钢筋位置及保护层厚度检测概要
- 格式:ppt
- 大小:2.44 MB
- 文档页数:16
钢筋位置及保护层厚度检测-2010随着建筑科技的不断发展,混凝土结构已经成为了现代建筑中最常见的材料,而钢筋作为混凝土结构中最为重要的加固材料,其位置和保护层厚度的检测显得尤为重要。
本文将介绍钢筋位置及保护层厚度检测的相关知识,方便广大建筑工作者了解相关技术。
钢筋位置检测检测方法钢筋位置检测主要有以下两种方法:1.钢筋探测仪检测法。
该方法是利用电磁感应原理来检测隐蔽在混凝土内部的钢筋位置,具有检测速度快、检测精度高等特点。
2.负载对钢筋进行检测。
该方法是将一定负载作用于混凝土构件上,通过应变计及传感器来测量钢筋深度。
检测标准国家标准《建筑钢筋混凝土工程验收规范》(GB50204-2002)对钢筋位置进行了具体规定。
其中,钢筋直径≤16mm时其偏差不大于5mm,钢筋直径>16mm 时其偏差不大于1/3支钢筋直径,但最大偏差不超过10mm。
保护层厚度检测检测方法保护层厚度检测通常使用以下两种方法:1.混凝土表面探测法。
该方法运用了超声波检测技术,通过探头对混凝土表面进行扫描,便可以检测出钢筋深度和保护层厚度。
2.剖面法检测。
该方法首先要对混凝土构件进行切割,然后对钢筋和保护层进行测量,得出保护层厚度。
检测标准国家标准《建筑钢筋混凝土结构工程施工质量验收规范》(GB50204-2015)对钢筋混凝土保护层厚度也进行了具体规定。
其中,要求钢筋直径<40mm的构件,其保护层厚度不得小于混凝土保护层标准值,且最小值不得小于10mm;钢筋直径>40mm的构件,其保护层厚度不得小于混凝土保护层标准值,且最小值不得小于15mm。
钢筋位置及保护层厚度检测是建筑工程质量检验的重要环节,对于保证建筑物的安全和使用寿命具有重要作用。
相信通过了解本文中所介绍的检测方法和标准,广大建筑工作者能够更好地进行建筑工程质量控制。
钢筋保护层、间距、板厚检测方案克拉玛依龙飞凤二期工程6#楼基础钢筋保护层检测方案4、对悬挑板,应抽取构件数量的10%且不少于20个构件进行检验;当悬挑板数量少于20个时,应全数检验。
E.0.2 对选定的梁类构件,应对全部纵向受力钢筋的保护层厚度进行检验;对选定的板类构件,应抽取不少于6根纵向受力钢筋的保护层厚度进行检验。
对每根钢筋,应选择有代表性的不同部位测量3点取平均值。
三、主体梁、板、柱构件钢筋保护层检测选点1、根据上述规范的要求结构实体钢筋保护层厚度检验时,按楼层梁、板、柱总数量进行统计如下:主体梁、板、类构件统计总数2、设计要求钢筋保护层厚度:梁:35mm 板:30 mm3、为保证梁、柱、板钢筋保护层检测部位具有代表性,根据施工部位的重要性由监理及施工单位按照《混凝土结构工程施工质量验收规范》(GB50204-2015)中附录E的要求对各栋楼的梁、板、柱类构件共同选定并统计如下:板的钢筋保护层检测选点一览表8@1808@1808@2008@2008@200○2~○4轴交○F ~○G 轴保护层厚度 30mm悬挑板的钢筋保护层检测选点一览表序号 检测部位及构件名称检测项目 技术要=求(mm )备注 1一层 ○7~○10轴交○A ~○C 轴钢筋直径 8@200 悬挑板保护层厚度30mm序号检测部位及构建名称检测项目 技术要求(mm ) 备注 1负一层 KL2 ○2轴交○F ~○H 轴 钢筋直径 216 非悬挑梁保护层厚度 35mm 截面尺寸 200×400 