金属熔炼与铸锭 第四讲 有色金属及合金熔炼的基本原理
- 格式:ppt
- 大小:3.68 MB
- 文档页数:86
有色金属熔炼与铸锭
有色金属熔炼与铸锭是一种主要的加工方式,可以将各种有色金属加热至高温状态,使其融化后进行处理,并最终铸造成形状不同的铸锭。
这种方法广泛应用于铜、铝、镁、铅等有色金属的加工和生产领域。
下面是有色金属熔炼与铸锭的简要步骤:
首先,将所需金属原料投入炉中进行预处理。
炉子通常采用电炉、火炉等不同种类的炉子,以便快速加热到要求温度,一般炉温高达几百度以上。
其次,将金属投入炉内,使其熔化。
在熔化过程中,要对金属进行不断的搅拌,防止金属结晶,以保证生产的铸锭成型。
最后,将熔化后的金属液体倒入铸模中,通过铸造的方法得到不同形状的铸锭。
以上是有色金属熔炼与铸锭的基本步骤,不同的金属种类和规格会在处理方法和生产过程上有所不同。
有色金属熔炼和铸造一. 基本原理1.熔炼和铸造的定义:熔炼的含义:就是将各种胚锭通过加温重熔的方法,实现由固态向液态转变的同时,进行合金化的过程.在熔炼的过程中,将实现净化除杂的目的.铸造的含义:将符合铸锭要求的金属熔体通过转注工具浇入到具有一定形状的铸模 中,使熔体在重力场或外力场的作用下充满模腔,冷却并凝固成型的工艺过程.它不仅要实现外部定型,而且还要实现对内部的微观组织结构的调控.二. 铝及其合金的熔炼1.熔炼的传热过程铝的熔点虽然很低(660℃),但由于熔化潜热(395.56kJ/kg)、固态热容(1.1386kJ/kg. ℃)和液态热容(1.046kJ/kg. ℃)都较高,而铝的黑度是铜铁的1/4,所以铝熔炼耗能大,很难实现理想的热效率。
热的传递方式有三种,传导、对流和辐射。
要提高金属的受热量,一方面提高炉温,这对炉体和熔体都不利,另一方面铝的黑度小,故提高辐射传热也是有限的,因此只能着眼于增大对流的传热系数(αc),它与气流速度的关系:αc=5.3+3.6v[kJ/(m2 h.℃)] V<5m/s时αc=647+v0.78 [kJ/(m2 h.℃)] V>5m/s时可见提高燃烧的气流速度是有效的。
2.合金元素的溶解和蒸发熔炼温度下(700℃)几种元素在铝中的扩散系数为(cm2/s):Ti:0.66,Mo:1.38(760℃),Co:0.79,Ni:1.44,Si:14.4,通常情况下,与铝形成易熔共晶的元素,一般较易熔解,与铝形成包晶转变的,特别是熔点相差大的元素较难于溶解。
在相同溶解条件下,一般蒸气压高的元素容易挥发,可把常用的铝合金分为两组:Cu、Cr、Fe、Ni、Ti、Si、V、Zr等元素的蒸气压比铝的小,蒸发慢,Mn、Li、Mg、Zn、Na、Cd等元素蒸气压比铝的大,容易蒸发,在熔炼过程中损失较大。
3.熔炼的吸气过程铝—氧反应金属以熔融态或半熔融态暴露于炉气中并与之相互作用时间越长,往往造成金属大量吸气,氧化和形成其它非金属夹杂,其反应分为:吸附、界面反应和熔解(扩散)。
这份是老师上课讲过的内容,整理出来的,可能存在遗漏,仅供大家参考Ⅰ有色金属熔炼的基本原理(1)1.2.1 α定义为氧化物的分子体积MV与形成该氧化物的金属原子体积AV之比,即:α=MV/AV(如αAl2O3=MV Al2O3/2AV AL)(2)1.2.1各种金属由于其氧化膜结构不同,对氧扩散的阻力不一样,因而氧化反应的限制性环节及氧化速度随时间的变化规律也不同。
当α>1时,生成的氧化膜一般是致密的、连续的、有保护性的,氧在这种氧化膜内扩散无疑会遇到较大的阻力。
