高13.5米,罐径2.8米,柱高5m,柱子为4根正方形布置,柱子间距为2.06米,柱子材料为D21.9cm厚度8mm的钢管柱。
施工前先对地基进行换填处理,处理后现场检测,测得地基承载力超过350kpa。
一、计算公式1、地基承载力P/A=σ≤σ0P—储蓄罐重量 KNA—基础作用于地基上有效面积mm2σ—土基受到的压应力 MPaσ0—土基容许的应力 MPa通过地质触探并经过计算得出土基容许的应力σ0=140Kpa2、风荷载强度W=K1K2K3W0= K1K2K31/1.6v2W —风荷载强度 PaW0—基本风压值 PaK1、K2、K3—风荷载系数,查表分别取0.8、1.13、1.0v—风速 m/s,取20.5m/sσ—土基受到的压应力 MPaσ0—土基容许的应力 MPa3、基础抗倾覆计算K c=M1/ M2=P1×1/2×基础宽/ P2×受风面×H≥1.5 即满足要求 M1—抵抗弯距 KN•MM2—抵抗弯距 KN•MP1—储蓄罐与基础自重 KNP2—风荷载 KN4、基础抗滑稳定性验算K0= P1×f/ P2≥1.3 即满足要求P1—储蓄罐与基础自重 KNP2—风荷载 KNf-----基底摩擦系数,查表得0.25;5、基础承载力P/A=σ≤σ0P—储蓄罐单腿重量 KNA—储蓄罐单腿有效面积mm2σ—基础受到的压应力 MPaσ0—砼容许的应力 MPa二、储料罐基础验算1、储料罐地基开挖及浇筑根据厂家提供的拌和站安装施工图,现场平面尺寸如下:一台拌和机五个罐地基开挖尺寸为半径为8.68m圆的1/3的范围,中心长18m,宽3.75m,总面积为66.564m2,浇筑深度为基础埋深3.0m。
料仓隔墙设计计算书原版Document number:PBGCG-0857-BTDO-0089-PTT1998料仓隔墙设计计算书一、工程概况根据本标段混凝土使用地为乐平互通式立体交叉、龙眼园高架桥、三花路高架桥、太院高架桥、芦泡涌大桥、卫东高架桥及涵洞和附属工程,为满足混凝土质量和施工需求,结和现场实际施工情况现于西二环MK62+50位置的线路右侧建立混凝土拌和站,共占地约11000m2。
料仓8个约2800m2,拟设置两座拌和楼,HZS120型,每座拌和楼每小时理论产量可达120m3。
按拌合站配料要求,不同粒径、不同品种分仓存放,不得混堆或交叉堆放,分料仓应采用50cm砼砌筑,2.5m高,采用水泥砂浆抹面,料仓内硬化C20砼浇筑20cm。
隔墙底部采用与之同宽的砼条形基础。
二、设计参数挡墙高度H=2.5m,挡墙厚度B=50cm,墙身采用C25砼浇筑成。
基础采用C25浇筑成的条形基础。
C25混凝土抗压强度设计值fc=mm2,混凝土抗拉强度设计值ft= (N/mm2),混凝土弹性模量Ec=28000 (N/mm2), 砼强度系数βc=。
初步设计:条形基础采用500mm×400mm的C25砼浇筑,即b=500mm。
取挡墙钢筋混凝土:25~26KN/M3;每米挡墙荷载N=××25=m。
初步考虑条形基础底部承载力为200KPa。
即:b=500mm,h=400mm,考虑保护层ca=35mm,得h0=h-ca=365mm。
三、条形基础计算1、配筋计算(1)、主筋验算取受弯钢筋为4@φ16,得As=804mm2,N=4,φ=16mm;ρ=As/(b*h0)=804/(500*365)=%受拉钢筋为4@φ12,得Asy=452mm2,Ny=4,φy=12mm;ρy=Asy/(b*h0)=452/(500*365)=%得ξ=ρ*fy/(α1*fc)=<ξb=…………………(α1=)得受压区高度x=ξ*h0=*365=18mm<2ca,满足要求。
HZS60混凝土拌合站粉料罐基础计算书一、拌和站罐基础设计概括计划投入一套HZS60拌合站,单套HZS60拌合站投入1个200t 型水泥罐(装满材料后)和1个100t 粉煤灰罐(装满材料后)。
根据公司以往拌和站施工经验,结合现场地质条件以及基础受力验算,水泥罐采用砼扩大基础,基础顶预埋地脚钢板与水泥罐支腿满焊或螺栓连接。
二、基本参数1、风荷载参数:查询公路桥涵设计通用规范得知:本工程相邻地区咸阳市礼泉县最大风速:s m V /3.21max =;2、仓体自重:200t 罐体自重约16t ,装满材料后总重为216t ; 100t 罐体自重约8t ,装满材料后总重为108t 。
