小学奥数专题巧解三阶幻方APPT课件
- 格式:ppt
- 大小:962.00 KB
- 文档页数:7
三年级奥数教程第12讲三阶幻方三阶幻方就是将九个自然数填在3×3(三行三列)的正方形内,使每一行、每一列以及每一条对角线上的三个数的和都相等.三阶幻方是一种特殊的数阵图.例1、将1~9这九个数填入下图,使它成为一个三阶幻方.图12-1分析与解 1+2+…+8+9=45.所以,每行、每列、每条对角线的三个数的和是15(=45÷3).从1到9中,三个不同的数相加等于15,只可能是9+5+1,9+4+2,8+6+1,8+5+2,8+4+3,7+6+2,7+5+3.6+5+4这八个式子.其中只有5出现四次,因此5一定在中心.在式子中出现三次的只有8、6、4、2这四个数,因此这四个数应当在四个角上.从而将三阶幻方完成,如图所示.816357492图12-2说明除了上图所示的答案外,如果8、6、4、2在四个角上的位置排得不同,9、7、3、1的位置也相应有所不同,那么还可以得到其他形式的三阶幻方.我们把这些只是形式不同而实质相同的结果看作是一个解,只要写出其中一个作为答案就可以了.随堂练习1 用0到8这9个数构造一个三阶幻方.例2、将1,3,5,7,…17填入3×3的方格中,使它成为一个三阶幻方.分析与解将图12—2中的1,2,3,…,9分别用1,3,5,…,17代替,得到图12—3.它就是所求的三阶幻方,每行、每列、每条对角线上的和都是27.1511159137173图12-3随堂练习2 将2,4,6,…,18填入3×3的方格中,使它成为一个三阶幻方.例3、如果l、4、7、10、13、16、19、22、25这9个数组成三阶幻方,那么每一行、每一列、每条对角线的和是多少?中央的那个数是多少?分析与解总和是1+4+7+…+25=(1+25)×9÷2=117.由于三行的和相等,所以每一行的和是117÷3=39.。
每一列、每一条对角线的和也是39.两条对角线、第二列的总和是39×3,它也是第一行加第三行再加中央那个数的3倍.所以中央的那个数是(39×3—39 × 2)÷3=13.随堂练习3 如果2、6、10、1 l、15、19、20、24、28可以组成一个三阶幻方,那么每一行、每一列、每条对角线的和是多少?中央的那个数是多少?例4、图12—4是一个三阶幻方,已知3个数,请根据幻方的性质填出其他的数.62815图12-4分析与解首先注意在例3中实际上已经得出每一行(每一列、每条对角线)的和是中央那个数的3倍.因此,现在每一行的和是15×3=45.这样,就可以得出第三行第一个数是45—6—28=11.第三行第三个数是45—6—15=24.第三行第二个数是45—11—24=10.同样,可得其他的数.最后得出三阶幻方如图12—5.6201928152111024图12-5随堂练习4图1 2—6是一个三阶幻方,请填出其他的数.15423图12-6例5、已知图12—7中,每一行、每一列、每条对角线上3个数的乘积都相等.请填出其他的数.11263图12-7分析及解每一行、每一列、每条对角线的乘积都是3×6×12。
三阶幻方同学们:在33⨯(三行三列)的正方形方格中,既不重复又不遗漏地填上1—9这9个连续的自然数,使每行、每列、每条对角线上的三个自然数的和均相等,这样的图形叫做三阶幻方。
如果在44⨯(四行四列)的正方形方格中进行填数,就要不重复,不遗漏地在44⨯方格内填上16个连续自然数,且使每行、每列、每条对角线的四个自然数之和均相等,这样的图形叫四阶幻方。
一般地,在几×几(几行几列)的方格里,既不重复又不遗漏地填上几×几个连续自然数,(注意这几×几个连续自然数不一定非要从1开始),每个数占一个格,且每行、每列、每条对角线上的几个自然数和均相等,我们把这个相等的和叫做幻和,几叫做阶,这样排成的数的图形叫做几阶幻方。
(一)思路指导与解答例1. 用1~9这九个数编排一个三阶幻方。
ab c def g hi图1 图2分析:我们先用a 、b 、c 、d 、e 、f 、g 、h 、i 分别填入九个空格内以代表应填的数。
