(北师大版七年级数学上册)---应用一元一次方程——水箱变高了--教案
- 格式:doc
- 大小:50.00 KB
- 文档页数:3
2023-2024学年北师大版七年级数学上册《第五章一元一次方程5.3应用一元一次方程——水箱变高了》教学设计一. 教材分析本节课的主要内容是第五章一元一次方程的应用——水箱变高了。
教材通过实际问题引出一元一次方程的应用,让学生体会数学与实际生活的联系,培养学生的数学应用能力。
本节课的内容是学生学习了水箱的体积计算和水箱的高度变化,通过问题引出一元一次方程的建立和解法,让学生理解一元一次方程在解决实际问题中的作用。
二. 学情分析学生在学习本节课之前,已经学习了一元一次方程的基本概念和解法,对解方程有一定的掌握。
但是学生对实际问题转化为数学问题的方法还不够熟练,对一元一次方程在实际问题中的应用还不够理解。
因此,在教学过程中,教师需要引导学生将实际问题转化为数学问题,让学生通过实际问题体验一元一次方程的应用。
三. 教学目标1.知识与技能:学生会将实际问题转化为数学问题,建立一元一次方程,并解方程求解实际问题。
2.过程与方法:学生通过解决实际问题,体会一元一次方程在实际问题中的应用,培养学生的数学应用能力。
3.情感态度与价值观:学生体会数学与实际生活的联系,增强学生学习数学的兴趣和信心。
四. 教学重难点1.教学重点:学生将实际问题转化为数学问题,建立一元一次方程,并解方程求解实际问题。
2.教学难点:学生对实际问题转化为数学问题的方法,一元一次方程在实际问题中的应用。
五. 教学方法1.情境教学法:教师通过创设实际问题的情境,引导学生将实际问题转化为数学问题。
2.案例教学法:教师通过分析实际问题的案例,让学生理解一元一次方程在实际问题中的应用。
3.引导发现法:教师引导学生发现实际问题中的数量关系,建立一元一次方程。
4.实践操作法:教师学生进行实际问题的操作,让学生通过实践体会一元一次方程的应用。
六. 教学准备1.教师准备实际问题的案例,制作课件。
2.学生准备笔记本,用于记录方程和解法。
七. 教学过程1.导入(5分钟)教师通过创设水箱变高的情境,引导学生思考实际问题转化为数学问题。
北师大版七年级上册5.3应用一元一次方程——水箱变高了课程设计一、教学目标1.知识目标1.了解一元一次方程的基本概念;2.能掌握应用一元一次方程解决实际问题的方法;3.能够理解水箱变高的原理,掌握相关计算方法。
2.能力目标1.能够运用所学知识解决实际问题;2.能够培养分析问题、解决问题的能力。
二、教学重点1.一元一次方程的基本概念;2.应用一元一次方程解决实际问题的方法。
三、教学难点1.能够理解水箱变高的原理;2.掌握相关计算方法。
四、课前准备1.教师准备讲义、钢尺、铅笔等教学用品;2.学生准备好课本及学习笔记。
五、教学方法1.讲授法;2.解题法。
六、教学过程Step 1 教师引入1.教师通过举例解释一元一次方程的基本概念;2.通过讲解水箱的变化,引出应用一元一次方程解决实际问题。
Step 2 教师讲解1.教师介绍水箱变高的原理,并引导学生用题目中提供的数据建立数学模型;2.教师通过讲解应用一元一次方程的方法帮助学生求解。
Step 3 学生练习1.学生独立完成练习题;2.学生根据自己的思路和答案,对照教师提供的参考答案。
Step 4 教师提高1.教师解释练习题的解题过程,帮助学生理解其中的数学方法和思想;2.教师指导学生在实际生活中运用所学知识解决问题。
七、作业布置1.学生独立完成书本上“应用一元一次方程解决实际问题”一节中的习题;2.要求学生在作业本上注明题号,并写出解题过程和答案。