(在这种情况下,结晶化学反应速度快,而内扩散速度慢,因而内扩散成为限制性环节。
氧化膜逐渐增厚,扩散阻力愈来愈大,氧化速度将随时间的延续而降低。
)Al、Be、Si等大多数金属生成的氧化膜具有这种特性。
当α<1时,氧化膜是疏松多孔的,无保护性的。
(氧在这种氧化膜内扩散阻力将比前者小得多。
在这种情况下,限制性环节将由扩散变为结晶化学反应。
氧化反应速度为一常数。
)碱金属及碱土金属(如Li、Mg、Ca)的氧化膜具有这种特性。
当α>>1时,这是一种极端情况,大量过渡金属如铁的氧化膜就是如此。
这种十分致密但内应力很大的氧化膜增长到一定厚度后即行破裂,这种现象周期性出现,故氧化膜也是非保护性的。
(严格地讲,金属不仅依靠氧在氧化膜中的扩散,还存在着金属在离子向气相-氧化膜界面扩散和氧负离子向金属-氧化膜界面扩散。
当氧化膜很致密且氧的扩散阻力很大时,氧化膜内离子的扩散将占很大的比重。
研究表明,氧化物的晶体与金属一样,在绝对零度以上的温度时包含有点阵缺陷,例如阴离子空位或阳离子空位及填隙原子等。
离子的迁移速率取决于氧化膜的点阵缺陷的性质。
)(3)1.3.1影响金属氧化烧损的因素①金属及氧化物的性质。
纯金属氧化烧损的大小主要取决于金属的亲和力和表面氧化膜的性质。
合金的氧化烧损程度因加入合金元素而异。
②熔炼温度。
熔炼温度越高,氧化烧损就越大。
③炉气性质。
第一部分有色金属熔炼的基本原理第一章:金属的氧化、挥发和除渣精炼一、响氧化烧损的因素及降低烧损的方法1、影响因素:(1) 金属及其氧化物的性质:与氧的亲和力越大,烧损就越大致密度越大,则烧损就越大(2) 熔炼温度越高,氧化反应就越厉害,烧损也就越严重(3) 炉气性质:炉气的氧化性强,一般烧损程度也大对于Cu熔炼来说,CO2、H2O呈中性,但有时H2O会有烧损影响,H2、CO呈还原性。
Cu+H2O=Cu2O+H2(4) 其它因素:炉料的块度越大,烧损程度就越大;熔炼时间越长,烧损程度也会越大;2、降低氧化烧损的方法从分析影响氧化烧损的诸因素可以看出,当所熔炼的合金一定时,主要从熔炼设备和熔炼工艺两方面来考虑。
(1) 选择合理炉型:尽量选用熔池面积较小、加热速度快的熔炉。
(2) 采用合理的加料顺序和炉料处理工艺:易氧化烧损的炉料应加在炉料下层或待其他炉料熔化后再加入到熔体中,也可以中间合多形式加入。
(3) 采用覆盖剂(4) 正确控制炉温(5) 正确控制炉气性质:对于氧化精炼的紫铜及易于吸氢的合金,宜采用氧化性炉气。
在紫铜熔炼的还原阶段及无氧铜熔炼时,宜用还原性炉气,并且用还原剂还原基体金属氧化物。
(6) 合理的操作方法:例如熔炼含铝、硅的青铜时,应注意操作方法,避免频繁搅拌,以保持氧化膜完整。
(7) 加入少量α>1的表面活性元素,其目的是改善熔体表面氧化膜的性质,能有效地降低烧损。
二、减少杂质污染金属的途径1、选用化学稳定性高的耐火材料。
紫铜、黄铜、硅青铜、锡青铜可用硅砂炉衬。
2、要可能条件下采用纯度较高的新金属料以保证某些合金纯度的要求。
3、火焰炉应选用低硫燃料4、所有与金属炉料接触的工具,尽可能采用不会带入杂质的材料制作,或用适当涂料保护好。
5、变料或转换合金时,应根据前后两种合金的纯度和性能的要求,对熔炉进行必要的清洗处理。
6、注意辅助材料的选用。
7、加强炉料管理,杜绝混料现象。
三、金属的脱氧所谓脱氧就是向金属液中加入与氧亲和力比基金属与氧亲和力更大的物质,将基体金属氧化物还原,本身形成不溶于金属熔体的固态、液态或气态脱氧产物而被排除的工艺过程。