看图(2):(1)通过审题,我们知道幻和是多少才好进行填数。
同时可以看到图(2)中,e 是一个中间数,也是关键数。
因为它分别要与第二行、第二列以及两条对角线上的另外两个数进行求和运算,结果都等于幻和;其次是三阶幻方中四个角上的数:a 、c 、g 、i 它们各自都要参加一行,一列及一条对角线的求和运算。
如果e 以及四个角上的数被确定之后,其它的数字便可以根据幻和是多少填写出来了。
(2)求幻和:幻和=++++++++÷()1234567893=÷=45315(3)选择突破口,显然是e ,看图2。
因为:a e i b e h c e g d e f ++=++=++=++=15 所以:()()()()a e i b e h c e g d e f +++++++++++ =+++=1515151560也就是:()a b c d e f g h i e +++++++++⨯=360 又因为:a b c d e f g h i ++++++++=45 所以45360+⨯=e36045⨯=-e e =5也就是说,图1中的中心方格中应填5,请注意,这个数正好是1~9这九个数中正中间的数。
三阶幻方的讲解在3×3(三行三列)的正方形方格中,既不重复又不遗漏地填上1~9这9个连续的自然数,使每行、每列、每条对角线上的三个自然数的和均相等,通常这样的图形叫做三阶幻方。
如果是在4×4(四行四列)的方格中进行填数,就要不重不漏地在4×4方格中填上16个连续的自然数,并且使方格的每行、每列及每条对角线上的四个自然数之和均相等,这样填出的图形就叫做四阶幻方。
幻方实际上就是一种填数游戏,它不仅限于三阶、四阶,还有五阶,六阶,……,直到任意阶。
一般地,在n×n(n行n列)的方格里,既不重复也不遗漏地填上n×n个连续的自然数(注意,这n×n个连续自然数不一定非要从1开始),每个数占1格,并使排在每一行、每一列以及每条对角线上的n个自然数的和都相等,我们把这个相等的和叫做幻和,n叫做阶,这样排成的数的图形叫做n阶幻方。
这里我们主要学习三阶幻方。
例1用1~9这九个数编排一个三阶幻方。
分析与解先求幻和再添数!雪帆提示:先求总和,看看有几个幻和,常把中间数填入中间先用a,b,c,…,i分别填入图1的九个空格内,以代表应填的数,如图2。
(1)审题首先我们应知道幻和是多少才好进行填数。
同时我们可以看到图2中e是一个很关键的数,因为它分别要与第二行、第二列以及两条对角线上的另外两个数进行求和运算,结果都等于幻和;其次是三阶幻方中四个角上的数:a,c,g,i,它们各自都要参加一行、一列及一条对角线的求和运算。
如果e以及四个角上的数被确定之后,其他的数字便可以根据幻和是多少填写出来了。
(2)求幻和幻和=(1+2+3+4+5+6+7+8+9)÷3=45÷3=15(3)选择解题突破口突破口显然是e,在图2中,因为a+e+i=b+e+h=c+e+g=d+e+f=15,所以(a+e+i)+(b+e+h)+(c+e+g)+(d+e+f)=15+15+15+15=60,也就是:(a+b+c+d+e+f+g+h+i)+3×e=60。
三年级奥林匹克数学专题讲解——三阶幻方理论A 篇幻方实际上是一种填数游戏,它不仅有三阶,还有四阶、五阶……直到任意阶。
一般地,在n 行n 列的方格里,既不重复也不遗漏地填上n n ⨯个连续的自然数,每个数占一格,并使排在每一行、每一列以及每条对角线上n 个自然数的和相等,我们把这几个相等的和叫做幻和,n 叫做阶,这样排成的图形叫做n 阶幻方。
三阶幻方:在三行三列的正方形方格中,既不重复也不遗漏地填上33⨯个连续的自然数,每个数占一格,并使排在每一行、每一列以及每条对角线上3个自然数的和均相等。
通常这样的图形叫做三阶幻方。
三阶幻方的一些基本规律:幻和=九个数之和÷3,中间数=幻和÷3。
九个连续的自然数中,第五个数是中间数,第二、四、六、八个数是四个角上的数。
例题1 在下面的方格中填上适当的数,使每行、每列和每条对角线上的三个数的和都等于24。
分析: 解决问题的突破口:找出每行、每列和每条对角线上的任意两个数,就可以根据幻和求出第三个数。