3、扩大基础置于灰岩上,地基承载力基本容许值[]Kpa f a 6800=; 4、当采用两个水泥罐基础共同放置在一个扩大基础上时,扩大基础尺寸为10.24m ×6m ×2m (长×宽×高);三、空仓时整体抗倾覆稳定性稳定性计算1、受力计算模型(按最不利200吨罐体计算),空仓时受十年一遇风荷载,得计算模型如下所示:F1F2F3GR图3-1 空仓时整体抗倾覆稳定性稳定性计算模型2、风荷载计算根据《公路桥涵设计通用规范》可知,风荷载标准值按下式计算:gV W d k 22γ=;查《公路桥涵设计通用规范》得各参数取值如下:空气重力密度:01199899.0012017.00001.0==-Zeγ; 地面风速统一偏安全按离地20m 取:s m V k k V /92.32max 5220==; 其中:12.12=k ,38.15=k ,s m V /3.21max =;代入各分项数据得:222/66.08.9292.3201199899.02m KN g V W d k =⨯⨯==γ单个水泥罐所受风力计算: ①、迎风面积:216.58.22m A =⨯= 作用力:2KN 7.36.566.01=⨯=F 作用高度:m H 94.181=②、迎风面积:2215.3123.65m A =⨯= 作用力:KN 56.2015.3166.02=⨯=F 作用高度:m H 43.142=③、迎风面积:235.112/6.45m A =⨯= 作用力:KN 59.75.1166.03=⨯=F 作用高度:m H 01.93= 2、单个水泥罐倾覆力矩计算m KN h F M i i ⋅=⨯+⨯+⨯=⨯=∑52.43501.959.743.1456.2094.1872.331倾3、稳定力矩及稳定系数计算假定筒仓绕单边两支腿轴线倾覆,稳定力矩由两部分组成,一部分是仓体自重稳定力矩1稳M ,另一部分是扩大基础自重产生的稳定力矩2稳M 。
粉料仓设计参数摘要:一、粉料仓设计参数概述1.粉料仓的概念与作用2.设计参数的重要性二、粉料仓设计参数详解1.容量2.尺寸3.形状4.材料5.结构6.安全措施三、粉料仓设计参数的实际应用1.根据粉料特性选择设计参数2.参数对粉料仓性能的影响四、粉料仓设计参数的未来发展趋势1.环保与节能2.自动化与智能化正文:粉料仓是一种专门用于储存粉料的设备,广泛应用于化工、建材、冶金等行业。
其设计参数直接影响到粉料仓的性能、使用寿命和安全性。
本文将详细解析粉料仓的设计参数,并探讨其实际应用及未来发展趋势。
一、粉料仓设计参数概述粉料仓设计参数包括容量、尺寸、形状、材料、结构等,这些参数对于粉料仓的性能和安全性具有重要影响。
在设计粉料仓时,需要充分考虑这些参数,确保粉料仓能够满足使用要求。
二、粉料仓设计参数详解1.容量:粉料仓的容量应根据用户的实际需求来确定,过大或过小都会影响到使用效果。
2.尺寸:粉料仓尺寸包括长、宽、高,需要根据储存空间和粉料的特性来合理设定。
3.形状:粉料仓的形状有圆形、矩形、锥形等,各种形状有其适用的场景,应根据实际需求来选择。
4.材料:粉料仓材料需要具备耐磨、耐腐蚀、防潮等特性,以保证粉料仓的使用寿命。
5.结构:粉料仓结构包括进出料口、支腿、法兰等,合理的结构设计有利于提高粉料仓的使用效率和安全性。
6.安全措施:粉料仓应具备一定的安全性能,如防爆、防静电等,以防止事故的发生。
三、粉料仓设计参数的实际应用在实际应用中,需要根据粉料的特性来选择合适的设计参数。
例如,对于易燃易爆的粉料,应选择防爆材料,并采取相应的防爆措施;对于湿度敏感的粉料,应选择具有良好防潮性能的材料。
同时,设计参数的合理选择可以提高粉料仓的性能,如提高存储效率、降低能耗等。
四、粉料仓设计参数的未来发展趋势随着环保和节能意识的加强,粉料仓设计参数将更加注重环保和节能。
例如,采用高性能材料降低能耗、实现材料循环利用等。
此外,随着自动化和智能化技术的发展,粉料仓的设计参数也将向自动化和智能化方向发展,以提高粉料仓的使用效率和安全性。
第三届湖北省“结构设计大赛”设计方案设计人:张学强、侯金穗、徐立一、 料仓装料部分: <一>形状尺寸1、形状:采用直圆筒状主装料仓,如图所示:2、图中圆筒部分高h1,圆台状部分高h2,其中 h1、 h2由以下过程计算体积:kg mm kg V 6010410039≥⨯⨯-mm 70021≤+h h mm 2002≤h()V h h ≥⨯⨯⨯+++⨯⨯22212460200602004200ππ3、考虑到料仓稳定性,结构体重心较低,圆台倾斜角较小,结合上述计算,最优方案为:mm h 4972= mm h 1181≥4、又考虑到料仓内部加固的箍竹片会占据一定体积,所以使上部略大于计算理论值,最终确定料仓尺寸为:mm h 5501= mm h 1202= <二>加固方法1、圆筒部采用内部竖直方向装配竹片,外部横向加环形竹箍固定的方式。
2、圆台部分采用圆筒部分向内部弯折延续,并且在折点内侧环箍加固及下部外侧环箍加固的方式。
