2020年吉林辽源中考数学试卷及答案
- 格式:doc
- 大小:6.53 MB
- 文档页数:12
吉林省2020年中考数学试卷一、单选题(共6题;共12分)1.﹣6的相反数是()A. ﹣6B. ﹣16C. 6 D. 16【答案】C【考点】相反数及有理数的相反数【解析】【解答】−6的相反数是:6,故选C.【分析】只有符号不同的两个数互为相反数,据此判断即可.2.国务院总理李克强2020年5月22日在作政府工作报告时说,去年我国农村贫困人口减少11090000,脱贫攻坚取得决定性成就.数据V用科学记数法表示为()A. 11.09×106B. 1.109×107C. 1.109×108D. 0.1109×108【答案】B【考点】科学记数法—表示绝对值较大的数【解析】【解答】科学记数法:将一个数表示成a×10n的形式,其中1≤|a|<10,n为整数,这种记数的方法叫做科学记数法则11090000=1.109×107故答案为:B.【分析】根据科学记数法的定义即可得.3.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图为()A. B. C. D.【答案】A【考点】简单组合体的三视图【解析】【解答】由左视图的定义得:这个立体图形的左视图由2行1列组成,其中,每行上只有1个小正方形,1列上有2个小正方形观察四个选项可知,只有选项A符合故答案为:A.【分析】根据左视图的定义即可得.4.下列运算正确的是()A. a2⋅a3=a6B. (a2)3=a5C. (2a)2=2a2D. a3÷a2=a【答案】 D【考点】同底数幂的乘法,同底数幂的除法,积的乘方,幂的乘方【解析】【解答】A、a2⋅a3=a2+3=a5,此项不符合题意B、(a2)3=a2×3=a6,此项不符合题意C、(2a)2=4a2,此项不符合题意D、a3÷a2=a3−2=a,此项符合题意故答案为:D.【分析】根据同底数幂的乘除法、幂的乘方、积的乘方逐项判断即可.5.将一副三角尺按如图所示的方式摆放,则∠α的大小为()A. 85°B. 75°C. 65°D. 60°【答案】B【考点】三角形内角和定理,直角三角形的性质【解析】【解答】解:如图所示,由一副三角板的性质可知:∠ECD=60°,∠BCA=45°,∠D=90°,∴∠ACD=∠ECD-∠BCA=60°-45°=15°,∴∠α=180°-∠D-∠ACD=180°-90°-15°=75°,故答案为:B.【分析】先根据直角三角板的性质得出∠ACD的度数,再由三角形内角和定理即可得出结论.6.如图,四边形ABCD内接于⊙O.若∠B=108°,则∠D的大小为()A. 54°B. 62°C. 72°D. 82°【答案】C【考点】圆内接四边形的性质【解析】【解答】因为,四边形ABCD内接于⊙O,∠B=108°所以,∠D=180°- ∠B=180°−108°=72°故答案为:C【分析】根据圆内接四边形的对角互补,可求得∠D的度数.二、填空题(共8题;共8分)7.分解因式:a2−ab=________.【答案】a(a﹣b)【考点】提公因式法因式分解【解析】【解答】解:a2−ab=a(a﹣b).故答案为a(a﹣b).【分析】直接提取公因式a即可分解因式.8.不等式3x+1>7的解集为________.【答案】x>2【考点】解一元一次不等式【解析】【解答】解:3x+1>7,移项:3x>7−1,合并同类项:3x>6,系数化成1:x>2,所以不等式的解集为:x>2;故答案为:x>2.【分析】移项、合并同类项、系数化为1即可得出答案.9.一元二次方程x2+3x−1=0根的判别式的值为________.【答案】13【考点】一元二次方程根的判别式及应用【解析】【解答】解:∵a=1,b=3,c=-1,∴△=b2-4ac=9+4=13.所以一元二次方程x2+3x-1=0根的判别式的值为13.故答案为:13.【分析】根据一元二次方程根的判别式△=b2-4ac即可求出值.10.我国古代数学著作《算学启蒙》中有这样一个学问题,其大意是:跑得快的马每天走240里,跑得慢的马每天走150里.慢马先走12天,快马几天可以追上慢马?设快马x天可以追上慢马,根据题意,可列方程为________.【答案】(240-150)x=150×12【考点】一元一次方程的实际应用-行程问题【解析】【解答】解:题中已设快马x天可以追上慢马,则根据题意得:(240-150)x=150×12.故答案为:(240-150)x=150×12.【分析】根据两马的速度之差×快马出发的时间=慢马的速度×慢马提前出发的时间,即可得出关于x的一元一次方程.11.如图,某单位要在河岸l上建一个水泵房引水到C处,他们的做法是:过点C作CD⊥l于点D,将水泵房建在了D处.