例题2 下图中,每个字母代表一个数。
已知每行、每列、每条对角线上的三个数和都相等,若4,16,17,5a l d h ====。
求b 与f 为多少?分析: 根据幻和相等:a e l c e g b e h d e f ++=++=++=++,这4个算式中都有中间数e ,所以有:a l c g b h df +=+=+=+。
再代入4,16,17,5a l d h ====即可。
一、知识介绍二、例题讲解例题3 编出一个三阶幻方,使其幻和为27。
分析: 先根据幻和求中间数,然后填其他数。
请你试一试:调换数的位置,还可以得到几种答案?例题4 将1~9这九个自然数填在下面图中的九个方格里,使每行、每列、两条对角线上的三个数的和都相等。
分析: 先求幻和,再根据幻和求中间数,然后填其他数。
例题5 下图中,a g 7个字母,各代表7个数字,要使三阶幻方成立,“a ”所代表的数字是多少?分析: 根据幻方的概念:每一行、每一列以及每条对角线上3个自然数的和均相等。
三阶幻方同学们:在33⨯(三行三列)的正方形方格中,既不重复又不遗漏地填上1—9这9个连续的自然数,使每行、每列、每条对角线上的三个自然数的和均相等,这样的图形叫做三阶幻方。
如果在44⨯(四行四列)的正方形方格中进行填数,就要不重复,不遗漏地在44⨯方格内填上16个连续自然数,且使每行、每列、每条对角线的四个自然数之和均相等,这样的图形叫四阶幻方。
一般地,在几×几(几行几列)的方格里,既不重复又不遗漏地填上几×几个连续自然数,(注意这几×几个连续自然数不一定非要从1开始),每个数占一个格,且每行、每列、每条对角线上的几个自然数和均相等,我们把这个相等的和叫做幻和,几叫做阶,这样排成的数的图形叫做几阶幻方。
(一)思路指导与解答例1. 用1~9这九个数编排一个三阶幻方。
ab c def g hi图1 图2分析:我们先用a 、b 、c 、d 、e 、f 、g 、h 、i 分别填入九个空格内以代表应填的数。
看图(2):(1)通过审题,我们知道幻和是多少才好进行填数。
同时可以看到图(2)中,e 是一个中间数,也是关键数。
因为它分别要与第二行、第二列以及两条对角线上的另外两个数进行求和运算,结果都等于幻和;其次是三阶幻方中四个角上的数:a 、c 、g 、i 它们各自都要参加一行,一列及一条对角线的求和运算。
如果e 以及四个角上的数被确定之后,其它的数字便可以根据幻和是多少填写出来了。
(2)求幻和:幻和=++++++++÷()1234567893=÷=45315(3)选择突破口,显然是e ,看图2。
因为:a e i b e h c e g d e f ++=++=++=++=15 所以:()()()()a e i b e h c e g d e f +++++++++++ =+++=1515151560也就是:()a b c d e f g h i e +++++++++⨯=360 又因为:a b c d e f g h i ++++++++=45 所以45360+⨯=e36045⨯=-e e =5也就是说,图1中的中心方格中应填5,请注意,这个数正好是1~9这九个数中正中间的数。
小学奥数之三阶幻方讲义同学们:在3 3(三行三列)的正方形方格中,既不重复又不遗漏地填上1―9这9个连续的自然数,使每行、每列、每条对角线上的三个自然数的和均相等,这样的图形叫做三阶幻方。
如果在4 4(四行四列)的正方形方格中进行填数,就要不重复,不遗漏地在4 4方格内填上16个连续自然数,且使每行、每列、每条对角线的四个自然数之和均相等,这样的图形叫四阶幻方。
一般地,在几×几(几行几列)的方格里,既不重复又不遗漏地填上几×几个连续自然数,(注意这几×几个连续自然数不一定非要从1开始),每个数占一个格,且每行、每列、每条对角线上的几个自然数和均相等,我们把这个相等的和叫做幻和,几叫做阶,这样排成的数的图形叫做几阶幻方。
(一)思路指导与解答例1. 用1~9这九个数编排一个三阶幻方。
adbecfigh图1 图2分析:我们先用a、b、c、d、e、f、g、h、i分别填入九个空格内以代表应填的数。
