栈的定义及基本操作
- 格式:docx
- 大小:8.21 KB
- 文档页数:5
数据结构实验报告栈进制转换数据结构实验报告栈进制转换一、实验目的栈是一种常见的数据结构,本实验的目的在于通过实现栈的基本操作,设计并实现一个进制转换的程序,并通过实验验证程序的正确性和效率。
二、实验原理1.栈的定义和基本操作栈是一种后进先出(Last In First Out,简称LIFO)的数据结构。
它可以通过一个指针来标识当前栈顶元素,栈顶指针top的起始值为-1,空栈时top=-1.2.栈的进制转换将一个十进制数转换为其他进制(如二进制、八进制、十六进制)的过程中,可以通过栈来实现。
具体步骤如下:- 初始化一个空栈;- 将十进制数依次除以目标进制的基数,将余数依次入栈,直到商为0;- 依次出栈,将出栈的余数组合起来,得到转换后的目标进制数。
三、实验内容1.实现栈的基本操作(1)定义栈结构,包括元素数组和栈顶指针;(2)实现入栈操作push(),将元素插入到栈顶;(3)实现出栈操作pop(),从栈顶删除一个元素并返回其值;(4)实现获取栈顶元素的操作getTop(),返回栈顶元素的值;(5)实现判断栈是否为空的操作isEmpty(),返回布尔值;(6)实现判断栈是否已满的操作isFull(),返回布尔值。
2.设计并实现进制转换的程序(1)初始化一个空栈用于存放转换后的数字;(2)输入十进制数num和目标进制target;(3)通过栈的操作将num转换为target进制数;(4)输出转换后的结果。
四、实验步骤1.实现栈的基本操作(1)定义栈的结构和相关操作;(2)编写相应的测试代码,验证栈的基本操作是否正确。
2.设计并实现进制转换的程序(1)根据原理部分的步骤,设计转换程序的具体逻辑;(2)编写相应的测试代码,验证转换程序的正确性和效率。
五、实验结果与分析1.给定一个十进制数num=12345,目标进制为二进制(target=2),经过进制转换后得到的结果为.111.2.给定一个十进制数num=456,目标进制为八进制(target=8),经过进制转换后得到的结果为.710.本实验的结果表明,转换程序能够正确地将十进制数转换为目标进制数,并且具有较高的效率。
栈基本操作栈是一种常见的数据结构,它遵循“先进后出”的原则。
在栈中,数据项只能在栈顶进行插入和删除操作,因此栈的基本操作包括:入栈、出栈、取栈顶元素、判断栈是否为空和清空栈。
一、入栈操作入栈操作是向栈中添加元素的过程。
在入栈操作中,新元素被添加到栈顶位置。
具体实现方法是将新元素压入栈顶,在栈顶添加一个新节点,使其指向旧的栈顶节点。
二、出栈操作出栈操作是从栈中移除元素的过程。
在出栈操作中,栈顶元素被删除,并返回被删除的元素。
具体实现方法是将栈顶元素弹出,使其指向下一个元素,然后返回弹出的元素。
三、取栈顶元素取栈顶元素操作是返回栈顶元素的值,而不删除该元素。
具体实现方法是返回栈顶指针所指向的元素。
四、判断栈是否为空判断栈是否为空操作是检查栈中是否有元素。
具体实现方法是检查栈顶指针是否为NULL。
如果栈顶指针为NULL,则表示栈为空;否则,栈中至少有一个元素。
五、清空栈清空栈操作是将栈中所有元素都删除。
具体实现方法是将栈顶指针设置为NULL,使所有元素都失去了指向下一个元素的指针。
以上就是栈的基本操作。
在实际应用中,栈是一种非常重要的数据结构,常用于递归算法、表达式求值、括号匹配、迷宫问题等领域。
除了上述基本操作外,还有一些较为复杂的栈操作,例如:栈的遍历、栈的排序、栈的合并等等。
在实际应用中,我们需要根据具体的需求选择合适的操作。
需要注意的是,栈是一种线性数据结构,因此它的时间复杂度为O(1),即入栈、出栈、取栈顶元素、判断栈是否为空、清空栈等操作的时间复杂度都为O(1)。
这也是栈被广泛应用的重要原因之一。
python中栈的定义栈(Stack)是一种线性数据结构,可以用数组或链表实现。