3、为使下部形成圆台状,应将竹片加工成向下部逐渐变窄的尖竹片。
4、弯折处细部结构如图所示:5、安装有环箍部位竹片受力如图所示:<三>竹片加工规格及数据计算1、由于圆筒部分向上部受力越来越小,并且由竹片箍紧,所以主要承力部分为圆台状部分,下面就圆台状部分荷载及稳定性作具体计算分析。
2、圆筒及圆台部分共由N根竹片组成,圆筒部分每根竹片宽度为D,圆台下端宽度为d由几何关系有:mm 200⨯=πNDmm 60d ⨯=πN3、考虑竖直方向荷载,忽略料仓内壁对物料的摩擦力,每根竹片平均分摊荷载1p ,弯折区域总荷载P1满足以下关系:11p P N =⨯ 并且P1在竹片上呈梯形状分布,如图所示:4、忽略物料颗粒之间的摩擦力,圆台底部承受荷载为P2,每根竹片承受竖直向下的集中荷载p2,则满足以下关系:22p P N =⨯5、由几何关系有:kg 6020060221⨯=Pkg 6021=+P P6、P1大小呈梯形分布,在计算端点力矩时可将其看作直接作用于中点,由折点静力(力矩) 平衡条件得:0mm 200-mm 35mm 7012=⨯⨯⎪⎭⎫⎝⎛+⨯⎪⎭⎫ ⎝⎛F N P N P则水平距离中心x 处的弯矩为:Fx p x p x xx M ⨯-⨯+⨯⨯⎪⎭⎫ ⎝⎛-=720270007212021xm 10720x 114.5-54x 49000x 546-14000x 54612016-32⋅⨯⎪⎪⎭⎫ ⎝⎛⨯+⨯⨯=N N可得mm 29x =时弯矩值最大,此时m 426.01max ⋅⨯=N NM 此处的最大正应力为: ZW M maxmax =σ62λ∇=Z W其中 : λ为竹片厚度d 2970d+⨯-=∇D 又由: a 60maxMP ≤σ 得 : ≥λ0.34mm所以选用0.35mm 厚的竹片,而考虑到在弯矩最大处的安全性,所以在此处外侧额外加一环箍(图中为受力f 处)用以保护结构。
配料仓的设计计算本配料仓为10t/h配合饲料厂工艺设计,采用先粉碎后配料工艺,主要生产畜禽料,也可生产部分水产饲料。
饲料用原料和生产配方分析依据所选典型配方,原料单位体积质量(v,t/m3)同一种原料在不同的配方中所占的百分比及一种原料在出现的若干个配方中的平均百分比并列下表(epi,%)。
序号原料容重配比1 玉米0.75 59.102 豆粕0.56 24.883 菜籽粕0.55 12.504 麸皮0.24 15.755 稻草粉0.50 20.006 米糠0.32 10.007 次粉0.50 7.508 草粉0.20 5.009 鱼粉0.58 4.0010 添加剂-- 2.0011 肉骨粉0.70 1.7012 贝粉 1.20 0.5513 石粉 1.20 1.0614 磷酸氢钙 1.20 0.4715 预混料-- 0.7516 食盐 1.12 0.3717 盐酸赖氨酸-- 0.05典型单体仓几何仓容计算依据典型配方中各原料配比,配比在2%以下的进行人工投料。
由下表可知:e pi>20%的原料有3种,5%<e pi≤20%的原料有4种,2%<e pi≤5%的原料有2种。
配方一(%)配方二(%)配方三(%)配方四(%)玉米55.2 57 65 --豆粕34 30.5 25 10菜籽粕 5 -- -- 20麸皮-- -- 8.5 23稻草粉-- -- -- 20米糠-- -- -- 10鱼粉-- -- -- --石粉 1 1.12 -- --贝粉-- -- 1 --肉骨粉-- -- -- 5磷酸氢钙 1.5 0.47 -- -- 油脂 3 -- -- --次粉-- 5 -- 10草粉-- 5 -- --预混料-- 0.5 -- --食盐0.3 0.36 0.5 -- 盐酸赖氨酸-- 0.05 -- -- 添加剂-- -- -- 2所以选定5%<e pi<20%的原料计算典型单体仓仓容具有典型性,其单体仓仓容表达式为:V i=ik te Q pi γ⨯⨯式中:e pi——几种原料出现在若干个配方中的平均百分数(%);V i——原料的单位体积质量(t/m3);Q——配合饲料厂的设计生产能力(t/m);t——原料在料仓中的存放时间,取t=2.5h;k——单体仓的有效仓容系数,取k=0.85。
粉料仓设计参数摘要:一、粉料仓设计概述二、粉料仓设计参数的重要性三、粉料仓设计参数的具体内容1.容量2.尺寸3.材质4.通风系统5.安全措施四、设计参数在实际应用中的作用五、总结正文:一、粉料仓设计概述粉料仓是用于储存粉末状物料的容器,广泛应用于化工、建筑、食品等行业。
作为一种重要的工业设备,粉料仓的设计直接影响到物料的储存、运输和安全。
因此,合理的设计参数是确保粉料仓高效、安全运行的关键。