这样做最节省水管长度,其数学道理是________.【答案】垂线段最短【考点】垂线段最短【解析】【解答】通过比较发现:直线外一点与直线上各点连结的所有线段中,垂线段最短.故答案为:垂线段最短.【分析】直线外一点与直线上各点连结的所有线段中,垂线段最短.12.如图,AB//CD//EF.若ACCE =12,BD=5,则DF=________.【答案】10【考点】平行线分线段成比例【解析】【解答】解:∵AB//CD//EF,∴ACCE =BDDF,又∵ACCE =12,BD=5,∴5DF =12,∴DF=10,故答案为:10.【分析】根据平行线分线段成比例得到ACCE =BDDF,由条件即可算出DF的值.13.如图,在△ABC中,D,E分别是边AB,AC的中点.若△ADE的面积为12.则四边形DBCE 的面积为________.【答案】32【考点】相似三角形的判定与性质,三角形的中位线定理【解析】【解答】∵点D,E分别是边AB,AC的中点∴DE//BC,DE=12 BC∴△ADE∼△ABC∴S△ADES△ABC =(DEBC)2=14,即S△ABC=4S△ADE又∵S△ADE=12∴S△ABC=4×12=2则四边形DBCE的面积为S△ABC−S△ADE=2−12=32故答案为:32.【分析】先根据三角形中位线定理得出DE//BC,DE=12BC,再根据相似三角形的判定与性质得出S△ADE S△ABC =(DEBC)2,从而可得△ABC的面积,由此即可得出答案.14.如图,在四边形ABCD中,AB=CB,AD=CD,我们把这种两组邻边分别相等的四边形叫做“筝形”,筝形ABCD的对角线AC,BD相交于点O.以点B为圆心,BO长为半径画弧,分别交AB,BC于点E,F,若∠ABD=∠ACD=30°,AD=1,则EF⌢的长为________(结果保留π).【答案】π2【考点】等腰三角形的性质,含30°角的直角三角形,弧长的计算【解析】【解答】由题意知:AB=CB,AD=CD,∴△ABC和△ADC是等腰三角形,AC⊥BD.∵∠ABD=∠ACD=30°,AD=1∴OD= 12,OA= √32∴OB= 32.∵∠ABD= 30°,r=32∴∠EBF= 60°,EF⌢= 60°360°×2πr=13π×32=π2.故答案为π2.【分析】根据题意,求出OB的长;根据弧长的公式,代入数据,即可求解.三、解答题(共12题;共109分)15.先化简,再求值:(a+1)2+a(1−a)−1,其中a=√7.【答案】解:原式= a2+2a+1+a−a2−1= 3a将a=√7代入原式= 3√7.【考点】利用整式的混合运算化简求值【解析】【分析】分别依据完全平方公式和单项式乘多项式法则计算,再合并同类项,然后将a=√7代入即可.16.“中国结”是我国特有的手工编织工艺品,也是一种传统吉祥装饰物,如图,现有三张正面印有“中国结”图案的不透明卡片A,B,C,卡片除正面图案不同外,其余均相同.将三张卡片正面向下洗匀,小吉同学从中随机抽取一张卡片,记下图案后正面向下放回,洗匀后再从中随机抽取一张卡片.请用画树状图或列表的方法,求小吉同学抽出的两张卡片中含有A卡片的概率.【答案】解:解法一:画树状图,根据题意,画树状图结果如下:由树状图可以看出,所有等可能出现的概率一共有9种,而两张卡片中含有A卡片的结果有5种,所以P(小吉抽到两张卡片中有A卡片)= 59.解法二:用列表法,根据题意,列表结果如下:结果为:(第一次抽取情况,第二次抽取情况)由表可以看出,所有等可能出现的概率一共有9种,而两张卡片中含有A卡片的结果有5种,所以P(小吉抽到两张卡片中有A卡片)= 59.【考点】列表法与树状图法【解析】【分析】分别使用树状图法或列表法将小吉同学抽取卡片的结果表示出来,第一次共有3种不同的抽取情况,第二次同样也有3种不同的抽取情况,所有等可能出现的结果有9种,找出含有A卡片的抽取结果,即可算出概率.17.甲、乙二人做某种机械零件,已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等.求乙每小时做零件的个数.【答案】解:设乙每小时做x个零件,则甲每小时做(x+6)个零件,由题意得:90 x+6=60x,解得:x=12,经检验:x=12是分式方程的解,且符合题意,∴分式方程的解为:x=12,答:乙每小时做12个零件.【考点】分式方程的实际应用【解析】【分析】设乙每小时做x个零件,甲每小时做(x+6)个零件,根据时间=总工作量÷工作效率,即可得出关于x的分式方程,解之并检验后即可得出答案.18.如图,在ΔABC中,AB>AC,点D在边AB上,且BD=CA,过点D作DE//AC并截取DE=AB,且点C,E在AB同侧,连接BE.求证:ΔDEB≅ΔABC.