看图(2):(1)通过审题,我们知道幻和是多少才好进行填数。
同时可以看到图(2)中,e是一个中间数,也是关键数。
因为它分别要与第二行、第二列以及两条对角线上的另外两个数进行求和运算,结果都等于幻和;其次是三阶幻方中四个角上的数:a、c、g、i它们各自都要参加一行,一列及一条对角线的求和运算。
如果e以及四个角上的数被确定之后,其它的数字便可以根据幻和是多少填写出来了。
(2)求幻和:幻和(1 2 3 4 5 6 7 8 9) 345 315(3)选择突破口,显然是e,看图2。
因为:a e i b e h c e g d e f 15 所以:(a e i) (b e h) (c e g) (d e f) 15 15 15 15 60也就是:(a b c d e f g h i) 3 e 60 又因为:a b c d e f g h i 45 所以45 3 e 603 e 60 45 e 5也就是说,图1中的中心方格中应填5,请注意,这个数正好是1~9这九个数中正中间的数。
1三阶幻方学习目标 :1、对幻方有初步认识,认识三阶幻方的结构和特点。
2、掌握连续自然数填写三阶幻方的方法。
3、掌握幻和与中心数的数量关系并能灵便运用。
授课重点 :1、掌握连续自然数填写三阶幻方的方法。
2、掌握幻和与中心数的数量关系并能灵便运用。
授课难点:掌握幻和与中心数的数量关系并能灵便运用。
授课过程:一、情况体验在公元前三千多年,洛水经常泛滥成灾,夏禹带着大家去治水。
这时,在洛水中浮起一只大龟,龟背上有奇怪的图案,称为“洛书〞,这个龟就叫它“洛书龟〞。
聪颖的祖先已经破译了洛书龟背上奇特莫测的图案。
〔请学生观察。
)师:这幅图由几组圆点组成的?每组圆点上的个数相同吗?生:不一样样。
师:那我们一起来看看每组各有几个圆点呢?师:把每组圆点的个数对应写出,尔后画出一个三行三列的表格。
这个就是我们今天要学的三阶幻方〔板书标题〕。
幻方定义:在一个正方形的表格里填上一些数,使每一行每一列及两条对角线上的数的和相等,这样的图标叫做幻方。
这里所填的幻方是一个三行三列的表格,所以叫做三阶幻方。
二、思想研究展比方 1例 1:请你将 1-9 这九个数字填在方格里,使每横行、每竖行和对角线上的三个数的和都相等。
:依照神背上的案我可以填出一种,每横行、每行和角上的三个数的和都相等,都等于多少?生:都等于 15.:,个相等的和叫做幻和。
九个数的和与15 有怎的数量关系呢?生 1:有三行,每行的和都是 15,所以九个数的和 =15×3生 :2 :九个数的和是 1+2+3+4+5+6+7+8+9=45,45÷ 3=15.:很好!也就是:幻和 =九个数之和÷ 3:除了神身上的种填写方法,你能有其他填法?〔学生填写,完成后再黑板上呈不一样的填写方法〕492294672816357753159357618618834492⋯⋯:察几种填法,个方格正中的数就是中心数,中心数有什么特点?生:都是 5:中心数与幻和之有怎的数量关系呢?生:幻和 =中心数× 3:, 5 是九个数中的第几个数呢?生: 5 是九个数中的第 5 个数:以第 2 种填法例,我一起看看其他的几个数分在什么地址。
11年春季三年级奥数第三讲:幻方
姓名:
幻方是一个古老的数学趣题,传说在我国夏禹时期,北方的洛水中曾出现了一只神龟,背上刻有图形和文字,这引起了许多数学家和兴趣,此图为“洛图”或“洛书”。
三阶幻方的定义
(1)、在三行三列的正方形表格中,各行之和,各列之和,两条对角线之和均相等的数字表格叫做“三阶幻方”。
又称“九宫图”。
(2)、那个共同的和叫做幻和。
例1、将1~9九个数字,填入3×3表格中,使每一行,每一列,两条对角线的三个数加起来等于15.
动动手,动动脑
例2、要使图中的3×3方格表中每行、每列、每条对角线上三个数
练习:图中的3×3方格表中每行、每列、每条对角线上三个数的和
变一变
例3、在下图方格表中的格子填上数,每一行、每一列及两条对角线
练习:在下图方格表中的格子填上数,每一行、每一列及两条对角线
例4、图中每一行、则x=?