二、粉料仓设计参数的重要性粉料仓设计参数是指导粉料仓设计的关键数据,包括容量、尺寸、材质、通风系统和安全措施等。
这些参数在设计过程中起着决定性作用,直接影响到粉料仓的使用效果和安全性能。
三、粉料仓设计参数的具体内容1.容量:根据储存物料的类型、用量和储存时间等因素,合理确定粉料仓的容量。
容量过大或过小都会影响粉料仓的使用效果。
2.尺寸:粉料仓的尺寸包括直径、高度和厚度等。
合理的尺寸设计可以确保物料在仓内顺利流动,避免堵塞和泄漏等现象。
3.材质:粉料仓的材质应与储存物料的性质相适应,具有良好的耐腐蚀性、耐磨性和密封性能。
常用的材质有碳钢、不锈钢和塑料等。
4.通风系统:通风系统是保证粉料仓内空气质量的关键。
合理的风速、风量和通风方式可以有效防止粉尘爆炸事故。
5.安全措施:粉料仓设计时应充分考虑安全因素,如设置防爆装置、限位开关、温度传感器等,确保粉料仓在异常情况下能及时报警并采取相应措施。
四、设计参数在实际应用中的作用合理的粉料仓设计参数在实际应用中具有重要作用,如提高物料储存效率、降低运行成本、确保安全生产等。
同时,设计参数的优化有助于提高粉料仓的可靠性和耐用性,延长使用寿命。
五、总结粉料仓设计参数是粉料仓设计过程中至关重要的一环。
通过对容量、尺寸、材质、通风系统和安全措施等参数的合理选择和优化,可以确保粉料仓的高效、安全和稳定运行。
在实际应用中,设计参数的合理性直接影响到粉料仓的使用效果和企业效益。
望安高速150t 水泥仓粉罐基础设计计算书一、 各项参数:1、 风荷载参数计算风力考虑8级,最大风速v=20.7m/s2、 仓体自重:G=15t二、 空仓时整体抗倾覆稳定性稳定性计算1、 计算模型1.2AB CD风荷载强度计算:风荷载强度计算:0321W K K K W ⋅⋅⋅=其中 基本风压:风载体形系数:K1=0.8风压高度变化系数:K2=1.0地形、地理变化系数,按一般平坦空旷地区取K3=1.0W=0.8×1.0×1.0×267.81=214.25Pa2、 风力计算:A 1=1.522×1.2=1.826m 2,考虑仓顶护栏等,提高1.5倍F 1=214.25×1.826×1.5=586.83N作用高度:H 1=19.322-1.522/2=18.561mA 2=(3.8+0.063×2) ×9.0=35.334m 2F 2=214.25×35.334=7570N作用高度:H 2=8.8+9/2=13.3mA 3=(3.926+0.3)/2×3.3=6.973 m 2F 3=214.25×6.973=1493.97N作用高度:H 3=8.8-3.3/3=7.7mA 4=3.8×2×0.3=2.28 m 2F 4=214.25×2.28=488.49N作用高度:H 4=5.5m3、 倾覆力矩计算:mt F M i ⋅=⨯+⨯+⨯+⨯=⋅=∑58.125.549.4887.797.14933.137570561.1883.586h i 41倾稳定力矩计算:假定筒仓绕AB 轴倾覆,稳定力矩由两部分组成,一部分是仓体自重稳定力矩M 稳1,另一部分是水泥仓立柱与基础连接螺栓抗拉产生的稳定力矩M 稳2。
(每个支撑立柱与基础之间的向上抗拔力按8t 计算)4、 稳定系数三、 地基承载力计算单仓基础按4m*4m ,高度1.5m 设计,混凝土采用C25。
料仓隔墙设计计算手册原版文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)料仓隔墙设计计算书一、工程概况根据本标段混凝土使用地为乐平互通式立体交叉、龙眼园高架桥、三花路高架桥、太院高架桥、芦泡涌大桥、卫东高架桥及涵洞和附属工程,为满足混凝土质量和施工需求,结和现场实际施工情况现于西二环MK62+50位置的线路右侧建立混凝土拌和站,共占地约11000m2。
料仓8个约2800m2,拟设置两座拌和楼,HZS120型,每座拌和楼每小时理论产量可达120m3。
按拌合站配料要求,不同粒径、不同品种分仓存放,不得混堆或交叉堆放,分料仓应采用50cm砼砌筑,2.5m高,采用水泥砂浆抹面,料仓内硬化C20砼浇筑20cm。
隔墙底部采用与之同宽的砼条形基础。
二、设计参数挡墙高度H=2.5m,挡墙厚度B=50cm,墙身采用C25砼浇筑成。
基础采用C25浇筑成的条形基础。
C25混凝土抗压强度设计值fc=11.9N/mm2,混凝土抗拉强度设计值ft=1.27(N/mm2),混凝土弹性模量Ec=28000(N/mm2),砼强度系数βc=1.00。
初步设计:条形基础采用500mm×400mm的C25砼浇筑,即b=500mm。
取挡墙钢筋混凝土:25~26KN/M3;每米挡墙荷载N=2.5×0.5×25=31.25KN/m。