【答案】证明:∵DE//AC,∴∠A=∠EDB,在△ABC和△DEB中,{BD=CA∠EDB=∠ADE=AB,∴ΔDEB≅ΔABC(SAS).【考点】平行线的性质,三角形全等的判定(SAS)【解析】【分析】根据SAS即可证得ΔDEB≅ΔABC.19.如图①、图②、图③都是3×3的正方形网格,每个小正方形的顶点称为格点.A,B,C均为格点.在给定的网格中,按下列要求画图:(1)在图①中,画一条不与AB重合的线段MN,使MN与AB关于某条直线对称,且M,N为格点.(2)在图②中,画一条不与AC重合的线段PQ,使PQ与AC关于某条直线对称,且P,Q为格点.(3)在图③中,画一个ΔDEF,使ΔDEF与ΔABC关于某条直线对称,且D,E,F为格点.【答案】(1)解:如图①,3×3的正方形网格的对称轴l,描出点AB关于直线l的对称点MN,连接MN即为所求;(2)解:如图②,同理(1)可得,PQ即为所求;(3)解:如图③,同理(1)可得,ΔDEF即为所求.【考点】轴对称的性质,作图﹣轴对称【解析】【分析】(1)先画出一条3×3的正方形网格的对称轴,根据对称性即可在图①中,描出点AB的对称点MN,它们一定在格点上,再连接MN即可.(2)同(1)方法可解;(3)同(1)方法可解;20.如图,某班数学小组测量塔的高度,在与塔底部B相距35m的C处,用高1.5m的测角仪CD测得该塔顶端A的仰角∠EDA为36°.求塔AB的高度(结果精确到1m).(参考数据:sin36°= 0.59,cos36°=0.81,tan36°=0.73)【答案】解:由题意可知DE=CB=35,BE=CD=1.5,∠EDA=36°,=tan36°,在直角△ADE中,tan∠EDA=AEDE∵tan36°=0.73,∴AE=0.73,即AE=25.55,35∴AB=AE+BE=25.55+1.5=27.05≈27,因此塔AB的高度为27m.【考点】解直角三角形的应用﹣仰角俯角问题,可求出AE的长,从而得到AB的高度.【解析】【分析】通过tan∠EDA=AEDE21.如图,在平面直角坐标系中,O为坐标原点,点A,B在函数y=k(x>0)的图象上(点B的横坐x标大于点A的横坐标),点A的坐示为(2,4),过点A作AD⊥x轴于点D,过点B作BC⊥x轴于点C,连接OA,AB.(1)求k的值.(2)若D为OC中点,求四边形OABC的面积.【答案】(1)解:将点A的坐标为(2,4)代入y=kx(x>0),可得k=xy=2×4=8,∴k的值为8;(2)解:∵k的值为8,∴函数y=kx 的解析式为y=8x,∵D为OC中点,OD=2,∴OC=4,∴点B的横坐标为4,将x=4代入y=8x,可得y=2,∴点B的坐标为(4,2),∴S四边形OABC =SΔAOD+S四边形ABCD=12×2×4+12(2+4)×2=10.【考点】待定系数法求反比例函数解析式,反比例函数图象上点的坐标特征【解析】【分析】(1)将点A的坐标为(2,4)代入y=kx(x>0),可得结果;(2)利用反比例函数的解析式可得点B的坐标,利用三角形的面积公式和梯形的面积公式可得结果.22.2020年3月线上授课期间,小莹、小静和小新为了解所在学校九年级600名学生居家减压方式情况,对该校九年级部分学生居家减压方式进行抽样调查,将居家减压方式分为A(享受美食)、B(交流谈心)、C(室内体育活动)、D(听音乐)和E(其他方式)五类,要求每位被调查者选择一种自己最常用的减压方式.他们将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3.表1:小莹抽取60名男生居家减压方式统计表(单位:人)表2:小静随机抽取10名学生居家减压方式统计表(单位:人)表3:小新随机抽取60名学生居家减压方式统计表(单位:人)根据以上材料,回答下列问题:(1)小莹、小静和小新三人中,哪一位同学抽样调查的数据能较好地反映出该校九年级学生居家减压方式情况,并简要说明其他两位同学抽样调查的不足之处.(2)根据三人中能较好地反映出该校九年级居家减压方式的调查结果,估计该校九年级600名学生中利用室内体育活动方式进行减压的人数.【答案】(1)解:小新抽样调查所得的数据能较好地反映出该校九年级学生居家减压方式情况.小莹抽取60名男生居家减压方式统计,没有随机抽样,而且只抽取男生,样本没有代表性;小静随机抽取10名学生居家减压方式统计,样本容量太小,也没有代表性;答:小新抽样调查所得的数据能较好地反映出该校九年级学生居家减压方式情况.小莹抽取60名男生居家减压方式统计,没有随机抽样,而且只抽取男生,样本没有代表性;小静随机抽取10名学生居家减压方式统计,样本容量太小,也没有代表性(2)解:估计该校九年级600名学生中利用室内体育活动方式进行减压的人数:=260(人)600× 2660答:估计该校九年级600名学生中利用室内体育活动方式进行减压的人数是260人.