2负一层 KL14 ○F 轴交○8~○9轴 钢筋直径 216 非悬挑梁 保护层厚度 35mm 截面尺寸 200×400 3一层KL3 ○3轴交○C ~○D 钢筋直径 222 非悬挑梁 保护层厚度 35mm 截面尺寸 200×450 4一层KL10 ○C 轴交○1~○3轴 钢筋直径 220 非悬挑梁 保护层厚度 35mm 截面尺寸 200×400 5二层KL2 ○2轴交○F ~○G 钢筋直径 218 非悬挑梁保护层厚度 35mm 截面尺寸200×400序号 检测部位及构建名称检测项目技术要求(mm ) 备注 1一层 KL8(1A) ○10轴交○A ~○C 轴 钢筋直径 216 悬挑梁保护层厚度 35mm 截面尺寸 200×400板的钢筋直径、间距检测选点一览表序 号检测部位及构件名称 检测项目 技术要求(mm ) 备注1 负一层 ○2~○5轴交○F ~○G 轴 钢筋直径 8 钢筋间距 @180 2 一层 ○4~○5轴交○F ~○G 轴 钢筋直径 8 钢筋间距 @200 3二层 ○2~○4轴交○F ~○G 轴钢筋直径 8钢筋间距@200序 号 检测部位及构建名称检测项目 技术要求(mm ) 备注 1负一层 KL2 ○2轴交○F ~○H 轴 钢筋直径 216钢筋间距 130mm 截面尺寸 200×400 2负一层 KL14 ○F 轴交○8~○9轴 钢筋直径 216 钢筋间距 130mm 截面尺寸 200×400 3一层KL3 ○3轴交○C ~○D 钢筋直径 222 钢筋间距 130mm 截面尺寸 200×450 4一层KL10 ○C 轴交○1~○3轴 钢筋直径 220 钢筋间距 130mm 截面尺寸 200×400 5二层KL2 ○2轴交○F ~○G 钢筋直径 218 钢筋间距 130mm 截面尺寸200×400楼板厚度检测选点一览表序号 检测部位及构件名称检测项目 技术要求(mm ) 备注 1 负一层 ○1~○3轴交○C ~○D 轴 楼板厚度 150mm 2 一层板 ○2~○4轴交○F ~○G 轴 楼板厚度 120mm 3二层板 ○2~○4轴交○D ~○F 轴楼板厚度120mm四、现场准备工作1、经监理与施工单位共同选定的备检构件已做好标记,悬挑构件上部(地面)清理干净,打磨平整。
钢筋保护层厚度及钢筋位置检测报告一、工程概况本次检测的工程名称是XX工程,位于XX市XX区XX路XX号。
该工程为钢筋混凝土结构,设计使用年限为XX年。
建设单位为XX公司,施工单位为XX建筑公司,监理单位为XX监理公司。
二、检测目的本次检测的目的是为了确保钢筋混凝土结构的安全性和耐久性。
通过对钢筋保护层厚度及钢筋位置的检测,可以有效地评估结构的安全性能和使用寿命。
三、检测方法及设备本次检测采用无损检测方法,使用钢筋扫描仪和混凝土强度检测仪等设备进行检测。
钢筋扫描仪可以检测出钢筋的位置和直径,混凝土强度检测仪可以检测出混凝土的强度和保护层厚度。
四、检测结果及分析1.钢筋保护层厚度检测结果通过对该工程的结构构件进行抽样检测,发现大部分钢筋保护层厚度符合设计要求。
但是,在某些部位存在保护层厚度不足的问题。
其中,柱子的保护层厚度最小值为X毫米,平均值为X毫米;梁的保护层厚度最小值为X毫米,平均值为X毫米。
根据规范要求,保护层厚度不应小于X毫米,因此这些部位的钢筋保护层厚度略显不足。
2.钢筋位置检测结果通过对该工程的结构构件进行抽样检测,发现大部分钢筋位置符合设计要求。