八、教学反思本堂课通过引出实际问题的方式,较好地激发了学生学习的兴趣,让学生能够比较轻松、简单地掌握一元一次方程的基本概念和应用方法。
需要注意的是,在练习时可以引导学生先思考、后问问题、后解答,这样能够更好地培养学生分析问题和解决问题的能力。
北师大版数学七年级上册《3 应用一元一次方程—水箱变高了》教学设计1一. 教材分析北师大版数学七年级上册《3 应用一元一次方程—水箱变高了》这一节主要通过一个实际问题引入一元一次方程的应用。
通过水箱加水的问题,让学生了解并掌握一元一次方程在实际生活中的运用,培养学生解决实际问题的能力。
教材通过具体的例题和练习,使学生掌握一元一次方程的解法,并能够将其应用到实际问题中。
二. 学情分析学生在学习这一节内容前,已经学习了一元一次方程的理论知识,对于如何解一元一次方程已经有了初步的了解。
但是,对于如何将一元一次方程应用到实际问题中,可能还存在一定的困难。
因此,在教学过程中,需要引导学生将理论知识与实际问题相结合,提高学生解决实际问题的能力。
三. 教学目标1.知识与技能:让学生掌握一元一次方程在实际问题中的应用,能够通过列方程解决实际问题。
2.过程与方法:通过实际问题的解决,培养学生解决问题的能力,提高学生运用数学知识解决实际问题的意识。
3.情感态度与价值观:培养学生对数学的兴趣,让学生感受到数学在生活中的重要性。
四. 教学重难点1.重点:让学生掌握一元一次方程在实际问题中的应用。
2.难点:如何引导学生将实际问题转化为数学问题,并用一元一次方程进行解决。
五. 教学方法1.情境教学法:通过设置实际问题情境,引导学生主动探究,从而掌握一元一次方程的应用。
2.引导发现法:在教学过程中,引导学生发现实际问题与数学问题之间的联系,培养学生解决问题的能力。
3.实践操作法:让学生通过实际操作,体验一元一次方程在实际问题中的应用。
六. 教学准备1.教具准备:多媒体课件、黑板、粉笔。
2.学具准备:学生笔记本、练习本。
七. 教学过程1.导入(5分钟)通过一个实际问题引出本节课的主题:水箱变高了。
问题可以这样设置:一个水箱原来装有水2米深,现在在水箱中再加入0.5米深的水,问这时水箱中的水深是多少?2.呈现(10分钟)引导学生将实际问题转化为数学问题,即水箱原来的水深加上加入的水深等于现在的水深。
教学设计应用一元一次方程——水箱变高了【教学目标】让学生学会根据实际应用问题,找出等量关系,学会列一元一次方程并解答实际应用问题.【重点难点】●重点:根据实际问题列一元一次方程.●难点:寻找等量关系.【教法与学法】●教法:引导探究法.●学法:讨论交流.【教学过程】一、情境引入将一个底面直径是20 cm、高9 cm的“矮胖”形圆柱锻压成底面直径为10 cm 的“瘦长”形圆柱,假设在锻压过程中圆柱的体积保持不变,那么圆柱的高变成了多少厘米?二、互动新授1.教师活动:如果设锻压后圆柱的高为x cm,指导学生计算并填写教材P143表格.学生活动:按要求填写表格,并根据等量关系,列出方程求解出x,回答问题.2.教师活动:请同学们阅读教材P143例1的题目,你知道如何按要求围成长方形吗?在此题中有没有等量关系?在变化过程中什么量是不变量呢?如何列出方程?逐步引导学生列出方程并解答问题.学生活动:思考并讨论例1中的等量关系,如何设未知数,如何列方程.【设计意图】让学生学会分析题意,学会抓住题目中的等量关系列方程.3.教师活动:请同学们交流一下所设的未知数是否一致,有哪些设法?所得的方程一样吗?并根据所列的方程解出未知数,得到所求的长方形的长和宽交流是否一致?为什么?学生活动:根据自己所设的未知数,列出方程与同学交流,并解出方程,先回答问题再进行交流.【设计意图】根据所设的未知数不同,得到的方程可以不同,但结果应该一样.4.