【考点】全面调查与抽样调查,用样本估计总体【解析】【分析】(1)根据抽样调查的要求,所抽样本必须具有代表性,要保证所有个体都有相同的机会被抽到,样本的容量要适当;(2)根据样本的情况估计总体情况,利用室内体育活动方式进行减压的人人数:600× 266023.某种机器工作前先将空油箱加满,然后停止加油立即开始工作,当停止工作时,油箱中油量为5L.在整个过程中,油箱里的油量y(单位:L)与时间x(单位:min)之间的关系如图所示.(1)机器每分钟加油量为________L,机器工作的过程中每分钟耗油量为________L.(2)求机器工作时y关于x的函数解析式,并写出自变量x的取值范围.(3)直接写出油箱中油量为油箱容积的一半时x的值.【答案】(1)3;0.5(2)解:由函数图象得:当x=10min时,机器油箱加满,并开始工作;当x=60min时,机器停止工作则自变量x的取值范围为10≤x≤60,且机器工作时的函数图象经过点(10,30),(60,5)设机器工作时y关于x的函数解析式y=kx+b将点 (10,30),(60,5) 代入得: {10k +b =3060k +b =5解得 {k =−12b =35则机器工作时y 关于x 的函数解析式 y =−12x +35 ;(3)解:设机器加油过程中的y 关于x 的函数解析式 y =ax将点 (10,30) 代入得: 10a =30解得 a =3则机器加油过程中的y 关于x 的函数解析式 y =3x油箱中油量为油箱容积的一半时,有以下两种情况:①在机器加油过程中当 y =302=15 时, 3x =15 ,解得 x =5②在机器工作过程中当 y =302=15 时, −12x +35=15 ,解得 x =40 综上,油箱中油量为油箱容积的一半时x 的值为5或40.【考点】一次函数的实际应用【解析】【解答】解:(1)由函数图象得:机器每分钟加油量为 3010=3(L)机器工作的过程中每分钟耗油量为 30−560−10=0.5(L)故答案为:3,0.5;【分析】(1)根据 10min 加油量为 30L 即可得;根据 60min 时剩余油量为 5L 即可得;(2)根据函数图象,直接利用待定系数法即可得;(3)先求出机器加油过程中的y 关于 x 的函数解析式,再求出 y =15 时,两个函数对应的x 的值即可.24.能够完全重合的平行四边形纸片 ABCD 和 AEFG 按图①方式摆放,其中 AD =AG =5 , AB =9 .点D ,G 分别在边 AE , AB 上, CD 与 FG 相交于点H .(1)(探究)求证:四边形 AGHD 是菱形.(2)(操作一)固定图①中的平行四边形纸片 ABCD ,将平行四边形纸片 AEFG 绕着点 A 顺时针旋转一定的角度,使点F 与点C 重合,如图②,则这两张平行四边形纸片未重叠部分图形的周长和为________.(3)(操作二)四边形纸片AEFG绕着点A继续顺时针旋转一定的角度,使点E与点B重合,连接DG,CF,如图③若sin∠BAD=45,则四边形DCFG的面积为________.【答案】(1)解:∵四边形ABCD和AEFG都是平行四边形∴AE//GF,AB//DC,即AD//GH,AG//DH∴四边形AGHD是平行四边形又∵AD=AG=5∴平行四边形AGHD是菱形;(2)56(3)72【考点】三角形全等及其性质,等腰三角形的判定与性质,平行四边形的性质,菱形的判定,三角形全等的判定(AAS)【解析】【解答】解:操作一:如图,设AE与DF相交于点H,AB与FG相交于点M∵四边形ABCD和AEFG是两个完全重合的平行四边形∴AD=FE,∠D=∠E,DF=AB=9在△ADH和△FEH中,{∠D=∠E∠AHD=∠FHEAD=FE∴△ADH≅△FEH(AAS)∴AH=FH,△ADH和△FEH的周长相等同理可得:△ADH≅△FEH≅△FBM≅△AGM∴△ADH、△FEH、△FBM、△AGM的周长均相等又∵AD=5,DF=AB=9∴△ADH的周长为L△ADH=AD+DH+AH=AD+DH+FH=AD+DF=14则这两张平行四边形纸片未重叠部分图形的周长和为4L△ADH=4×14=56故答案为:56;操作二:如图,设AB与DG相交于点N∵四边形ABCD和AEFG是两个完全重合的平行四边形∴AD=AG=5,CD=FG=AB=9,∠BAD=∠BAG,CD//AB//FG ∴△ADG是等腰三角形,且AB平分∠DAG∴AB⊥DG,DN=NG=12DG∴CD⊥DG在Rt△ADN中,sin∠NAD=DNAD =45,即DN5=45解得DN=4∴DG=2DN=8又∵CD//FG,CD=FG∴四边形DCFG是平行四边形∵CD⊥DG,即∠CDG=90°∴平行四边形DCFG是矩形则四边形DCFG的面积为DG⋅CD=8×9=72故答案为:72.