但是,在某些部位存在钢筋位置偏移的问题。
其中,柱子的钢筋最大偏移量为X毫米,平均偏移量为X毫米;梁的钢筋最大偏移量为X毫米,平均偏移量为X毫米。
根据规范要求,钢筋位置的偏移不应大于X毫米,因此这些部位的钢筋位置需要加以调整。
五、建议措施根据本次检测结果,提出以下建议措施:1.对于保护层厚度不足的部位,应采取增加保护层厚度的措施。
具体方法包括在钢筋表面涂抹水泥砂浆或采用其他有效的加固措施。
2.对于钢筋位置偏移的部位,应采取调整钢筋位置的措施。
具体方法包括在钢筋根部增加支撑或采用其他有效的固定措施。
3.在施工过程中,应加强对钢筋混凝土结构的质量控制,确保各项指标符合规范要求。
同时,应加强混凝土的养护工作,防止出现裂缝等质量问题。
4.在今后的工程中,应加强对类似工程的监督和管理力度,确保类似问题不再发生。
钢筋位置及保护层厚度检测实验报告引言钢筋在混凝土结构中起着重要的加固作用,其位置和保护层厚度的合理性对于结构的强度和耐久性具有重要影响。
因此,对钢筋位置及保护层厚度进行准确检测和评估具有重要意义。
本实验旨在通过对钢筋位置及保护层厚度的检测,探讨相关测试方法和评估指标,并验证其可行性和准确性。
材料与方法1. 实验材料本实验使用的材料包括: - 混凝土试件:具有已知钢筋位置和保护层厚度的混凝土试件; - 钢筋:用于加固混凝土试件的钢筋; - 清水:用于清洗试件表面。
2. 实验仪器本实验使用的仪器包括: - 扫描电子显微镜(SEM):用于观察钢筋位置和保护层厚度; - 激光雷达:用于测量钢筋位置和保护层厚度; - 硬度计:用于测量混凝土保护层的硬度。
3. 实验步骤本实验的具体步骤如下: 1. 准备混凝土试件,并标注钢筋位置和保护层厚度。
2. 使用清水清洗试件表面,以确保钢筋和保护层的表面清晰可见。
3. 使用SEM观察试件表面,并记录钢筋位置和保护层厚度的显微照片。
4. 使用激光雷达测量试件表面的钢筋位置和保护层厚度,并记录测量结果。
5. 使用硬度计测量保护层的硬度,并记录测量结果。
结果与讨论1. 钢筋位置检测结果通过SEM观察和激光雷达测量,得到了钢筋位置的检测结果。
对比分析两种方法的结果,发现激光雷达测量结果更为准确和可靠,其测量误差较小。
因此,在实际工程中可以优先考虑使用激光雷达进行钢筋位置的检测。
2. 保护层厚度检测结果通过SEM观察和硬度计测量,得到了保护层厚度的检测结果。
两种方法的测量结果相互印证,具有一致性。
进一步分析不同条件下保护层厚度的变化规律,发现保护层厚度受到多种因素的影响,如混凝土配合比、振捣方式等。
这些因素需要在实际工程中进行合理控制,以保证保护层厚度的符合设计要求。
结论本实验通过对钢筋位置及保护层厚度的检测,得到了一些有价值的结论: 1. 激光雷达是一种可靠、准确的钢筋位置检测方法,具有较小的测量误差。
电磁感应法检测钢筋间距、保护层厚度1、取样方法对梁、板类构件,应各抽取构件总数的2%并且不少于5个构件进行检验;对于悬挑梁,应抽取构件数量的5%并且不少于10个构件进行检验,当少于10个时,应全数检验;对于悬挑板,应抽取应抽取构件数量的10%并且不少于20个构件进行检验,当少于20个时,应全数检验;对选定的梁类构件,应对全部纵向受力钢筋的保护层厚度进行检验;对选定的板类构件,应抽取不少于6根纵向受力钢筋的保护层厚度进行检验;对梁、板类构件,测钢筋间距、保护层厚度时应清除混凝土表面的杂物,并用磨石将表面浮浆等不平整处打平。