教师活动:请同学们分别计算所得三个长方形的面积,并比较它们的大小,思考长方形的长和宽怎样变化,所围成的长方形的面积会越大呢?请同学填出下列表格:长方形周长长宽面积第一个第二个第三个学生活动:计算三个长方形的面积,填写表格,并观察比较长方形的面积的大小,找出面积的大小与长和宽的关系.5.教师活动:组织学生练习教材P144随堂练习,并让学生板演交流,教师作好点评.学生活动:练习并交流.【设计意图】通过练习,达到巩固掌握,熟练运用所学的知识解答问题.例:一批宿舍,若每间住1人,则有10人无法安排;若每间住3人,则有10间无人住.这批宿舍的间数为( ).A.20B.15C.10D.12学生活动:讨论本题中所求量和等量关系分别是什么,再列方程求解.教师分析:首先设这批宿舍的间数为x,再找本题中的等量关系,每间的人数可以变化,但总人数不会变,所以可以用未知数x表示出变化前后的总人数相等就得到方程了.【设计意图】引导学生学会从变化中寻找不变量,找出实际应用问题中的等量关系,根据等量关系列出方程.三、例题讲解【例1】有一个底面直径为0.1 m的圆柱形储油器,油中浸有钢珠,若从中捞出546π克钢珠,问液面将下降多少厘米?(1 cm 3钢珠重7.8 g)解析:题中的等量关系为:钢珠的体积=液面下降后减少的体积.【例2】现有长为35米的竹篱笆,小王打算用它围成一个长方形的鸡场,且尽可能使鸡场面积最大,请你帮他设计并求出最大面积.解析:养鸡场的长、宽相等时,面积最大. 四、巩固练习1.一个长方形的周长是40 cm,若将长减少8 cm,宽增加2 cm,长方形就变成了正方形,则正方形的边长为( )A.6 cmB.7 cmC.8 cmD.9 cm2.现有一个长方体水箱,从水箱里面量得它的深是30 cm,底面的长是25 cm,宽是20 cm.水箱里盛有深为 a cm(0<a≤8)的水,若往水箱里放入棱长为10 cm 的立方体铁块,则此时水深为( )A.43a cmB.54a cmC.(a+2) cmD.5a+106cm五、课堂小结1.如何根据实际问题列方程?2.解答实际应用问题需要哪些步骤? 【布置作业】教材习题5.6第1、2题. 【板书设计】3 应用一元一次方程——水箱变高了一、等量关系:变化前后的体积不变 二、列方程先要根据所求设出未知数,用未知数表示出其他量,再用未知数表示出等量关系. 【教学反思】本节课是运用方程解答实际问题的起始课,学生对方程的应用意识没有建立起来,如何把实际问题转化为方程这一环节的处理就尤为重要,这就要求教师做好表率,要先引导学生把所求的量设成字母x,这样就有了方程中的未知数,如何仔细阅读题目,找出题目中的不变量,此处不太好理解,建议教师可以让同学们用橡皮泥做实验,把橡皮泥捏成不同的形状,让学生观察变化中的不变量中什么,有了这二直观的认识就好理解本节内容,从而引导学生顺理成章地用方程解答问题了.。
3 应用一元一次方程——水箱变高了教学目的:【知识与技能】通过分析图形问题中的数量关系,建立方程解决问题.【过程与方法】经历由实际问题抽象为方程模型的过程,进一步体会用方程解实际问题的一般思路和步骤.【情感态度】结合本课教学特点,教育学生热爱学习,热爱生活,激发学生学习的兴趣.教学重难点:【教学重点】分析图形问题中的数量关系,纯熟地列方程解应用题.【教学难点】从实际问题中抽象出数学模型教学过程.教学过程:一、情境导入,初步认识用同一根铁丝围成不同的图形,如三角形长方形、正方形、梯形、平行四边形等在这些图形中,什么发生了变化?什么不发生变化?【教学说明】学生很容易得出这些图形的变化,初步感受图形问题中的数量关系.二、考虑探究,获取新知1.运用一元一次方程解决等体积变形问题问题1 教材第141页例题以上的内容.