幂的乘方与积的乘方的教学目标
- 格式:doc
- 大小:24.00 KB
- 文档页数:1
幂的乘方与积的乘方教案:深入掌握指数和幂的运算规律一、教学目标学习指数和幂的乘方、积的乘方规律,掌握指数与幂之间的互相转化方法,培养学生对指数和幂的敏感度,从而提高学生的数学思维能力和应用能力。
二、教学内容1.指数和幂的乘方、积的乘方规律2.指数与幂之间的互相转化方法3.练习与解题三、教学重难点1.指数和幂的乘方、积的乘方规律的应用2.指数与幂之间的互相转化方法的理解和运用四、教学方法1.讲述与演示相结合2.多元素启发式教学方法3.练习与解题五、教学准备1.白板、黑板、笔2.教科书、讲义、试卷3.练习和解题材料4.示范题六、教学过程1.引入从同学们最熟悉的数学公式-乘方式入手,大概介绍指数和幂之间的关系,并且让同学们自己研究一下同底数的幂的乘方有怎样的规律,再加以证明。
2.讲授指数和幂的乘方、积的乘方规律与运用。
2.1.幂的乘方同底数幂的乘方规律:$(a^{m})^{n}$ $=$ $a^{mn}$,即同一底数幂的乘方等于底数不变,指数相乘。
示范题:$(2^{3})^{2}$ $=$ $2^{6}$ $=$ $64$。
2.2.积的乘方如何化简幂的积:$a^{m}$ $\times$ $a^{n}$ $=$ $a^{m+n}$,即相同指数幂的积等于底数不变,指数相加。
示范题:$2^{4}$ $\times$ $2^{3}$ $=$ $2^{7}$。
2.3.指数与幂之间的互相转化方法(1)同底数幂之间的乘和除,可用指数相加、相减:$a^{m} \times a^{n}$ $=$ $a^{m+n}$;$\frac{a^{m}}{a^{n}}$ $=$ $a^{m-n}$。
(2)不同底数幂之间可先化为同底数再变幂:$2^{m}$ $\times$ $3^{m}$ $=$ $(2 \times 3)^{m}$;$\frac{2^{m}}{3^{n}}$ $=$ $\frac{{2^{\left(m-n\right)}}}{3^{n}}$。
数学教案-幂的乘方与积的乘方(二)一、教学目标1.掌握幂数与幂的概念,能够正确地进行幂数与幂的运算;2.理解和掌握幂的乘方与积的乘方的概念;3.能够灵活运用幂的乘方与积的乘方的性质解决相关问题。
二、教学内容1.幂的乘方的定义与性质;2.积的乘方的定义与性质;3.幂的乘方与积的乘方的关系。
三、教学重点1.幂的乘方的定义与性质;2.幂的乘方与积的乘方的关系。
四、教学难点幂的乘方与积的乘方的关系的理解与应用。
五、教学方法1.讲解与演示相结合的教学方法;2.提问与讨论的教学方法;3.练习与应用相结合的教学方法。
六、教学过程1. 复习回顾上节课我们学习了幂数与幂的概念,以及幂数与幂的运算规则。
请同学们回忆一下幂数与幂的定义与运算规则。
2. 引入新知识让我们来看一个具体的问题:已知$a^2 \\cdot b^3$,如何将其写成一个幂的乘方?请同学们思考一下。
3. 幂的乘方的定义与性质通过同学们的思考,我们可以得出结论:$a^2 \\cdot b^3 = a^{2+3} \\cdotb^{2+3}$。
这就是幂的乘方的定义与性质之一:相同底数的幂相乘,底数不变,指数相加。
同理,我们可以推广这个性质:$a^m \\cdot a^n = a^{m+n}$,其中m和n都是整数。
请同学们再思考一个问题:如果已知$(a \\cdot b)^3$,如何将其写成一个幂的乘方?请同学们思考一下。
4. 积的乘方的定义与性质通过同学们的思考,我们可以得出结论:$(a \\cdot b)^3 = a^3 \\cdot b^3$。
这就是积的乘方的定义与性质:一个积的乘方,等于每个因数的乘方。
同理,我们可以推广这个性质:$(a \\cdot b)^n = a^n \\cdot b^n$,其中n是整数。