2、检测依据《混凝土结构工程施工质量验收规范》 GB50204-2015《混凝土中钢筋检测技术规程》 JGJ/T 152-20083、检测设备钢筋保护层厚度检测仪、钢卷尺4、检测方法首先对钢筋保护层厚度检测仪进行复位调零,之后对选定构件被测钢筋进行初步定位,将探头有规律在检测面上移动,直至仪器显示信号强度最强时读数并记录钢筋位置用记号笔做标记;检测保护层厚度时,对每根钢筋选定三个检测部位,每个部位重复进行2次测量并取平均值,结果精确到1mm,梁类构件允许偏差为-7mm~+10mm,板类构件允许偏差为-5mm~+8mm;检测钢筋间距时,应选取至少7根钢筋间距进行检验,用钢卷尺测量第一根钢筋和最后一根钢筋的轴线距离并计算间隔数,钢筋间距测量值精确到1mm,允许偏差为±10mm;检测钢筋直径时,应对每根钢筋选取三个部位,每个位置测量一次取平均值,测量值要求达到钢筋设计直径的95%。
钢筋保护层厚度检验的检测误差不应大于1mm。
5、测试要求当遇到下列情况之一时,应选取至少30%已测钢筋并且不应小于6处,采用钻孔、剔凿等方法验证;仪器要求钢筋直径已知,钢筋实际直径未知或有异议;钢筋实际根数、位置与设计有较大偏差;构件饰面层未清除的情况下检测;钢筋以及混凝土材质与校准试件有显著差异。
钢筋保护层厚度检测(位置、保护层、直径)一.检测依据:《电磁感应法检测钢筋保护层厚度和钢筋直径技术规程》CAGF-023《公路桥梁承载能力检测评定规程》JTG/T J21-2011二.检测目的检测混凝土结构的混凝保护层厚度,包括钢筋位置和混凝土保护层厚度测量,对缺乏资料的桥梁还包括钢筋直径测量。
三.检测方法电磁感应法四.检测设备混凝土保护层测试仪五.检测要求一《电磁感应法检测钢筋保护层厚度和钢筋直径技术规程》的有关规定1检测仪器1.1技术要求1.1.1检测仪器除应具有测量、显示功能外,宜具有记录、存储等功能。
1.1.2检测仪器必须具有制造厂的产品合格证及有效的测试结果证书。
1.1.3检测仪器应满足下列要求:1钢筋保护层厚度的测量精度应≤1mm。
2钢筋直径的测量精度应≤2mm。
3 在t/c≥1的条件下,检测仪器对相邻的钢筋应能够分辨。
4检测仪器应能在-10℃〜40℃环境条件下正常使用。
1.2仪器校准1.2.1检测仪器具有下列情况之一时,应进行校准:1新仪器启用前。
2达到或超过校准时效期限。
3仪器维修后。
4对仪器测量结果怀疑时。
5仪器比对试验出现异常时。
1.2.2检测仪器校准周期为1年。
2检测技术2.1 ―般规定2.1.1采用本检测方法,钢筋最小净间距t与钢筋保护层厚度c之比应≥1。
2.1.2 当钢筋保护层厚度在600mm以内时,同一位置三次测定值的最大值与最小值的偏差应不大于2mm。
2.1.3钢筋检测时应避开多层、网格状钢筋交叉点及钢筋接头位置。
2.1.4钢筋检测时应避开混凝土中预埋设铁件、金属管等铁磁性物质。
2.1.5检测面应为混凝土表面,并应清洁、平整,当混凝土表面粗糙不平影响测量精度时,应使混凝土表面达到混凝土验收标准的要求后进行测量。
2.1.6钢筋检测时应避开强交变电磁场〈如电机、电焊机等)以及测点周边较大金属结构对检测结果的影响。
2.1.7混凝土中钢筋严重诱蚀时,不应采用电磁感应法检测钢筋保护层厚度。
钢筋位置及保护层厚度检测实验报告标题:钢筋位置及保护层厚度检测实验报告摘要:本实验旨在通过实际测量和分析,探索钢筋位置以及保护层厚度对混凝土结构性能的影响。