【教学说明】学生通过考虑、分析,与同伴进展交流,完成表格,列出方程解决问题.体会列表法的重要作用.【归纳结论】列方程解应用题关键是找出问题中的等量关系.2.运用一元一次方程解决等周长变形问题问题2 教材第141页下方的例题.【教学说明】学生通过考虑、分析与同伴进展交流,列出方程求解.【归纳结论】在问题2中,长方形的周长始终是不变的,即长与宽的和为:10×1/2=5(m).所以在解决问题的过程中,要紧紧抓住这个等量关系.3.运用一元一次方程解决等面积变形问题.问题3 一梯形的高为8cm,上底长为14cm,下底长比上底长的2倍少6cm,假设把这个梯形改成与其面积相等的长方形,且长方形的长为24cm,求长方形的宽.【教学说明】学生考虑、分析,与同伴交流,设未知数列出方程求解.【归纳结论】运用一元一次方程解决实际问题的一般步骤〔1〕设未知数,〔2〕找等量关系式,〔3〕列方程,〔4〕解方程,〔5〕检验,〔6〕写出答案.三、运用新知,深化理解1.内径为120mm的圆柱玻璃杯和内径为300mm,内高为32mm的圆柱形玻璃盆可以盛同样多的水,那么玻璃杯的内高为〔〕.2.一根绳子刚好可以围成一个边长为6cm的正方形,假如用这根绳子围成一个长8cm的长方形,这个长方形的宽为_______cm,面积是_______cm2.3.如下图,将一个底面直径为10cm,高为36cm的“瘦长〞形圆柱锻压成底面直径为20cm的“矮胖〞形圆柱.假设在锻压过程中圆柱的体积保持不变,那么高变成了多少?第3题图第4题图4.墙上钉着一根彩绳围成的梯形形状的饰物,如右图实线所示〔单位:cm〕.小颖将梯形下底的钉子去掉,并将这条彩绳钉成一个长方形,如右图虚线所示,小颖所钉长方形的长、宽各为多少厘米?【教学说明】学生自主完成,加深对新学知识的理解,检测对运用一元一次方程解决等积变形问题的掌握情况?对学生的疑惑老师应及时加以指导.完成上述题目后,老师引导学生完成练习册中本课时练习的课堂作业局部.【答案】1.B2.4 323.设高度为xcm,由题意得:π×52×36=π×102x解得x=9所以高变成了9cm.4.设长方形的长为xcm,由题意得:2(x+10)=10×4+6×2解得x=16所以长方形的长为16cm,宽为10cm.四、师生互动,课堂小结1.师生共同回忆运用一元一次方程解决等体积、等周长、等面积问题.2.通过这节课的学习,你掌握了哪些新知识?还有哪些疑问?【教学说明】老师引导学生回忆知识点,让学生大胆发言,积极与同伴交流,加深对新学知识的理解与运用.课后作业:1.布置作业:从教材“习题5.6〞中选取.2.完成练习册中本课时的相应作业.教学反思:本节课从学生运用一元一次方程解决等体积,等周长\等面积问题,到掌握运用一元一次方程解决实际问题的一般步骤,培养学生动手\动脑习惯,进步学生用所学知识解决实际问题的才能,激发学生的学习兴趣.。
北师大版数学七年级上册5.3《应用一元一次方程——水箱变高了》教学设计一. 教材分析北师大版数学七年级上册5.3《应用一元一次方程——水箱变高了》这一节主要让学生学会运用一元一次方程解决实际问题。
通过水箱变高的例子,让学生理解一元一次方程在现实生活中的应用,培养学生的数学应用能力。
二. 学情分析学生在学习这一节内容前,已经学过一元一次方程的理论知识,对解方程有一定的掌握。
但运用一元一次方程解决实际问题还是第一次,因此需要老师在教学中引导学生将理论知识与实际问题相结合。
三. 教学目标1.知识与技能目标:学生会运用一元一次方程解决实际问题,如水箱变高问题。
2.过程与方法目标:学生通过自主探究、合作交流,培养解决问题的能力。
3.情感态度与价值观目标:学生体会数学在生活中的应用,提高学习数学的兴趣。