5. 幂的乘方与积的乘方的关系现在我们将幂的乘方与积的乘方结合起来看一下:$(a \\cdot b)^m \\cdot (a \\cdot b)^n = (a^m \\cdot b^m) \\cdot (a^n \\cdot b^n)$通过分配律和结合律,我们可以将其简化为:$(a \\cdot b)^m \\cdot (a \\cdot b)^n = a^{m+n} \\cdot b^{m+n}$我们可以得出结论:幂的乘方与积的乘方是等价的。
幂的乘方与积的乘方教案教学目标:1.理解幂的乘方。
2.能够计算幂的乘方。
3.理解积的乘方。
4.能够计算积的乘方。
教学重点:1.幂的乘方的概念与计算。
2.积的乘方的概念与计算。
教学准备:1.黑板、粉笔和擦子。
2.计算器。
教学过程:一、导入(5分钟)1.教师通过一个简单的问题导入新知识:“假如我现在有3个苹果,每个苹果有4个橘子,你能说出总共有多少个橘子吗?”2.学生回答后,教师引导学生思考如何计算橘子的总数。
二、幂的乘方(20分钟)1.教师写出问题:“如果有3个苹果,每个苹果有4个橘子,你能用幂的乘方表示这个问题吗?”2.学生思考后,教师解释幂的乘方的概念:幂的乘方是指将一个幂作为乘数,连续相乘的操作。
在这个问题中,3个苹果可以表示为3^1,每个苹果有4个橘子可以表示为4^3,所以总共的橘子数可以表示为3^1×4^33.教师用黑板上的例子,如2^3,解释幂的乘方的计算方法:将底数2连乘3次,即2×2×2=8,所以2^3=8、教师帮助学生理解幂的乘方的计算方法。
4.学生进行练习,计算以下幂的乘方:(a)5^2;(b)10^3;(c)3^4三、积的乘方(20分钟)1.教师写出问题:“如果有2组橘子,每组橘子有3个苹果,你能用积的乘方表示这个问题吗?”2.学生思考后,教师解释积的乘方的概念:积的乘方是指将一个积作为乘数,连续相乘的操作。
在这个问题中,2组橘子可以表示为(2×3)^1,每组橘子有3个苹果可以表示为3^2,所以总共的橘子数可以表示为(2×3)^1×3^23.教师用黑板上的例子,如(3×4)^2,解释积的乘方的计算方法:先将两个因数(3×4)相乘,得到12,然后再将12连乘2次,即12×12=144,所以(3×4)^2=144、教师帮助学生理解积的乘方的计算方法。
4.学生进行练习,计算以下积的乘方:(a)(2×5)^2;(b)(4×6)^3;(c)(2×3×4)^2四、扩展应用(25分钟)1.教师给学生提供更复杂的问题,让学生运用幂的乘方和积的乘方来解决。
幂的乘方与积的乘方(一)》说课教案一、教材分析(一)本节内容在教材中的地位与作用。
幂的运算,是把前面学过的数的运算抽象为式的运算,幂的乘方与积的乘方是本章的第二节,是在学生已有的同底数幂的乘法运算性质的基础上,通过做幂的乘方后,再明晰的幂的乘方运算性质,是进一步学习幂的运算的基础,是今后学习整式乘法的重要基础,也是今后学习方程、不等式、函数等知识的储备内容,同时也是学习物理、化学、生物等学科必不可少的解题工具。
因此,本节课的知识承上启下,具有重要作用。
(二)教学目标在本课的教学中,不仅要让学生学会如何进行幂的乘方的运算,更主要地是要让学生掌握研究问题的方法,初步领悟化归的数学思想。
同时,还要让学生感受到数学来源于生活,又服务于生活的基本事实,从而激发学生学习数学的兴趣。
为此,我确立如下教学目标:知识与技能:理解幂的乘方的运算性质,能熟练的运用性质进行计算,并能说出每一步计算的依据。
过程与方法:经历探索幂的乘方性质的过程,结合探究活动,掌握幂的乘方的运算性质的运用方法和技巧。
情感态度和价值观:进一步体会幂的意义,发展归纳、概括、推理能力和有条理的数学表达能力,增强学数学的信心。