实验结果显示,正确的钢筋位置和适当的保护层厚度对混凝土结构的稳定性和承载能力至关重要。
本报告详细介绍了实验的目的、所用方法、测量结果以及对实验结果的讨论和结论。
关键词:钢筋位置, 保护层厚度, 检测实验, 混凝土结构第一部分:引言在建筑工程中,混凝土结构是非常常见的。
而在混凝土结构中,钢筋起到了增强和加固混凝土的作用。
钢筋的位置和保护层厚度对混凝土结构的性能有着重要的影响。
因此,本实验旨在通过实际的测量和分析,对钢筋位置以及保护层厚度进行检测,以更好地理解它们对混凝土结构的影响。
第二部分:实验方法本实验使用了以下方法来进行钢筋位置和保护层厚度的检测:1. 选择并准备合适的混凝土结构样本。
2. 运用无损检测技术,例如超声波、电磁感应等,对样本进行测量。
3. 使用钢筋探测仪对混凝土结构进行钢筋位置的测量。
4. 通过观察、测量和分析,确定混凝土结构的保护层厚度。
第三部分:实验结果通过实验,我们获得了以下关于钢筋位置和保护层厚度的检测结果:1. 钢筋位置:经过测量和分析,确定了钢筋在混凝土结构中的准确位置。
正确的钢筋位置可以提供更好的加固效果,并增强混凝土结构的稳定性。
2. 保护层厚度:观察和测量了不同部位的保护层厚度。
合适的保护层厚度可以有效保护钢筋免受外界环境的侵蚀和腐蚀。
第四部分:讨论和结论通过对实验结果的讨论和分析,得出以下结论:1. 正确的钢筋位置和适当的保护层厚度对混凝土结构的稳定性和承载能力至关重要。
2. 不正确的钢筋位置或保护层厚度可能导致混凝土结构的脆弱性和减弱承载能力。
3. 通过无损检测技术可以准确测量钢筋位置和保护层厚度,提供可靠的数据支持。
第五部分:观点和理解在本实验中,我深入了解了钢筋位置和保护层厚度对混凝土结构的重要性。
通过实际操作和分析,我认识到了正确的钢筋位置和适当的保护层厚度对于建筑结构的长期稳定性和可靠性的重要性。
综合实验混凝土保护层厚度、钢筋位置、数量检测实验报告合肥学院建筑工程系混凝土保护层厚度、钢筋位置、数量检测实验报告班级组别时间姓名综合实验混凝土保护层厚度、钢筋位置、数量检测实验报告一、项目概况、检测设备及检测依据工程名称工程编号委托人检测日期工程地址施工单位监理单位工程概况检测项目钢筋保护层厚度检测检测条件检测仪器DJGW-2A钢筋位置测定仪环境条件检测方法无损检测法(电磁感应法检测钢筋保护层厚度)检测依据《混凝土结构工程施工质量验收规范》GB50204-2002 《混凝土中钢筋检测技术规程》(JGJ/T152—2008)检测方案检测结果统计构件类别测区个数钢筋点数不合格点数合格点数合格点率(%)梁类构件板类构件检测结论本次共检测区个测点的钢筋,检测结果 (符合或不符合)设计要求.签发日期:二、评定依据:根据中华人民共和国国家标准《混凝土结构工程施工质量验收规范》GB50204-2002附录E《结构实体钢筋保护层厚度检验》对于混凝土板类构件的钢筋保护层厚度允许偏差为+8mm,-5mm;对于混凝土梁、柱类构件的钢筋保护层厚度允许偏差为+10mm,-7mm。
三、检测数据统计:梁类构件检测数据测区号构件名称保护层厚度(mm)设计值(mm) 判定结果备注0001说明纵向受力钢筋保护层厚度的允许偏差, 对梁类构件为+10mm,-7mm不;合格点的最大偏差不应大于允许偏差的 1.5倍.梁类构件检测数据测区号构件名称保护层厚度(mm)设计值(mm)判定结果备注0002说明纵向受力钢筋保护层厚度的允许偏差, 对板类构件为+8mm,-5mm;不合格点的最大偏差不应大于允许偏差的 1.5倍.指导教师评语成绩指导教师:日期:。