四. 教学重难点1.重点:学生会运用一元一次方程解决实际问题。
2.难点:如何引导学生将实际问题转化为数学模型,并用一元一次方程解决。
五. 教学方法1.情境教学法:通过设置水箱变高的情境,激发学生兴趣,引导学生主动参与。
2.启发式教学法:在教学中,老师提问引导学生思考,培养学生解决问题的能力。
3.合作学习法:学生分组讨论,共同解决问题,培养学生的团队协作能力。
六. 教学准备1.课件:制作课件,展示水箱变高的情境。
2.教学素材:准备一些实际问题,让学生练习解决。
3.板书设计:设计板书,突出一元一次方程的解题步骤。
七. 教学过程1.导入(5分钟)老师出示一个水箱变高的情境,引导学生思考如何用数学方法解决这个问题。
2.呈现(10分钟)老师呈现一个关于水箱变高的问题,让学生尝试用一元一次方程解决。
引导学生列出方程,并解释方程的来源。
3.操练(10分钟)学生分组讨论,尝试解决其他关于水箱变高的问题。
老师巡回指导,解答学生的疑问。
4.巩固(10分钟)老师挑选几组学生的答案,进行讲解和评价。
让学生明确一元一次方程在解决实际问题中的作用。
应用一元一次方程——水箱变高了【教学目标】知识与技能:引导学生感受一元一次方程在解决实际问题中的应用.过程与方法:借助表格,分析复杂问题中的数量关系,建立方程解决实际问题.情感、态度与价值观:总结运用方程解决实际问题的一般步骤,明确列方程解决实际问题的关键是找等量关系.【教学重难点】重点:1.体验借助方程解决实际问题的过程.2.列一元一次方程解具有简单等量关系的应用题.难点:从复杂问题中挖掘条件,由“未知”向“已知”转化,寻找等量关系.【教学过程】一、创设情境引入新知教师演示操作1:爸爸把杯子中高度为5cm的水倒入量筒中(已知:杯子底面半径为,量筒底面半径为2cm)(1)仔细观察,认真思考,你发现哪些量发生了变化,哪些量没有改变?(2)量筒中水的高度是多少?操作2:小院有一个底面直径和高均为4m的圆柱形水箱.现该楼进行维修改造,为减少楼顶原有储水箱的占地面积,需要将它的底面直径由4m减少为3.2m.那么在容积不变的前提下,水箱的高度由原先的4m增高为多少米?在这个问题中,有如下的等量关系:旧水箱的容积=新水箱的容积.设水箱的高度为m,填写下表:底面半径/(m)旧水箱新水箱高/(m)容积/(m3)根据等量关系,列出方程:.解得=.因此,水箱的高变成了m.(1)看一看:让学生观察水箱由“矮”变“高”的变化过程;(2)列一列:根据问题中的等量关系列出方程,并解方程,使问题(一)得到解决.1.引导学生分析问题中的已知量与未知量.2.用实物模拟演示水箱由“矮”变“高”的变化过程.3.引导学生探究问题中的等量关系,列方程并解方程.学生独立思考,找出解决问题的方法和思路,列方程,解决问题(一).通过观察、演示、分析问题中各个量之间的关系使学生初步体验把实际问题转化为数学问题的“化归”过程.二、合作探究深化新知用一根长为10米的栅栏围成一个长方形鸡舍.(1)使得该长方形的长比宽多1.4米,此时长方形的长、宽各为多少米?(2)使得该长方形的长比宽多0.8米,此时长方形的长、宽各为多少米?它所围成的长方形与(1)中所围成的长方形相比,面积有什么变化?(3)使得该长方形的长与宽相等,即围成一个正方形,此时正方形的边长是多少?它所围成的图形的面积与(2)中相比又有什么变化?1.学生分四人小组讨论解决问题,并根据计算的结果作出各自的长方形(或正方形).2.抽派小组代表阐述解题的步骤以及思路,并展示自己所在的小组所作的长方形(或正方形).3.通过猜测、验证说明三个长方形面积变化的规律.分析:由题意可知,长方形的周长始终是不变的,即长与宽的和为:.