初步考虑条形基础底部承载力为200KPa。
即:b=500mm,h=400mm,考虑保护层ca=35mm,得h0=h-ca=365mm。
三、条形基础计算1、配筋计算(1)、主筋验算取受弯钢筋为4@φ16,得As=804mm2,N=4,φ=16mm;ρ=As/(b*h0)=804/(500*365)=0.44%受拉钢筋为4@φ12,得Asy=452mm2,Ny=4,φy=12mm;ρy=Asy/(b*h0)=452/(500*365)=0.25%得ξ=ρ*fy/(α1*fc)=0.049<ξb=0.55…………………(α1=1.00)得受压区高度x=ξ*h0=0.049*365=18mm<2ca,满足要求。
粉罐基础承载力简算书编制:_____________审核:_____________审批:_____________中铁XX局XX铁路XX标项目部拌合站二◦一六年六月目录一、计算公式 (1)1、地基承载力 (1)2、风荷载强度 (1)3、基础抗倾覆计算 (2)4、基础抗滑稳定性验算. (2)5、基础承载力 (2)二、储料罐基础验算 (2)1、储料罐地基开挖及浇筑. (2)2、储料罐基础验算过程. (3)2.1 地基承载力 (3)2.2 基础抗倾覆 (4)2.3 基础滑动稳定性 (5)2.4 储蓄罐支腿处混凝土承压性 (5)拌合站粉仓基础承载力计算书XX铁路标混凝土拌和站配备2HZS120半和机,拌合楼处位于线路DKxxx+xxx 右侧,占地面积21 亩,靠近有公路、县道和乡道。
每台拌和机配5个粉罐,每个水泥罐自重8t,装满水泥重100t,合计108t ;水泥罐直径2.8m。
水泥罐基础采用C25钢筋砼扩大基础满足5 个水泥罐同时安装。
5 个罐放置在圆环形基础上,圆环内圆弧长14.651米,外圆弧长21.026米,立柱基础高3.3m,外露0.3m,埋入扩大基础1m扩大基础采用© 18@300mm300mm上下两层钢筋网片,架立筋采用© 18@450mm450mn钢筋双排双向布置,基础顶预埋地脚钢板与水泥罐支腿满焊。
水泥罐总高18.5米,罐高13.5米,罐径2.8米,柱高5m,柱子为4根正方形布置,柱子间距为 2.06米,柱子材料为D21.9cm厚度8mn的钢管柱。
施工前先对地基进行换填处理, 处理后现场检测, 测得地基承载力超过350kpa。
一、计算公式1 、地基承载力P/A= cWc 0P —储蓄罐重量KNA —基础作用于地基上有效面积mm2(T—土基受到的压应力MPa(T 0—土基容许的应力MPa通过地质触探并经过计算得出土基容许的应力。
0=140Kpa2、风荷载强度W=K2KW0二 KK2K31/1.6 V 2W —风荷载强度PaW—基本风压值PaK i、K2、K3—风荷载系数,查表分别取0.8、1.13、1.0v—风速m/s,取20.5m/s(T—土基受到的压应力MPa(T 0—土基容许的应力MPa3、基础抗倾覆计算K c二M/ M2=P1X 1/2 X基础宽/ P2 X受风面x H> 1.5即满足要求M i—抵抗弯距KN?MM2—抵抗弯距KN?MP1—储蓄罐与基础自重KNP2—风荷载KN4、基础抗滑稳定性验算K o= P1 X f/ P2 > 1.3即满足要求P1—储蓄罐与基础自重KNP2—风荷载KNf-----基底摩擦系数,查表得0.25 ;5、基础承载力P/A= cWc 0P —储蓄罐单腿重量KNA —储蓄罐单腿有效面积mm2(T—基础受到的压应力MPa(T 0—砼容许的应力MPa二、储料罐基础验算1、储料罐地基开挖及浇筑根据厂家提供的拌和站安装施工图,现场平面尺寸如下:地基开挖尺寸为半径为8.68m 圆的1/3的范围,中心长18m,宽3.75m,总面积为66.564m 2,浇筑深度为基础埋深3.0m 。
钢仓仓壁计算书一 基本参数(一) 水力半径6 1.5 m 44n d ρ===,石灰粉容重312 kN/m γ=,35ϕ=︒, 摩擦系数4.0=μ(对钢板),11 1.83 1.56n n h d ==>,为深仓, 侧压力系数2235tan (45)tan (45)0.27122k ϕ︒=︒-=︒-=。