栈采用"先进后出"(Last In First Out, LIFO)的策略,即最后压入栈的元素最先弹出。
栈可以用来实现函数调用、表达式求值、计算机内存管理和编译器语法分析等功能。
栈内部通常包含以下三个基本操作:1.入栈(Push):将元素添加到栈顶的操作。
3.查看栈顶元素(Peek):返回栈顶元素但不弹出的操作。
在Python中,可以使用列表(List)来模拟栈的实现,用append()方法向栈中添加元素,用pop()方法弹出栈顶元素。
例如,下面的代码演示了用列表实现栈的基本操作:```pythonstack = []stack.append(1) # 入栈stack.append(2)stack.append(3)print(stack.pop()) # 出栈,输出3print(stack.pop()) # 出栈,输出2print(stack[-1]) # 查看栈顶元素,输出1```以上代码演示了栈的基本操作,通过使用列表(List)实现,可以完成添加、弹出和查看栈顶元素的操作。
除了列表(List)外,Python还提供了一个专门用于实现栈的数据类型——双端队列(Deque)。
双端队列提供了append()和appendleft()方法可以在队列的两端添加元素,也提供了pop()和popleft()方法可以弹出队列的两端元素。
因此,双端队列可以既当作队列使用,又当作栈使用。
例如,下面的代码演示了用双端队列实现栈的基本操作:```pythonfrom collections import deque以上代码演示了如何用双端队列实现栈的基本操作,在Python的标准库中,双端队列(deque)在collections模块中定义,可以很方便地使用。
需要注意的是,双端队列的性能要比列表(List)略好一些,尤其是在执行大量入栈和出栈操作时。
C语言中栈的基本操作栈(Stack)是一种遵循“后进先出”(LIFO)原则的数据结构,具有以下几个基本操作:入栈(Push)、出栈(Pop)、判断栈是否为空(Empty)以及获取栈顶元素(Top)。
下面将详细介绍这些基本操作。
1. 入栈(Push):将一个元素添加到栈的顶部。
入栈操作分为两个步骤:(1)判断栈是否已满,如果已满则无法再添加元素;(2)若栈不满,则将元素添加到栈的顶部,并更新栈顶指针。
具体实现代码如下:```void push(Stack *s, int item)if (is_full(s))printf("Stack is full, cannot push more elements.\n");return;}s->top++;s->data[s->top] = item;}```2. 出栈(Pop):将栈顶元素移除,并返回该元素的值。
出栈操作也有两个步骤:(1)判断栈是否为空,如果为空则无法进行出栈操作;(2)若栈不为空,则将栈顶元素移除,并更新栈顶指针。
具体实现代码如下:```int pop(Stack *s)int item;if (is_empty(s))printf("Stack is empty, cannot pop any elements.\n");return -1; // 指定一个特定的返回值来表示错误}item = s->data[s->top];s->top--;return item;}```3. 判断栈是否为空(Empty):判断栈是否为空分为两种情况,一种是根据栈顶指针进行判断,另一种是根据数据数量进行判断。
(1)判断栈顶指针是否为-1,若为-1则说明栈为空;(2)若栈内数据数量为0,则栈为空。
具体实现代码如下:```int is_empty(Stack *s)return s->top == -1; // 栈顶指针为-1表示栈为空}```4. 获取栈顶元素(Top):返回栈顶元素的值,但不对栈做任何修改。
第1篇第一部分:基本概念与操作1. 什么是栈?- 栈是一种线性数据结构,遵循后进先出(LIFO)的原则。