在解决这个问题的过程中,要抓住这个等量关系.解:(1)设此时长方形的宽为m,则它的长为m.根据题意,得.解这个方程,得..此时长方形的长为m,宽为m.(2)设此时长方形的宽为m,则它的长为m.根据题意,得.解这个方程,得..此时长方形的长为m,宽为m,面积为,(1)中长方形的面积为.此时长方形的面积比(1)中长方形的面积增大.(3)设正方形的边长为m.根据题意,得.解这个方程,得.正方形的边长为m,正方形的面积为,比(2)中面积增大.周长长宽之差长宽面积长方形1长方形2长方形3多媒体几何画板直观演示长宽变化时面积变化的规律.三、学以致用即时反馈1、墙上钉着用一根彩绳围成的梯形形状的饰物,如图实线所示(单位:cm).小颖将梯形下底的钉子去掉,并将这条彩绳钉成一个长方形,如图虚线所示.小颖所钉长方形的长、宽各为多少厘米?2、把一块长、宽、高分别为5cm、3cm、3cm的长方体铁块,浸入半径为4cm的圆柱形玻璃杯中(盛有水),水面将增高多少?(不外溢)四、课堂小结内化新知学习了本节课你有那些收获?应用一元一次方程解决实际问题(水箱变高了).1、步骤:审、找、设、列、解、检、答.2、关键:借助不变量,寻找等量关系.(形状变了,体积不变;面积变了,周长不变)3、规律:长方形的周长一定,正方形的面积最大.4、思想:转化、方程、从特殊到一般.5、感悟:热爱数学、热爱生活、努力追求幸福的生活.五、布置作业巩固落实见导学案。
应用一元一次方程—水箱变高了-北师大版七年级数学上册教案教学目标1.理解一元一次方程的概念和性质;2.掌握应用一元一次方程求解实际问题的方法;3.学会通过实际问题分析、解决问题的能力。
教学重点1.学生能熟练掌握一元一次方程求解实际问题的方法;2.能够理解实际问题的含义、分析实际问题并解决问题。
教学难点1.能够灵活运用所学知识解决实际问题。
教学内容在真实生活中,数学常常用于解决各种各样的问题。
本节课介绍如何使用一元一次方程来解决有关“水箱变高了”的问题。
问题背景一个长5米、宽3米、高2米的水箱,里面充满了水,水深为1.5米。
由于雨水过多,水箱底部加了一块大小合适的木板,使得水位上升了10厘米。
请问木板的大小是多少?教学过程:导入教师通过引入实际生活中的问题,向学生介绍了一元一次方程的应用。
然后教师给出了上面提出的问题。
分析问题教师带领学生一起分析问题,帮助学生更好地理解问题,形成正确的数学思维方式。
学生先通过简单的估算,得出答案约为0.3平方米左右。
然后,教师引导学生通过列式子来解决问题。
设计表达式和方程式教师带领学生学习如何通过列式子的方法解决问题。
首先,学生可以计算出水箱里现有的水的体积为:5 × 3 × 1.5 = 22.5 立方米然后,通过加上10厘米高度来计算新的水箱所需的体积:5 × 3 × 1.6 = 24 立方米计算得到,新的水箱所需的体积为24立方米。
那么,这个10厘米的高度差所占的体积为多少呢?可以通过设计方程来解决:10÷100 × 5 × 3 = 0.15 立方米那么,木板的面积可以通过设计式子得出:面积 = 总体积 - 新水箱所需的体积 - 高度差所占的体积面积 = 5 × 3 - 24 + 0.15 = 0.65 平方米因此,木板的面积为0.65平方米。
检验答案教师带领学生检验答案。
学生可以通过计算在木板的高度差下,水箱里的水的体积和新的水箱所需的体积是否相等来判断答案是否正确。
北师大版七年级上册数学5.3《应用一元一次方程————水箱变高了》教学设计一. 教材分析北师大版七年级上册数学5.3《应用一元一次方程————水箱变高了》这一节主要讲述了一元一次方程在实际生活中的应用。
通过水箱变高的实例,让学生掌握一元一次方程的解法及其在实际问题中的应用。