(二) 仓及石灰粉重量计算仓内体积:2222231112211ππ(R )π311π(330.30.3) 4.8361.22m 33V R h R h =++=⨯⨯+⨯+⨯+⨯=仓壁体积:()()=-+-=22221122212π31πh R R h R R V()()()22222231π 3.008311π 3.008 3.0080.3080.308330.30.3 4.8 2.06m 3⎡⎤⨯-⨯+⨯+⨯+-+⨯+⨯=⎣⎦石灰粉重量:112361.224334.64kN G V γ==⨯=粉煤灰仓重量:278.5 2.06161.71kN G V γ==⨯=仓故总重量为G =4334.64+161.71=4496.35 kN二 仓壁部分受力计算(一) 受力计算1 计算深度S 处,石灰粉作用于仓壁单位面积上的水平压力标准值按下式计算:/0.40.27111/1.512 1.5(1e )(1e )0.4kS hk P μργρμ--⨯⨯⨯=-=⨯-212 1.50.547125.695 kN/m 0.4⨯=⨯= 2 计算深度S 处,石灰粉作用于仓壁单位水平面上的竖向压力标准值按下式计算: /0.40.27111/1.5212 1.5(1e )(1e )94.82kN/m 0.40.271kS vk P k μργρμ--⨯⨯⨯=-=⨯-=⨯ 3 计算深度S 处,石灰粉作用于仓壁单位周长上的总摩擦力标准值按下式计算: () 1.5(121194.82)55.77kN/m fk vk q S P ργ=-=⨯⨯-=(二) 结构设计1 深仓仓壁按承载能力极限状态设计时,考虑下列组合:(1) 作用于仓壁单位面积上的水平压力的基本组合(设计值):21.3 1.3 2.026.69569.41k N /m h h h k P C P ==⨯⨯= (2) 作用于仓壁单位周长的竖向压力的基本组合(设计值):① 无风荷载参与组合时:∑++=Q ik i fk f gk v q q C q q ψ4.13.12.1其中, 21π394.826.53k N /m 2π3gk q ⨯⨯+==⨯⨯ 55.77 k N /m fk q = 24.0π3 6 kN/m 2π3Qik q ⨯⨯==⨯⨯ 故 1.2 6.53 1.3 1.155.77 1.4 1.0695.99kN/m v q =⨯+⨯⨯+⨯⨯=② 有风荷载参与组合时:()1.2 1.3 1.40.6v gk f gk Wk Qik q q c q q q =++⨯+∑故 1.2 6.53 1.3 1.155.77 1.40.6(63)95.15kN/m v q =⨯+⨯⨯+⨯⨯+=2 焊接钢板筒仓不设加劲肋时,仓壁可按一下规定进行强度计算:(1) 在水平压力作用下,按轴心受拉构件进行计算:3222t 69.41626.0310 kN/m 26.03N/mm 215 N/mm 220.008h n P d f t σ⨯===⨯=<=⨯ (2) 在竖向压力作用下,按轴心受压构件进行计算: 3222c 95.9911.99910 kN/m 12.0N/mm 215 N/mm 0.008v q f t σ===⨯=<= (3) 在水平压力及竖向压力共同作用下,按下式进行折算应力计算: ()()222222zs t c t c 26.031226.031233.67N/mm 215 N/mm f σσσσσ=+-=+--⨯-=<=3 钢板筒仓在竖向轴压力作用下,仓壁应按下述方法进行稳定计算:(1) 无风荷载参与组合时, 2c 12/N mm σ=无风REt k p cr c =≤σσ 其中, 3388p 1100110080.0972π2π3000t k R ⨯⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,故 32cr p 2061080.09753.29 N/mm 3000Et k R σ⨯⨯==⨯=(2) 有风荷载参与组合时,风荷载计算应力如下:a. 211s 1010 m 1.17 1.020.6 kN/m z gz h w μμβ=====,,,,222s 1020 m 1.63 1.0 2.00.6 kN/m z gz h w μμβ=====,,,, 故21110 2.0 1.0 1.380.6 1.656 kN/m k gz s z w w βμμ=⨯⨯⨯==222202.0 1.0 1.630.6 1.956k N /m k g z s z w w βμμ=⨯⨯⨯== 211 1.656 1.956 1.806kN/m 22k k k w w w ++=== 作用于仓中心的水平风力 1.806612130.03kN k F w D H =⋅⋅=⨯⨯= 风作用于仓底的弯矩12130.03780.2 kN m 22H M F =⋅=⨯=⋅ b. 仓的抗弯截面模量计算如下: 基本参数:外径D =6.016 m ,厚度t =0.008 mm ,内径d =6.0 m ,6.0000.9976.016d D α===抗弯截面模量为 343430.1(1)0.1 6.016(10.997)0.26 m W D α=-=⨯⨯-=c. 风荷载产生的应力为22780.23000.76 kN /m 3.00 N /mm 0.26M W σ===风=d. 22c cr c 12315N/mm 53.29 N/mm σσσσ=+=+=<=风无风故风荷载作用下稳定性满足要求。