金陵王府01-04栋结构实体钢筋保护层厚度检测方案一、钢筋保护层厚度检测部位和检测数量
1.钢筋保护层的厚度的检测部位由监利单位、建设单位和施工单位根据结构构件的重要性共同选定:01-03栋检测部位为:悬挑梁,梁,板
2.钢筋保护层厚度的检测数量01-03栋每层梁抽检5道,其中阳台悬挑梁3道,简支梁2道;板5块:其中阳台板3块,平板2块。
注:对选定的梁类构件,应对全部纵向受力钢筋的保护层厚度进行检测,对选定的板类构件,应抽取不少于6根纵向受力钢筋的保护层厚度进行检测。
二、钢筋保护层厚度检测方法:
钢筋保护层厚度检测方法采用局部破损的方法进行检测,检测的测量误差不应大于1mm。
三、规范规定钢筋保护层厚度检测允许偏差值如下:
梁类构件:+10mm、-7mm,板类构件为:+8mm、-5mm。
四、结构实体钢筋保护层厚度检测验收应符合下列规定:
1.全部钢筋保护层厚度检验的合格点率为90%及以上,钢筋保护层厚度检验结果判定合格;
2.全部钢筋保护层厚度检验的合格点率小于90%时但不小于80%时,可再抽取相同数量的构件进行检验,两次抽样总和计算合格点率为90%以上时,判定为合格。
3.每次抽样检测结果中不合格点的最大偏差均不应大于允许偏差值的1.5倍。
即梁:+15mm、-10.5mm
板:+12mm、-7.5mm
江苏双楼金陵王府项目部
2004-11-7
钢
筋
保
护
层
厚
度
检
测
方
案
江苏双楼金陵王府项目部
2004-11-7。
钢筋位置及保护层厚度检测实验报告实验目的:本实验旨在通过使用不同方法对钢筋位置及保护层厚度进行检测,评估这些方法的准确性和适用性,从而为工程施工提供可靠的数据支持。
1. 引言钢筋在建筑工程中起着至关重要的作用,它们是混凝土结构中的主要骨架。
而钢筋的位置和保护层厚度的准确性对于建筑结构的稳定性和安全性至关重要。
在施工前和施工过程中对钢筋位置和保护层厚度进行准确检测是非常必要的。
2. 实验方法- 方法一:钢筋探头法本方法使用专门设计的钢筋探头,通过接触式检测来确定钢筋的位置和保护层厚度。
实验中,钢筋探头被放置在被测点上,并通过测量仪器来获取数据。
根据仪器的测量结果,可以确定钢筋位置和保护层厚度的情况。
- 方法二:非接触式超声波法这种方法使用超声波技术来检测钢筋的位置和保护层厚度。
实验中,超声波发射器将声波传递到被测结构中,然后通过接收器接收反射的声波信号。
根据声波信号的返回时间和强度,可以确定钢筋位置和保护层厚度的信息。
- 方法三:地质雷达法地质雷达法利用雷达技术来检测钢筋位置和保护层厚度。
雷达发射器发射电磁波,然后通过接收器接收它们的反射波。
根据反射波的时间和强度,可以确定钢筋位置和保护层厚度。
3. 实验结果与讨论根据实验数据和分析,我们得出以下结论:- 在实验中,钢筋探头法和非接触式超声波法都能够准确测量钢筋位置和保护层厚度。
这两种方法具有较高的准确性和适用性,并且比较容易操作。
- 地质雷达法在钢筋位置检测方面表现一般,其精确度受到被测结构材质和混凝土密度的影响,不如前两种方法准确可靠。
4. 总结与展望本实验通过三种不同的方法对钢筋位置和保护层厚度进行检测。
根据实验结果,钢筋探头法和非接触式超声波法是最为可行和准确的方法。
这些方法具有广泛的应用前景,可以在建筑工程中得到有效的应用和推广。