它只允许在栈顶进行插入(push)和删除(pop)操作。
2. 栈的基本操作有哪些?- 入栈(push):在栈顶添加一个新元素。
- 出栈(pop):移除栈顶元素。
- 查看栈顶元素(peek 或 top):获取栈顶元素但不移除它。
- 判断栈是否为空(isEmpty):检查栈中是否没有元素。
- 获取栈的大小(size):返回栈中元素的数量。
3. 请用Python实现一个栈的数据结构。
```pythonclass Stack:def __init__(self):self.items = []def is_empty(self):return len(self.items) == 0def push(self, item):self.items.append(item)def pop(self):if not self.is_empty():return self.items.pop()return Nonedef peek(self):if not self.is_empty():return self.items[-1]return Nonedef size(self):return len(self.items)```4. 如何实现一个固定大小的栈?- 在栈类中添加一个计数器来跟踪栈的大小,并在push操作中检查是否已达到最大容量。
5. 请解释栈的两种遍历方法。
- 递归遍历:使用递归方法遍历栈的所有元素。
- 迭代遍历:使用栈的辅助结构(如队列)来实现迭代遍历。
第二部分:栈的应用6. 栈在计算机科学中的应用有哪些?- 函数调用:局部变量和返回地址存储在栈中。
- 表达式求值:逆波兰表达式(RPN)计算。
- 字符串匹配:括号匹配验证。
- 汉诺塔问题:移动塔的步骤可以通过栈来模拟。
7. 请解释如何使用栈实现括号匹配验证。
栈和队列的基本操作方法栈和队列是常见的数据结构,它们在计算机科学中有着广泛的应用。
栈和队列都是一种线性数据结构,但它们在插入和删除元素的方式上有所不同。
接下来,将介绍栈和队列的基本操作方法,包括定义、插入、删除和查询等。
一、栈(Stack)的基本操作方法:1. 定义:栈是一种先进后出(Last-In-First-Out,LIFO)的数据结构。
类似于现实生活中的一叠盘子,只能在栈顶进行操作。
2.创建栈:可以使用数组或链表作为栈的底层数据结构。
通过创建一个空数组或链表,称之为栈顶指针或栈顶节点,初始时指向空,表示栈为空。
3. 入栈(Push):将一个元素添加到栈顶。
需要将新增元素放在栈顶指针或栈顶节点之后,更新栈顶指针或栈顶节点的指向。
4. 出栈(Pop):删除栈顶元素,并返回删除的元素值。
需要将栈顶指针或栈顶节点向下移动一个位置,指向下一个元素。
5. 获取栈顶元素(Top):返回栈顶元素的值,但不删除该元素。
只需访问栈顶指针或栈顶节点所指向的元素即可。
6. 判断栈是否为空(isEmpty):通过检查栈顶指针或栈顶节点是否为空来判断栈是否为空。
二、队列(Queue)的基本操作方法:1. 定义:队列是一种先进先出(First-In-First-Out,FIFO)的数据结构。
类似于现实生活中的排队,按照先后顺序依次进入队列,先进入队列的元素首先被删除。
2.创建队列:可以使用数组或链表作为队列的底层数据结构。
通过创建一个空数组或链表,分别设置一个队首指针和一个队尾指针,初始时指向空,表示队列为空。
3. 入队(Enqueue):将一个元素添加到队尾。
需要将新增元素放在队尾指针或队尾节点之后,更新队尾指针或队尾节点的指向。
4. 出队(Dequeue):删除队首元素,并返回删除的元素值。
需要将队首指针或队首节点向下移动一个位置,指向下一个元素。
5. 获取队首元素(Front):返回队首元素的值,但不删除该元素。