筒仓风载力计算书中铁科工集团轨道交通装备有限公司150T 筒仓基础计算书1.基本参数如右图所示:水泥罐自重约 7.8t,水泥满装 150t,共重 157.8t;水泥筒仓直径为 3.2m,支腿高 7.2m、筒体高 13.8m;单支腿基础为0.9 m×0.9 m;2.地基承载力计算计算过程:F=m1g=7800×10=78KN ;物料自重 G:G= m2g=130000×10=1300KN ;每根支腿轴心承载力Ρ:Ρ=(F+G)/4=(78+1300)/4=344.5KN每根支腿承载轴心重量为 39t,按照 1.5 倍的安全系数并圆整,每根支腿的承载重量要求为 58.5t。
3.抗倾覆计算按该地区特大级风荷载考虑,风力水平荷载为1600N/m2,;抗倾覆计算以空罐计算,空罐计算满足则抗倾覆满足:单个筒仓的受力分析如上图:空仓情况下,迎风侧的支腿不起支撑作用,起拉紧作用,即对迎风侧的支腿受力分析得,支腿受基础施加的竖直向下的拉力。
则风载对顺风侧支腿产生的弯矩为:M 风=F 风×3.2×13.8×(13.8/2+7.6)=1024 KN·m 若要保证筒仓不倾翻,则迎风侧的支腿对筒仓产生的力矩(M 支)要大于风载对筒仓产生的力矩,即:M 支> M 风F 支×1.414×2.14>1024即:F 支>338KN要保证筒仓的稳定性,到安全系数 1.7,单个支腿对筒仓的支撑力至少要达到 574KN,基础载荷图上要求承载力为 60t,即600KN,满足抗倾覆性要求。
4.筒仓容量计算粉料密度按搅拌站正常工作状态下计算,筒仓容量计算公式(1)如下:150t 仓容量:V 实际=V 下锥+V 直段+V 顶锥 - V 仓壳V 下锥≈()h 下; (d=筒仓直径;h 下=3620mm, h 下为下锥高度);V 直段= V200t直段+ V 缓压余量V 直段=h+ V 缓压余量;(d=筒仓直径;h 理论=h1+h2;h1=8750mm, h1 为料位上升的直段高度,h2=260mm, h2 为料位上升的拱形简化的直段高度);V 缓压余量 =V 料位差=h 料位;(d=筒仓直径;h 料位=高料位旋转叶片距仓顶长度,约 800mm)V 顶锥= ()h 上;(d=筒仓直径;h 上=仓顶锥段高度=400mm);V 仓壳= ( m=空仓仓体重量,约 8.7t;ρ=粉料密度。
料仓隔墙设计计算书一、工程概况根据本标段混凝土使用地为乐平互通式立体交叉、龙眼园高架桥、三花路高架桥、太院高架桥、芦泡涌大桥、卫东高架桥及涵洞和附属工程,为满足混凝土质量和施工需求,结和现场实际施工情况现于西二环MK62+50位置的线路右侧建立混凝土拌和站,共占地约11000m2。
料仓8个约2800m2,拟设置两座拌和楼,HZS120型,每座拌和楼每小时理论产量可达120m3。
按拌合站配料要求,不同粒径、不同品种分仓存放,不得混堆或交叉堆放,分料仓应采用50cm砼砌筑,2.5m高,采用水泥砂浆抹面,料仓内硬化C20砼浇筑20cm。
隔墙底部采用与之同宽的砼条形基础。
二、设计参数挡墙高度H=2.5m,挡墙厚度B=50cm,墙身采用C25砼浇筑成。
基础采用C25浇筑成的条形基础。
C25混凝土抗压强度设计值fc=mm2,混凝土抗拉强度设计值ft= (N/mm2),混凝土弹性模量Ec=28000 (N/mm2), 砼强度系数βc=。
初步设计:条形基础采用500mm×400mm的C25砼浇筑,即b=500mm。
取挡墙钢筋混凝土:25~26KN/M3;每米挡墙荷载N=××25=m。
初步考虑条形基础底部承载力为200KPa。
即:b=500mm,h=400mm,考虑保护层ca=35mm,得h0=h-ca=365mm。
三、条形基础计算1、配筋计算(1)、主筋验算取受弯钢筋为4@φ16,得As=804mm2,N=4,φ=16mm;ρ=As/(b*h0)=804/(500*365)=%受拉钢筋为4@φ12,得Asy=452mm2,Ny=4,φy=12mm;ρy=Asy/(b*h0)=452/(500*365)=%得ξ=ρ*fy/(α1*fc)=<ξb=…………………(α1=)得受压区高度x=ξ*h0=*365=18mm<2ca,满足要求。
4@φ124@φ16图1 条形基础配筋示意图图1 条形基础配筋示意图(箍筋按照构造进行配筋,计算如下)(2)、箍筋计算如上图1所示进行配筋,初步考虑为2道箍筋,采用φ10@150mm 进行布置。