(三)教材重难点由于本节课是探索并运用幂的运算的性质的第二个基本性质,故我确定“以理解并掌握运算性质”作为教学的重点,而将其灵活的运用作为教学的难点。
同时,我将采用让学生通过先“做”,然后思考、猜想、合作探究、媒体演示的方式以及渗透从一般到特殊、从具体到抽象的数学思想方法教学来突出重点、突破难点。
(四)教具准备:相关多媒体课件。
二、教法选择与学法指导本节课主要是理解、掌握性质并运用运算性质计算,故我在课堂教学中将尽量为学生提供“做”中“学”的时空,让学生进行小组合作学习,在“做”的过程中潜移默化地渗透一些数学思想方法,遵循“教是为了不教”的原则,让学生自得知识、自觅规律、自悟原理。
三、教学流程(一)创设情景,激发求知欲望首先,我提出一个趣味性问题:谁能在黑板上写下100个410的乘积?根据经验,同学们发现写不下。
幂的乘方与积的乘方一、教学目标(一)知识目标1。
经历探索幂的乘方的运算性质的过程,进一步体会幂的意义.2。
了解幂的乘方的运算性质,并能解决一些实际问题.(二)能力目标1.在探索幂的乘方的运算性质的过程中,发展推理能力和有条理的表达能力.2.学习幂的乘方的运算性质,提高解决问题的能力.(三)情感目标在发展推理能力和有条理的表达能力的同时,进一步体会学习数学的兴趣,培养学习数学的信心,感受数学的内在美.二、教学重难点(一)教学重点幂的乘方的运算性质及其应用.(二)教学难点幂的运算性质的灵活运用。
三、教具准备投影片三张第一张:做一做,记作(§1。
4.1 A)第二张:例题,记作(§1.4。
1 B)第三张:练习,记作(§1.4。
1 C)四、教学过程Ⅰ。
提出问题,引入新课[师]我们先来看一个问题:一个正方体的边长是102毫米,你能计算出它的体积吗?如果将这个正方体的边长扩大为原来的10倍,则这个正方体的体积是原来的多少倍?[生]正方体的体积等于边长的立方.所以边长为102毫米的正方体的体积V=(102)3立方毫米;如果边长扩大为原来的10倍,即边长变为102×10毫米即103毫米,此时正方体的体积变为V1=(103)3立方毫米。
[师](102)3,(103)3很显然不是最简,你能利用幂的意义,得出最后的结果吗?大家可以独立思考.[生]可以。
根据幂的意义可知(102)3表示三个102相乘,于是就有(102)3=102×102×102=102+2+2=106;同样根据幂的意义可知(103)3=103×103×103=103+3+3=109。
于是我们就求出了V=106立方毫米,V1=109立方毫米。
我们还可以计算出当这个正方形边长扩大为原来的10倍时,体积就变为原来的1000倍即103倍.[生]也就是说体积扩大的倍数,远大于边长扩大的倍数.[师]是的!我们再来看(102)3,(103)3这样的运算。
幂的乘方和积的乘方北师大版数学初一下册教案幂的乘方和积的乘方:教案幂的乘方:公式的探究方式和前节类似,因此在教学中可以利用该优势展开教学,在探究过程中可以进一步发挥学生的主动性,尽可能地让学生在已有知识的基础上,通过自主探究,获得幂的乘方运算的感性认识,进而理解运算法则。
积的乘方:1.掌握积的乘方的运算法则;(重点)2.掌握积的乘方的推导过程,并能灵活运用.(难点)一、情境导入1.教师提问:同底数幂的乘法公式和幂的乘方公式是什么?学生积极举手回答:同底数幂的乘法公式:同底数幂相乘,底数不变,指数相加.幂的乘方公式:幂的乘方,底数不变,指数相乘.2.肯定学生的发言,引入新课:今天学习幂的运算的第三种形式——积的乘方.知识点1.地球的半径长约为6×103 km,用S,r分别表示赤道所围成的圆的面积和地球半径,则S=πr2,计算赤道所围成的圆的面积约为1.13×108__km2.(π取3.14,结果精确到0.01)2.用公式表示图中阴影部分面积S,并求出当a=1.2×103 cm,r=4×102 cm时,S的值.