java栈的用法Java栈的用法Java栈是一种非常重要的数据结构,它在Java语言中广泛应用于各种场景,例如方法调用、异常处理、表达式求值等。
本文将介绍Java栈的基本概念、常见操作以及实现方式等内容。
一、基本概念1. 栈的定义栈是一种线性数据结构,它具有后进先出(Last In First Out,LIFO)的特点。
栈可以看作是一个容器,只能在容器的一端进行插入和删除操作。
插入操作称为“进栈”或“压栈”,删除操作称为“出栈”。
2. 栈的实现方式Java中可以使用数组或链表来实现栈。
使用数组实现时,需要定义一个固定大小的数组,并记录当前栈顶元素位置;使用链表实现时,则需要定义一个头节点和一个指向当前节点的指针。
3. 栈的应用场景Java栈在很多场景下都有着重要的应用,例如:- 方法调用:每当调用一个方法时,都会创建一个新的栈帧并压入当前线程对应的虚拟机栈中。
- 异常处理:当抛出异常时,JVM会创建一个异常对象,并将其压入当前线程对应的虚拟机栈中。
- 表达式求值:通过使用两个栈,一个存放操作数,一个存放运算符,可以实现表达式的求值。
二、常见操作1. 压栈(push)将一个元素压入栈顶。
Java代码示例:```public void push(E item) {ensureCapacity(size + 1);elements[size++] = item;}```2. 出栈(pop)弹出栈顶元素,并返回该元素。
Java代码示例:```public E pop() {if (size == 0)throw new EmptyStackException();E result = elements[--size];elements[size] = null; // 避免内存泄漏 return result;}```3. 查看栈顶元素(peek)返回当前栈顶元素,但不弹出该元素。
Java代码示例:```public E peek() {if (size == 0)throw new EmptyStackException(); return elements[size - 1];}```4. 判断是否为空(isEmpty)判断当前栈是否为空。
引言:栈是一种常见的数据结构,它具有特殊的操作规则,即先进后出(LIFO)。
本文将介绍栈的操作,并结合实验报告的方式详细阐述栈的概念、基本操作以及应用场景。
概述:栈是一种线性数据结构,由相同类型的元素按照特定顺序排列而成。
在栈中,只能在栈顶进行插入和删除操作,其他位置的元素无法直接访问。
栈具有两个基本操作:压栈(push)和弹栈(pop)。
其中,压栈将一个元素添加到栈顶,弹栈则是删除栈顶的元素。
除了基本操作外,栈还具有其他常见的操作,如获取栈顶元素(top)、判断栈是否为空(empty)等。
正文内容:一、栈的基本操作1.压栈(push)push操作的实现原理和步骤在实际应用中的使用场景和例子2.弹栈(pop)pop操作的实现原理和步骤在实际应用中的使用场景和例子3.获取栈顶元素(top)top操作的实现原理和步骤在实际应用中的使用场景和例子4.判断栈是否为空(empty)empty操作的实现原理和步骤在实际应用中的使用场景和例子5.栈的大小(size)size操作的实现原理和步骤在实际应用中的使用场景和例子二、栈的应用场景1.括号匹配使用栈实现括号匹配的原理和过程在编译器、计算表达式等领域中的应用2.浏览器的后退和前进功能使用栈来记录浏览器访问历史的原理和过程实现浏览器的后退和前进功能3.函数调用和递归使用栈来实现函数调用和递归的原理和过程在程序执行过程中的应用和注意事项4.实现浏览器缓存使用栈来实现浏览器缓存的原理和过程提高用户浏览速度的实际应用案例5.撤销操作使用栈来实现撤销操作的原理和过程在编辑器、图形处理软件等领域的实际应用总结:本文详细介绍了栈的操作,包括基本操作(压栈、弹栈、获取栈顶元素、判断栈是否为空、栈的大小)和应用场景(括号匹配、浏览器的后退和前进功能、函数调用和递归、实现浏览器缓存、撤销操作)。
