在实变函数中, 负数无对数, 此例说明 在复数范围内不再成立. 而且正实数的对数也是无穷多值的.
三、 乘幂ab与幂函数 1.定义: 设a为不等于0的一个复数, b为任意一个复 数, 定义乘幂ab为ebLna, 即 ab=ebLn a
2. 性质
① 当a为正数, b为实数, 则乘幂与高等数学中乘幂一 致. ② 当a C, bC时, 有 ab=ebLna=e b[ln|a|+i(arg a+2k)]
Ln z=ln|z|+iArg z
如果规定上式中的Arg z取主值arg z, 则Ln z为一单值
函数, 记作ln z, 称为Ln z的主值, 因此
ln z = ln|z|+iarg z
而其余各值可由
Ln z=ln z+2ki (k=1,2,...)
表达.
对于每一个固定的k, Ln z=ln z+2ki为一单值函 数, 称为Ln z的一个分支. 特别, 当z=x>0时, Ln z的主值ln z=ln x, 就是实变 数对数函数. 3. 对数函数的解析性 讨论主值支ln z = ln|z|+iarg z的连续性
2.对数函数为多值函数 令z=rei, w=u+iv, 则eu+iv=rei, 所以 因此 u=ln r, v= +2k=Argz w=Ln z=ln|z|+iArg z=ln|z|+i(arg z+ 2k)
由于Arg z为多值函数, 所以对数函数w=f(z)为多值
函数, 并且每两个值相差2i的整数倍,记作
下沿
结论1: lnz 在除去原点与负实轴外,处处都是连续的。
讨论主值支ln z = ln|z|+iarg z的解析性