【分析】探究:先根据平行四边形的性质可得AD//GH,AG//DH,再根据平行四边形的判定可得四边形AGHD是平行四边形,然后根据菱形的判定即可得证;操作一:先根据菱形的性质得出AD=FE,∠D=∠E,再根据三角形全等的判定定理与性质可得AH=FH,然后根据全等三角形的性质、三角形的周长公式即可得;操作二:先根据平行四边形的性质、等腰三角形的判定可得△ADG是等腰三角形,且AB平分∠DAG,再根据等腰三角形的三线合一可得AB⊥DG,DN=NG=12DG,然后利用正弦三角函数可求出DN的长,从而可得DG的长,最后根据矩形的判定可得四边形DCFG是矩形,据此利用矩形的面积公式即可得.25.如图,△ABC是等边三角形,AB=4cm,动点P从点A出发,以2cm/s的速度沿AB向点B匀速运动,过点P作PQ⊥AB,交折线AC−CB于点Q,以PQ为边作等边三角形PQD,使点A,D 在PQ异侧.设点P的运动时间为x(s)(0<x<2),△PQD与△ABC重叠部分图形的面积为y (cm2).(1)AP的长为________ cm(用含x的代数式表示).(2)当点D落在边BC上时,求x的值.(3)求y关于x的函数解析式,并写出自变量x的取值范围.【答案】(1)2x(2)解:如图,∵△ABC和△PQD都是等边三角形∴∠A=∠B=∠DPQ=60°,PQ=DP∵PQ⊥AB,即∠APQ=∠BPQ=90°∴∠AQP=90°−∠A=30°,∠BPD=∠BPQ−∠DPQ=30°在△APQ和△BDP中,{∠A=∠B∠AQP=∠BPD=30°PQ=DP∴△APQ≅△BDP(AAS)∴AQ=BP∵AB=4,AP=2x∴AQ=BP=AB−AP=4−2x∵在Rt△APQ中,∠AQP=30°∴AP=12AQ,即2x=12(4−2x)解得x=23;(3)解:∵△ABC是等边三角形∴AC=BC=AB=4当点Q与点C重合时,AP=12AQ=12×4=2则2x=2,解得x=1结合(2)的结论,分以下三种情况:①如图1,当0<x≤23时,重叠部分图形为△PQD由(2)可知,等边△PQD的边长为PQ=√3AP=2√3x 由等边三角形的性质得:PQ边上的高为√32PQ=3x则y=12⋅2√3x⋅3x=3√3x2②如图2,当23<x≤1时,重叠部分图形为四边形EFPQ∵∠B=60°,∠BPD=30°∴∠BFP=180°−∠B−∠BPD=90°则在Rt△BFP中,BF=12BP=12(4−2x)=2−x,PF=√3BF=√3(2−x)∴DF=PD−PF=2√3x−√3(2−x)=3√3x−2√3在Rt△DEF中,tanD=EFDF,即EF=tan60°⋅DF=√3DF 则y=S四边形EFPQ=S△PQD−S Rt△DEF=3√3x2−12DF⋅EF=3√3x2−√32(3√3x−2√3)2=−21√32x2+18√3x−6√3③如图3,当1<x<2时,重叠部分图形为△MPQ同②可知,BM=12BP=12(4−2x)=2−x,PM=√3BM=√3(2−x)在Rt△MPQ中,tan∠MPQ=MQPM,即MQ=tan60°⋅PM=√3PM则y=S△MNP=12PM⋅MQ=√32⋅[√3(2−x)]2=3√32(x−2)2综上,当0<x≤23时,y=3√3x2;当23<x≤1时,y=−21√32x2+18√3x−6√3;当1<x<2时,y=3√32(x−2)2.【考点】三角形的面积,三角形全等及其性质,等边三角形的性质,直角三角形的性质,三角形全等的判定(AAS)【解析】解:(1)由题意得:AP=2x(cm)故答案为:2x;【分析】(1)根据“路程=速度×时间”即可得;(2)如图(见解析),先根据等边三角形的性质可得∠A=∠B=∠DPQ=60°,PQ=DP,再根据垂直的定义可得∠AQP=∠BPD=30°,然后根据三角形全等的判定定理与性质可得AQ=BP,最后在Rt△APQ中,利用直角三角形的性质列出等式求解即可得;(3)先求出点Q与点C重合时x的值,再分0<x≤23、23<x≤1和1<x<2三种情况,然后分别利用等边三角形的性质、正切三角函数、以及三角形的面积公式求解即可得.26.如图,在平面直角坐标系中,抛物线y=−12x2+bx+32与x轴正半轴交于点A,且点A的坐标为(3,0),过点A作垂直于x轴的直线l.P是该抛物线上的任意一点,其横坐标为m,过点P作PQ⊥l于点Q;M是直线l上的一点,其纵坐标为−m+32,以PQ,QM为边作矩形PQMN.(1)求b 的值.(2)当点Q 与点M 重合时,求m 的值.(3)当矩形 PQMN 是正方形,且抛物线的顶点在该正方形内部时,求m 的值.