(π取3.14)《1.2幂的乘法与积的乘方》同步测试一、选择题1.计算:(m3n)2的结果是()A.m6nB.m6n2C.m5n2D.m3n22.计算(x2)3的结果是()A.xB.3x2C.x5D.x63.下列各式计算正确的是()A.(a2)2=a4B.a+a=a2C.3a2+a2=2a2D.a4-a2=a84.下列计算正确的是()A.a3-a4=a12B.(a3)4=a7C.(a2b)3=a6b3D.a3÷a4=a(a≠0)《1.2幂的乘方与积的乘方》课时练习含答案解析一.填空题(a3)2-a4等于;答案:a10解析:解答:(a3)2-a4=a6-a4=a10.分析:先根据幂的乘方算出(a3)2=a6,再同底数幂的乘法法则可完成此题.。
《幂的乘方与积的乘方》教学设计一、教学目标1、知识与技能目标理解幂的乘方和积的乘方的运算法则。
能够熟练运用幂的乘方和积的乘方的运算法则进行计算。
2、过程与方法目标通过观察、类比、猜想、归纳等数学活动,经历幂的乘方和积的乘方运算法则的推导过程,培养学生的逻辑推理能力和数学思维能力。
通过实际问题的解决,让学生体会数学与生活的紧密联系,提高学生应用数学知识解决实际问题的能力。
3、情感态度与价值观目标让学生在数学活动中体验成功的喜悦,增强学习数学的自信心。
培养学生勇于探索、敢于创新的精神,以及合作交流的意识。
二、教学重难点1、教学重点幂的乘方和积的乘方的运算法则。
正确运用幂的乘方和积的乘方的运算法则进行计算。
2、教学难点幂的乘方和积的乘方运算法则的推导过程。
灵活运用幂的乘方和积的乘方的运算法则解决问题。
三、教学方法讲授法、启发式教学法、练习法四、教学过程1、导入新课回顾同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加。
即:\(a^m×a^n = a^{m+n}\)(\(m\)、\(n\)为正整数)提出问题:如果一个幂的指数再乘方,或者几个同底数幂相乘,结果又会怎样呢?从而引出本节课的课题——幂的乘方与积的乘方。
2、讲授新课(1)幂的乘方计算:\((a^m)^n\)(\(m\)、\(n\)为正整数)引导学生思考:这个式子表示什么意义?讲解:\((a^m)^n\)表示\(n\)个\(a^m\)相乘,即:\\begin{align}(a^m)^n&=a^m×a^m×\cdots×a^m\\&=a^{m+m+\cdots+m}\\&=a^{mn}\end{align}\得出幂的乘方法则:幂的乘方,底数不变,指数相乘。
即:\((a^m)^n = a^{mn}\)(\(m\)、\(n\)为正整数)(2)积的乘方计算:\((ab)^n\)(\(n\)为正整数)引导学生思考:这个式子表示什么意义?讲解:\((ab)^n\)表示\(n\)个\(ab\)相乘,即:\\begin{align}(ab)^n&=(ab)×(ab)×\cdots×(ab)\\&=(a×a×\cdots×a)×(b×b×\cdots×b)\\&=a^n×b^n\end{align}\得出积的乘方法则:积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。
幂的乘方与积的乘方的教学目标
1.知识与技能
(1)通过探索幂的乘方与积的乘方的运算性质,进一步体会和巩固幂的意义.
(2)通过推理得出幂的乘方与积的乘方的运算性质,并且掌握这个性质.
2.过程与方法
(1)经历一系列的探索过程,发展学生的推理能力和有条理的表达能力.
(2)通过将地理知识引入课堂,培养了学生的综合能力.
3.情感态度与价值观
(1)通过小组合作与交流,培养了学生的团结协作精神.
(2)通过探索规律,总结规律,培养学生的探索精神和探索的勇气,有助于塑造他们挑战困难,挑战生活的勇气与信心.。