通过了解栈的操作和应用,我们可以更好地理解数据结构中的栈,并能够在实际问题中灵活运用栈的特性。
c语言栈的名词解释在计算机科学和编程中,栈(Stack)是一种重要的数据结构。
C语言作为一种广泛应用的编程语言,自然也涉及到栈的概念和使用。
在本文中,将对C语言栈进行详细的名词解释和功能介绍。
1. 栈的定义和特点栈是一种线性的数据结构,它的特点是后进先出(Last In First Out, LIFO)。
也就是说,最后一个进入栈的元素将是第一个被访问、被移除的。
栈采用两个基本操作,即压栈(Push)和弹栈(Pop),用于对数据的插入和删除。
2. 栈的结构和实现方式在C语言中,栈可以用数组或链表来实现。
使用数组实现的栈叫作顺序栈,使用链表实现的栈叫作链式栈。
顺序栈使用数组来存储数据,通过一个指针(栈顶指针)来指示栈顶元素的位置。
当有新元素要进栈时,栈顶指针先向上移动一位,然后将新元素存入该位置。
当要弹栈时,栈顶指针下移一位,表示将栈顶元素移除。
链式栈通过链表来存储数据,每个节点包含一个数据项和一个指向下一个节点的指针。
链式栈通过头指针指示栈顶节点的位置,新元素插入时构造一个新节点,并将其指针指向原栈顶节点,然后更新头指针。
弹栈时,只需将头指针指向下一个节点即可。
3. 栈的应用场景栈在计算机科学中有广泛的应用。
以下是一些常见的应用场景:a. 函数调用:在函数调用过程中,函数的参数、局部变量和返回地址等信息会以栈的形式压入内存中,而在函数返回时将逆序地从栈中弹出这些信息。
b. 表达式求值:中缀表达式在计算机中不方便直接求值,而将中缀表达式转换为后缀表达式后,利用栈可以方便地完成求值过程。
c. 内存分配:在程序运行时,栈用于管理变量和函数的内存分配。
当变量定义时,栈会为其分配内存空间,并在其作用域结束时将其回收。
d. 括号匹配:在处理一些语法相关的问题时,栈可以很好地用来检测括号的匹配情况,例如括号是否成对出现、嵌套层次是否正确等。
4. 栈的复杂度分析栈的操作主要包括入栈和出栈两种操作,它们的时间复杂度均为O(1)。
栈是限定在表的同一端进行插入或删除操作的线性表。
进行插入或删除操作的一端称为栈顶,另一端称为栈底。
没有数据元素的栈称为空栈。
插入数据元素的操称为入栈,删除数据元素的操称为出栈。
栈的运算特性:后进先出(Last In First Out--LIFO )或先进后出(First In Last Out--FILO )a 1a 2...a n 栈顶栈底入栈出栈栈2.2.1栈的定义•栈的抽象数据类型定义ADT Stack {数据对象:D={ a i| a i∈ElemSet, i=1,2,...,n, n≥0 }数据关系:R1={ <a i-1, a i>| a i-1, a i∈D, i=2,...,n }约定a n端为栈顶,a1 端为栈底基本操作:} ADT StackStack_Init(StackPtr s)Stack_Destroy (StackPtr s) Length_Stack(StackPtr s)Stack_Empty(StackPtr s)Stack_Clear(StackPtr s) Stack_Top(StackPtr s, StackEntry*item)Stack_Push(StackPtr s, StackEntry item)Stack_Pop(StackPtr s, StackEntry*item)……测试栈的基本操作•讨论1:•采用顺序存储结构实现的线性表还是链式存储结构的线性表为基础,编程实现栈的基本操作?•如果采用顺序存储结构的线性表,栈顶在哪里?如果采用带头结点的单链表为存储结构,栈顶在哪里?为什么?•讨论2•如果不采用线性表的基本操作为基础,我们自己来完整的编程实现栈的基本功能,采用哪种存储结构更合适?•需要做哪些工作?•什么时候需要我们自己这样编程?。