(4)当抛物线在矩形 PQMN 内的部分所对应的函数值y 随x 的增大而减小时,直接写出m 的取值范围.【答案】 (1)解:将点 A(3,0) 代入 y =−12x 2+bx +32得 0=−12×32+3b +32 ,解得b=1,;(2)解:由(1)可得函数的解析式为 y =−12x 2+x +32 ,∴ P(m,−12m 2+m +32) ,∵ PQ ⊥l 于点Q ,∴ Q(3,−12m 2+m +32) ,∵M 是直线l 上的一点,其纵坐标为 −m +32 ,∴ M(3,−m +32) ,若点Q 与点M 重合,则−12m 2+m +32=−m +32, 解得 m 1=0,m 2=4 ;(3)解:由(2)可得 PQ =|3−m| , MQ =|(−m +32)−(−12m 2+m +32)|=|12m 2−2m| , 当矩形 PQMN 是正方形时, PQ =MQ即 |12m 2−2m|=|3−m| ,即 12m 2−2m =3−m 或 12m 2−2m =m −3 ,解 12m 2−2m =3−m 得 m 1=√7+1,m 2=−√7+1 ,解 12m 2−2m =m −3 得 m 3=3+√3,m 2=3−√3 ,又 y =−12x 2+x +32=−12(x −1)+2 ,∴抛物线的顶点为(1,2),∵抛物线的顶点在该正方形内部,∴P 点在抛物线对称轴左侧,即 m <1 ,且M 点的纵坐标大于抛物线顶点的纵坐标,即 −m +32>2 ,解得m<−12,故m的值为−√7+1;(4)解:①如下图当m≤1时,若抛物线在矩形PQMN内的部分所对应的函数值y随x的增大而减小,则M点的纵坐标应该小于P点纵坐标,且P点应该在x轴上侧,即−m+32<−12m2+m+32且−12m2+m+32>0,解−m+32<−12m2+m+32得0<m<4,解−12m2+m+32>0得−1<m<3,∴0<m≤1,②如下图当1<m<3时,若抛物线在矩形PQMN内的部分所对应的函数值y随x的增大而减小,则M点的纵坐标应该小于P点纵坐标,即−m+32<−12m2+m+32,解得0<m<4,∴1<m<3;③当m=3时,P点和M点都在直线x=3上不构成矩形,不符合题意;④如下图当m>3时,若抛物线在矩形PQMN内的部分所对应的函数值y随x的增大而减小,则M点的纵坐标应该大于P点纵坐标,即−m+32>−12m2+m+32,解得m<0或m>4,故m>4,综上所述0<m<3或m>4.【考点】正方形的性质,二次函数图象上点的坐标特征,二次函数y=ax^2+bx+c的性质【解析】【分析】(1)将A点坐标代入函数解析式即可求得b的值;(2)分别表示出P、Q、M的坐标,根据Q、M的横坐标相同,它们重合时纵坐标也相同,列出方程求解即可;(3)分别表示出PQ和MQ的长度,根据矩形PQMN是正方形时PQ=MQ,即可求得m的值,再根据顶点在正方形内部,排除不符合条件的m的值;(4)分m≤1,1<m<3,m=3,m>3四种情况讨论,结合图形分析即可.。
吉林省2020年初中毕业生学业水平考试数学试题(全卷满分120分,考试时间为120分钟)一、单项选择题(每小题2分,共12分)1.﹣6的相反数是()A.6 B.﹣6 C.D.2.国务院总理李克强2020年5月22日在作政府工作报告时说,去年我国农村贫困人口减少11090000,脱贫攻坚取得决定性成就.数据11090000用科学记数法表示为()A.11.09×106B.1.109×107C.1.109×108D.0.1109×1083.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图为()A.B.C.D.4.下列运算正确的是()A.a2•a3=a6B.(a2)3=a5C.(2a)2=2a2D.a3÷a2=a5.将一副三角尺按如图所示的方式摆放,则∠α的大小为()A.85°B.75°C.65°D.60°6.如图,四边形ABCD内接于⊙O,若∠B=108°,则∠D的大小为()A.54°B.62°C.72°D.82°二、填空题(每小题3分,共24分)7.分解因式:a2﹣ab=.8.不等式3x+1>7的解集为.9.一元二次方程x2+3x﹣1=0根的判别式的值为.10.我国古代数学著作《算学启蒙》中有这样一个数学问题,其大意是:跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,快马几天可以追上慢马?设快马x天可以追上慢马,根据题意,可列方程为.11.如图,某单位要在河岸l上建一个水泵房引水到C处.他们的做法是:过点C作CD⊥l于点D,将水泵房建在了D处.这样做最节省水管长度,其数学道理是.12.如图,AB∥CD∥EF.若=,BD=5,则DF=.13.如图,在△ABC中,D,E分别是边AB,AC的中点.