1:仓段计算
1.1:直段:
(一)受力分析(标准值)
直段高H=8.7m 直径D=6m H/D=8.7/6=1.45 接近1.5 ,且D>4m,可按深仓理论计算。
仓顶荷载:袋式除尘器:424kg,其它等共600kg~kg/m
仓顶自重1211kg~65kg/m。
壁板:δ=4 31.4kg/m2
δ=5 39.25kg/m2
u:贮料与摩擦系数,
k:侧压力系数k=tg(450-φ/2)
s:仓顶到计算截面距离
p:水力半径
Cn:水平压力修正系数
Cv:垂直压力修正系数。
r:贮料密度.1.6t/m3=15.68KN/m3
(二、) 壁板厚度及横劲
1、区段A:高度(0~.1.25m)
a、壁板厚度:
P环=18.12KN/m P压=18.12KN/m
取δ=4mm
σ切=[(18.12/9.8)x100]/(0.4x100)=46.2kg/cm2
σ法
b、横劲
r2)
径向力:Nφ=(1.5x3.037)/(2sin9o)=14.56 KN/m 环向力:N
θ=1.5x3.037xcos9o ctg9o=28.41 KN/m
环向拉力:T=14.56x3xcos9o=43.14 KN=4.4T
取[10 A=12.74Cm2λ=4402/12.74=345kg/ cm2
2、区段:C
a、壁板厚度:
P环=92.43KN/m P压=3.73+37.74=41.47KN/m
取δ=5mm
σ切=[(92.43/9.8)x100]/(0.5x100)=188.7kg/cm2
σ法=[(41.47/9.8)x100]/(0.5x100)=84.63kg/cm2
σ总=207kg/cm2<1700 kg/cm2
b、横劲
环向力P环=80.67KN/m N环=100.84KN/m
取[10 A=12.74Cm2λ=(100.84x1000)/(9.8x12.74)=807kg/ cm2
3、区段:D
a、壁板厚度:
P环=103.5KN/m P压=4.29+49.36=53.65KN/m
取δ=6mm
σ切=[(103.5/9.8)x100]/(0.6x100)=176kg/cm2
σ法=[(53.65/9.8)x100]/(0.6x100)=91.24kg/cm2
σ总=198kg/cm2<1700 kg/cm2
b、横劲
环向力P环=92.43KN/m N环=113.22KN/m
取[14 A=18.51Cm2 λ=(113.22x1000)/(9.8x18.51)=624.15kg/ cm2
1.2、锥段:
法向拉力:P N=ξP V ξ=cos2α+ksin2α=0.5 k=0.3333 α=60o 环向拉力:N P=P N ctgαl=38.838 l
斜拉力:Nmin=(l ctgαl/2){P V+[ r(sinα)/(3 l2) ] (l3- l13 )}
吊挂设备引起的斜拉力忽略
+34.8x152+2x48.1x402=579698 cm4
W=7246 cm3
λ跨中=(36.27x100000)/7246=500kg/ cm2 2;排架
2.1:荷载
1、贮料:350t
自重:21.682t
附属物重:1.5t
2、风载:W=ΒZ U s U z W o=51kg/m2
W O基本风压35kg/m2(北京地区十年一遇最大风力)
U s<0.7
U z=1.14
βZ =1.83
自振周期T=0.56+0.4x10-3(h2/D)
h=19.75m
D=6m
T=0.586s>0.25s
所以考虑风振系数
βZ =1+[(ξυφZ)/ U z ]=1+[(1.88x0.755x0.665)/ 1.14 ]=1.83 风载作用点:
S=6x8.7x(8.7/2+4.81)+(6+0.4)x(4.841/20x(4.841x2/3)=480+50
=530
A=6x8.7=6.4x4.841/2=67.69
Z=7.8m
风载P=51xA=51x67.69=3452kg
2.2;内力:
1、立柱:
N1=(350+21682+1.5)/4=93.3t
用L80x8 A=12.3 cm2
λ=2675/1.57=217 kg/ cm2<250 kg/ cm2
②N压=1.726t λ=424.3/2.44=174>150
φ=0.932 λ=1726/(0.232x12.3)=605 kg/ cm2
3、连接件:
①斜撑螺栓:M20 精制螺栓抗剪承载力4.241t/个
3x4.241t=12.723t
②立站:
M36 地脚螺栓抗剪承载力8.99t/个4x8.99t=35.96t。