教材以生活中的实际问题为背景,让学生体会数学与生活的紧密联系,培养学生的数学应用能力。
二. 学情分析学生在学习这一节内容前,已经学过一元一次方程的理论知识,对解方程有一定的了解。
但将方程应用于实际问题中,求解现实生活中的问题,对学生来说还较为陌生。
因此,在教学过程中,需要引导学生将理论知识与实际问题相结合,提高学生的数学应用能力。
三. 教学目标1.理解一元一次方程在实际生活中的应用,体会数学与生活的紧密联系。
2.掌握一元一次方程的解法,提高学生的数学解题能力。
3.培养学生的合作交流能力,提高学生的数学素养。
四. 教学重难点1.重点:一元一次方程在实际生活中的应用。
2.难点:将实际问题转化为方程,求解问题。
五. 教学方法采用问题驱动法、案例教学法和小组合作法。
通过设置实际问题,引导学生运用一元一次方程解决问题,培养学生的数学应用能力。
同时,学生进行小组合作交流,分享解题心得,提高学生的合作意识。
六. 教学准备1.准备相关的生活案例,用于引导学生思考和讨论。
2.准备课件,展示解题过程和思路。
3.准备练习题,巩固所学知识。
七. 教学过程1.导入(5分钟)通过展示一个关于水箱变高的实际问题,引发学生的思考。
提问:“如何计算水箱变高后的容量?”让学生意识到需要运用数学知识解决问题。
2.呈现(10分钟)讲解水箱变高的实例,引导学生将实际问题转化为方程。
呈现一元一次方程的解法,让学生跟随老师一起解题,体会解题过程。
3.操练(10分钟)让学生独立完成类似的题目,巩固一元一次方程的解法。
教师巡回指导,解答学生的疑问。
4.巩固(5分钟)学生进行小组讨论,分享解题心得。
5.3 应用一元一次方程——水箱变高了 教案
教学目标:
1.通过分析图形问题中的基本等量关系,建立方程解决问题;
2.进一步了解一元一次方程在解决实际问题中的应用;
3、通过对实际问题的解决,体会方程模型的作用,发展分析问题、解决问题、敢于提出问题的能力.
重点:列出一元一次方程解有关形积变化问题;
难点:依题意准确把握形积问题中的等量关系。
教学过程:
一、预习 阅读教材P141-142,将书上的空格内容填好,并勾出不懂的地方。
1.方程解应用题的5个步骤是什么?
(1)__________________. (2)________________.(3)__________________.
(4)_________________.(5)_________________.
2.填空
长方形的周长=_________,面积=__________ .
长方体的体积=_________,正方体的体积=__________.
圆的周长=___________;面积=_______________. 圆柱的体积=_______________.
二、探索新知
1、理解解应用题的关键是找等量关系列方程
阅读课本P141思考下列问题:
(1)、这个问题中的等量关系是:旧水箱的 =新水箱的
(2)、设水箱的高变为x m ,填写下表: (3)、根据等量关系,列出方程: (记得用π不要用3.14) 解得: x . 因此,水箱的高变成了 m 变式练习: 将一个底面直径是10厘米,高为36厘米
的“瘦长”形圆柱锻压成底面直径是20厘米的“矮胖”形圆柱,高变成了多少?
这个问题中的等量关系是:
设锻压后圆柱的高为 x 厘米,填写下表:
(提示:1、题目中已知的是“底面直径”,而不是“底面半径”,所以应注意转化.2、π的值不用写出,
在计算过程中可根据等式基本性质2约去.3、根据锻压前后体积不变这个等量关系来建立方
程!)
解:根据等量关系,列出方程:
解得x= 因此,“矮胖”形圆柱,高变成了 m.