若△ADE的面积为,则四边形DBCE的面积为.14.如图,在四边形ABCD中,AB=CB,AD=CD,我们把这种两组邻边分别相等的四边形叫做“筝形”.筝形ABCD的对角线AC,BD相交于点O.以点B为圆心,BO长为半径画弧,分别交AB,BC于点E,F.若∠ABD=∠ACD=30°,AD=1,则的长为(结果保留π).第12题图第13题图第14题图三、解答题(每小题5分,共20分)15.先化简,再求值:(a+1)2+a(1﹣a)﹣1,其中a=.16.“中国结”是我国特有的手工编织工艺品,也是一种传统吉祥装饰物.如图,现有三张正面印有“中国结”图案的不透明卡片A,B,C,卡片除正面图案不同外,其余均相同.将三张卡片正面向下洗匀,小吉同学从中随机抽取一张卡片,记下图案后正面向下放回,洗匀后再从中随机抽取一张卡片,请用画树状图或列表的方法,求小吉同学抽出的两张卡片中含有A卡片的概率.17.甲、乙二人做某种机械零件.已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等.求乙每小时做零件的个数.18.如图,在△ABC中,AB>AC,点D在边AB上,且BD=CA,过点D作DE∥AC,并截取DE=AB,且点C,E在AB同侧,连接BE.求证:△DEB≌△ABC.四、解答题(每小题7分,共28分)19.图①、图②、图③都是3×3的正方形网格,每个小正方形的顶点称为格点.A,B,C均为格点.在给定的网格中,按下列要求画图:(1)在图①中,画一条不与AB重合的线段MN,使MN与AB关于某条直线对称,且M,N为格点.(2)在图②中,画一条不与AC重合的线段PQ,使PQ与AC关于某条直线对称,且P,Q为格点.(3)在图③中,画一个△DEF,使△DEF与△ABC关于某条直线对称,且D,E,F为格点.20.如图,某班数学小组测量塔的高度,在与塔底部B相距35m的C处,用高1.5m的测角仪CD测得该塔顶端A的仰角∠EDA为36°.求塔AB的高度(结果精确到1m).(参考数据:sin36°=0.59,cos36°=0.81,tan36°=0.73)21.如图,在平面直角坐标系中,O为坐标原点,点A,B在函数y=(x>0)的图象上(点B的横坐标大于点A的横坐标),点A的坐标为(2,4),过点A作AD⊥x轴于点D,过点B作BC⊥x轴于点C,连接OA,AB.(1)求k的值.(2)若D为OC中点,求四边形OABC的面积.22.2020年3月线上授课期间,小莹、小静和小新为了解所在学校九年级600名学生居家减压方式情况,对该校九年级部分学生居家减压方式进行抽样调查.将居家减压方式分为A(享受美食)、B(交流谈心)、C(室内体育活动)、D(听音乐)和E(其他方式)五类,要求每位被调查者选择一种自己最常用的减压方式.他们将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3.表1:小莹抽取60名男生居家减压方式统计表(单位:人)减压方式 A B C D E人数 4 6 37 8 5表2:小静随机抽取10名学生居家减压方式统计表(单位:人)减压方式 A B C D E人数 2 1 3 3 1表3:小新随机抽取60名学生居家减压方式统计表(单位:人)减压方式 A B C D E人数 6 5 26 13 10根据以上材料,回答下列问题:(1)小莹、小静和小新三人中,哪一位同学抽样调查的数据能较好地反映出该校九年级学生居家减压方式情况,并简要说明其他两位同学抽样调查的不足之处.(2)根据三人中能较好地反映出该校九年级居家减压方式的调查结果,估计该校九年级600名学生中利用室内体育活动方式进行减压的人数.五、解答题(每小题8分,共16分)23.某种机器工作前先将空油箱加满,然后停止加油立即开始工作.当停止工作时,油箱中油量为5L,在整个过程中,油箱里的油量y(单位:L)与时间x(单位:min)之间的关系如图所示.(1)机器每分钟加油量为L,机器工作的过程中每分钟耗油量为L.(2)求机器工作时y关于x的函数解析式,并写出自变量x的取值范围.(3)直接写出油箱中油量为油箱容积的一半时x的值.24.能够完全重合的平行四边形纸片ABCD和AEFG按图①方式摆放,其中AD=AG=5,AB=9.点D,G分别在边AE,AB上,CD与FG相交于点H.【探究】求证:四边形AGHD是菱形.【操作一】固定图①中的平行四边形纸片ABCD,将平行四边形纸片AEFG绕着点A顺时针旋转一定的角度,使点F与点C重合,如图②.则这两张平行四边形纸片未重叠部分图形的周长和为.【操作二】将图②中的平行四边形纸片AEFG绕着点A继续顺时针旋转一定的角度,使点E与点B重合,连接DG,CF,如图③,若sin∠BAD=,则四边形DCFG的面积为.