需要注意的是,每种方法都有其局限性和适用范围。
在实际应用中,需要根据具体情况选择最适合的方法,并结合其他检测手段以确保准确性。
钢筋位置及保护层厚度检测实验报告
一、实验目的
本次实验的目的是检测钢筋在混凝土中的位置及保护层厚度,以确保建筑结构的安全性。
二、实验原理
钢筋在混凝土中的位置和保护层厚度对于建筑结构的安全至关重要。
本次实验采用无损检测方法,利用电磁感应原理,通过感应信号来确定钢筋位置和保护层厚度。
三、实验设备
1. 电磁感应仪器
2. 混凝土样品
3. 钢筋探头
四、实验步骤
1. 准备混凝土样品,并在其中嵌入不同深度和直径的钢筋。
2. 将电磁感应探头靠近混凝土表面,记录下每个位置处的信号值。
3. 根据信号值分析出每个钢筋所处的位置和保护层厚度。
五、实验结果分析
通过本次实验,我们得到了以下结果:
1. 钢筋位置:根据信号值分析,我们可以确定每个钢筋所处的具体位置。
2. 保护层厚度:通过信号强弱来计算出每个钢筋周围混凝土的保护层厚度。
六、误差分析
在实验过程中,可能会出现以下误差:
1. 混凝土质量不均匀:如果混凝土质量不均匀,可能会导致钢筋位置和保护层厚度的测量结果不准确。
2. 探头位置不准确:如果探头位置不准确,也会影响测量结果的准确性。
七、实验结论
通过本次实验,我们可以确定钢筋在混凝土中的位置和保护层厚度。
这对于建筑结构的安全至关重要。
因此,在建筑施工过程中,应该加强对钢筋位置和保护层厚度的检测和管理。
钢筋保护层厚度检测要点!近年来,随着混凝土质量通病治理活动的深入开展,精细化施工的要求得以贯彻;同时,随着新《公路工程交(竣)工验收办法》的出台,钢筋保护层厚度指标已经纳入到质量鉴定检测参数中,可以预见,该指标在我国工程界将日益得到重视。
一、钢筋保护层定义定义:受力主筋外边缘到混凝土表面的垂直距离。
钢筋混凝土设置钢筋保护层,顾名思义,就是为了保护钢筋防止锈蚀。
二、钢筋保护层厚度的意义钢筋混凝土是由钢筋及混凝土构成的复合材料,钢筋保护层是保证结构正常使用的重要因素之一,其作用主要表现在三个方面:(1)保证混凝土与受力主筋共同工作(2)保护钢筋不受腐蚀,增强结构耐久性(3)保护构件不因高温影响而急剧丧失承载能力三、造成钢筋保护层超标的原因(1)钢筋加工制作不到位(2)安装不到位,钢筋骨架放置偏位(3)钢保垫块安装不到位(4)模板安装不到位四、检测方法就现阶段而言,多为采用建设部2008年10月1日实施的《混凝土中钢筋检测技术规程》(JGJ/T 152-2008)。
具体检测方法如下:1、仪器性能要求(1)检测前应采用校准试件进行校准,当混凝土保护层厚度为10-50mm时,混凝土保护层厚度检测的允许误差为±1mm。
2、测试数量主要在交工验收质量评定中有所明确,施工过程中进行检测的数据可在评定时采用。
(1)桥梁下部工程抽查不少于墩台总数的20%且不少于5个,墩台数量少于5个时全部检测。
每种结构型式抽查不少于1个。
每墩台测2-4处。
(2)桥梁上部工程抽查不少于总孔数的20%且不少于5个,孔数少于5个时全部检测。
每种结构型式抽查不少于1个。
每孔测2-4处。
(3)通常情况下,下部结构每个构件检测20点,上部结构每个构件检测40点。
3、钢筋位置确定后,应按下列方法进行钢筋保护层厚度检测:(1)首先应设定仪器量程及钢筋公称直径,沿被测钢筋轴线选择邻钢筋影响较小的位置,并应避开模板接缝、钢筋接头和绑丝,读取第1次检测值。