脑力大风暴:
测测你的智力
例5、图中有九个方格,要求每个方格中填入互不相同的数,使得每一行、每一列以及每条对角
11年春季三年级试卷(第三次)
1、请将下面的表格填写完整,要使下图方格表
中每行、每列、两条对角线上三个数的和都相
等。
2、在下面方格表中填上适当的数,使每行、每列、两条对角线上三个数的和均相等。
3、图中每一行、每一列以及对角线上的三数之和均相等,求X =( )
4、下图中有几个格子,要求每个方格中填入互不相同的数,使得每一横行、竖行、斜行三个数的和都相等。
三阶幻方三阶幻方就是将九个自然数填在3×3(三行三列)的正方形内,使每一行、每一列以及每一条对角线上的三个数的和都相等。
三阶幻方是一种特殊的数阵图。
例1 将1-9这九个数填入方格,使它成为一个三阶幻方。
分析:1+2+3+4+...+9=45 所以,每行、每列、每条对角线的三个数的和是45÷3=159+5+1,9+4+2 8+6+1,8+5+2,8+4+37+6+2,7+5+36+5+4这8个式子中5出现四次,所以5一定在中心。
8、6、4、2这四个数出现三次,所以在四个角上。
随堂练习1、用0-8这9个数构造一个三阶幻方。
2、将2,4,6,...,18填入3×3方格中,使它成为一个三阶幻方。
公式:三阶幻方中央的数=行(列)和÷3和=中央数×33、如果2、6、10、11、15、19、20、24、28可以组成一个三阶幻方,那么每一行、每一列、每条对角线的和是多少?中央数是多少?4、如图,这是一个三阶幻方,请填出其它数。
(4) (5)5、已知图中,每一行、每一列、每条对角线上3个数的乘积都相等,请填出其它的数。
6、把下图三阶幻方补充完整。
练习题1、用3、6、9、12、15、18、21、24、27这9个数作一个三阶幻方。
2、用0、2、4、6、8、10、12、14、16这9个数作一个三阶幻方。
(第1题) (第2题)3、在空格中填数,使每一行、每一列、每条对角线的和是30。
(第3题) (第4题) (第5题)4、在空格中填数,使每一行、每一列、每条对角线的和是30。
5、用9个连续自然数组成三阶幻方,使每一行、每一列、每条对角线的和是60。
6、下图是一个三阶幻方,求?是多少。
(第6题) (第7题)7、从1-13这13个数中选12个数填到下图,使每一横行的4个数的和相等,每一竖列的3个数的和也相等。
这时所选的12个数是哪12个数?每一行的和是多少?每一列的和是多少?8、填完第7题的图。
三年级奥林匹克数学专题讲解——三阶幻方理论A 篇幻方实际上是一种填数游戏,它不仅有三阶,还有四阶、五阶……直到任意阶。
一般地,在n 行n 列的方格里,既不重复也不遗漏地填上n n ⨯个连续的自然数,每个数占一格,并使排在每一行、每一列以及每条对角线上n 个自然数的和相等,我们把这几个相等的和叫做幻和,n 叫做阶,这样排成的图形叫做n 阶幻方。
三阶幻方:在三行三列的正方形方格中,既不重复也不遗漏地填上33⨯个连续的自然数,每个数占一格,并使排在每一行、每一列以及每条对角线上3个自然数的和均相等。
通常这样的图形叫做三阶幻方。
三阶幻方的一些基本规律:幻和=九个数之和÷3,中间数=幻和÷3。
九个连续的自然数中,第五个数是中间数,第二、四、六、八个数是四个角上的数。
例题1 在下面的方格中填上适当的数,使每行、每列和每条对角线上的三个数的和都等于24。
分析: 解决问题的突破口:找出每行、每列和每条对角线上的任意两个数,就可以根据幻和求出第三个数。
例题2 下图中,每个字母代表一个数。
已知每行、每列、每条对角线上的三个数和都相等,若4,16,17,5a l d h ====。
求b 与f 为多少?分析: 根据幻和相等:a e l c e g b e h d e f ++=++=++=++,这4个算式中都有中间数e ,所以有:a l c g b h df +=+=+=+。
再代入4,16,17,5a l d h ====即可。
一、知识介绍二、例题讲解例题3 编出一个三阶幻方,使其幻和为27。
分析: 先根据幻和求中间数,然后填其他数。
请你试一试:调换数的位置,还可以得到几种答案?例题4 将1~9这九个自然数填在下面图中的九个方格里,使每行、每列、两条对角线上的三个数的和都相等。
分析: 先求幻和,再根据幻和求中间数,然后填其他数。
例题5 下图中,a g 7个字母,各代表7个数字,要使三阶幻方成立,“a ”所代表的数字是多少?分析: 根据幻方的概念:每一行、每一列以及每条对角线上3个自然数的和均相等。