归纳:本节主要研究形积变化问题.对于这类问题,虽然形状和体积都可能发生变化,但应用题中任然含有一个相等关系,要通过分析题意和题目中的数量关系,把这个能够表示应用题全部含义的相等关系找出来,然后根据这个相等关系列出方程.此类问题常见的有以下几种情况:
1、 形状发生了变化,而体积没变.此时,相等关系为变化前后体积相等.
2、 形状、面积发生了变化,而周长没变.此时,相等关系为变化前后周长相等.
3、 形状、体积不同,但根据题意能找出体积之间的关系,把这个关系作为相等关系.
三.应用
1.例1 阅读课本P141-142例题,完成下列问题
⑴使得该长方形的长比宽多1.4m ,此时长方形的长和宽各为多少米?
⑵使得该长方形的长比宽多0.8m ,此时长方形的长和宽各为多少米?它所围成的长方形与⑴中所围成长方形相比,面积有什么变化?
⑶使得该长方形的长与宽相等,即围成一个正方形,此时正方形的边长是多少米?它所围成的面积与⑵中相比又有什么变化?
解题感悟:解决这道题的关键是什么?从解这道题中你有何收获和体验?
2.练习:用两根等长的铁丝分别绕成一个正方形和一个圆,已知正方形边长比圆的半径长2(π-2)米,求两个等长铁丝长度,并通过计算比较说明谁的面积大.
(分析:正方形周长=圆的周长)
解:设
3.归纳:用一元一次方程解决实际问题的一般步骤
(1)审:审题,分析题中已知什么、求什么,明确各数量之间的关系;
(2)找:找出能够表示应用题全部含义的一个相等关系; (3)设:设未知数(一般求什
么,就设什么);
(4)列:根据相等关系列出需要的代数式,从而列出方程;(5)解:解所列的方程,求出未知数的值;
(6)检:检查所求解是否符合题意; (7)答:写出答案(包括单位名称).
4.例1 制造一个长5cm ,宽3cm 的无盖水箱,箱底的造价每平方米为60元,箱壁每平方米的造价是箱底每平方米造价的3
2,若整个水箱共花去1860元,求水箱的高度. 分析:本题已知箱底和箱壁每平方米的造价,所以应分两部分分别计算出箱底和箱壁的面积,相等关
系是箱底的造价+箱壁的造价=1860元,可直接设未知数来解.
5.练习:用直径为4cm 的圆钢,铸造三个直径为2cm ,高为16cm 的圆柱形零件,
问:需要截取多长的圆钢?
分析:本题是等积变形问题,其相等关系是:铸造前圆钢的体积=底面积×高.设所需圆钢的长为
xcm ,则铸造前圆钢的体积为x ⎪⎭⎫ ⎝⎛•24π,铸造后3个圆柱的体积为16×22××32⎪⎭
⎫ ⎝⎛π.
四.小结
1、形积变化问题常见的有以下几种情况:
(1) (2) (3)
2、用一元一次方程解决实际问题的一般步骤:
五.评价检测
1、用直径为40mm 、长为1m 的圆钢,能拉成直径为4mm 、长为_______m 的钢丝。
2、用一根铁丝可围成一个长24厘米、宽12厘米的长方形。
若将它围成一个正方形,则这个 正方形的面积是( )
A 、81㎝²
B 、18㎝²
C 、324㎝²
D 、326㎝²
3、将底面直径为12厘米,高为30厘米的圆柱水桶装满水,倒人一个长方体水箱中,水只占水箱容积的3
2,设水箱容积为x 立方厘米,则可列方程_________________. 4、把一块长、宽、高分别为5㎝、3㎝、3㎝的长方体铁块,浸入半径为4㎝的圆柱形水杯中(盛有水),水面将增高多少?(不外溢) (40分)
六.拓展
1、把直径6cm ,长16cm 的圆钢锻造成半径为4cm 的圆钢,求锻造后的圆钢的长。
2.小圆柱的直径是8厘米,高6厘米,大圆柱的直径是10厘米,并且它的体积是小圆 柱体体积的2.5倍,那么大圆柱的高是多少?。