六、解答题(每小题10分,共20分)25.如图,△ABC是等边三角形,AB=4cm,动点P从点A出发,以2cm/s的速度沿AB向点B匀速运动,过点P作PQ⊥AB,交折线AC﹣CB于点Q,以PQ为边作等边三角形PQD,使点A,D在PQ异侧.设点P的运动时间为x(s)(0<x<2),△PQD与△ABC重叠部分图形的面积为y(cm2).(1)AP的长为cm(用含x的代数式表示).(2)当点D落在边BC上时,求x的值.(3)求y关于x的函数解析式,并写出自变量x的取值范围.26.如图,在平面直角坐标系中,抛物线y=﹣x2+bx+与x轴正半轴交于点A,且点A的坐标为(3,0),过点A作垂直于x轴的直线l.P是该抛物线上的任意一点,其横坐标为m,过点P 作PQ⊥l于点Q,M是直线l上的一点,其纵坐标为﹣m+.以PQ,QM为边作矩形PQMN.(1)求b的值.(2)当点Q与点M重合时,求m的值.(3)当矩形PQMN是正方形,且抛物线的顶点在该正方形内部时,求m的值.(4)当抛物线在矩形PQMN内的部分所对应的函数值y随x的增大而减小时,直接写出m的取值范围.答案与解析一、单项选择题(每小题2分,共12分)1.﹣6的相反数是()A.6 B.﹣6 C.D.【知识考点】相反数.【思路分析】根据相反数的定义,即可解答.【解题过程】解:﹣6的相反数是6,故选:A.【总结归纳】本题考查了相反数,解决本题的关键是熟记相反数的定义.2.国务院总理李克强2020年5月22日在作政府工作报告时说,去年我国农村贫困人口减少11090000,脱贫攻坚取得决定性成就.数据11090000用科学记数法表示为()A.11.09×106B.1.109×107C.1.109×108D.0.1109×108【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解题过程】解:11090000=1.109×107,故选:B.【总结归纳】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图为()A.B.C.D.【知识考点】简单组合体的三视图.【思路分析】根据从左边看得到的图形是左视图,可得答案.【解题过程】解:从左边看第一层是一个小正方形,第二层也是一个小正方形,所以左视图是选项A,故选:A.【总结归纳】本题考查了简单组合体的三视图.解题的关键是掌握简单组合体的三视图的定义,注意:从左边看得到的图形是左视图.4.下列运算正确的是()A.a2•a3=a6B.(a2)3=a5C.(2a)2=2a2D.a3÷a2=a【知识考点】同底数幂的乘法;幂的乘方与积的乘方;同底数幂的除法.【思路分析】根据同底数幂的乘除法、幂的乘方、积的乘方的运算法则,对各选项计算后利用排除法求解.【解题过程】解:A、a2•a3=a5,原计算错误,故此选项不符合题意;B、(a2)3=a6,原计算错误,故此选项不符合题意;C、(2a)2=4a2,原计算错误,故此选项不符合题意;D、a3÷a2=a,原计算正确,故此选项符合题意;故选:D.【总结归纳】本题考查了整式的运算,熟练掌握运算性质和法则是解题的关键.5.将一副三角尺按如图所示的方式摆放,则∠α的大小为()A.85°B.75°C.65°D.60°【知识考点】三角形的外角性质.【思路分析】先根据直角三角板的性质得出∠ACD的度数,再由三角形内角和定理即可得出结论.【解题过程】解:如图所示,∵∠BCD=60°,∠BCA=45°,∴∠ACD=∠BCD﹣∠BCA=60°﹣45°=15°,∠α=180°﹣∠D﹣∠ACD=180°﹣90°﹣15°=75°,故选:B.【总结归纳】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.6.如图,四边形ABCD内接于⊙O,若∠B=108°,则∠D的大小为()A.54°B.62°C.72°D.82°【知识考点】M5:圆周角定理;M6:圆内接四边形的性质.【思路分析】运用圆内接四边形对角互补计算即可.【解题过程】解:∵四边形ABCD内接于⊙O,∠B=108°,∴∠D=180°﹣∠B=180°﹣108°=72°,故选:C.【总结归纳】本题主要考查了圆内接四边形的性质,熟练掌握圆内接四边形对角互补是解答此题的关键.二、填空题(每小题3分,共24分)7.分解因式:a2﹣ab=.【知识考点】因式分解﹣提公因式法.【思路分析】直接把公因式a提出来即可.【解题过程】解:a2﹣ab=a(a﹣b).【总结归纳】本题主要考查提公因式法分解因式,准确找出公因式是a是解题的关键.8.不等式3x+1>7的解集为.【知识考点】解一元一次不等式.【思路分析】移项、合并同类项、系数化为1即可得答案.【解题过程】解:3x+1>7,移项得:3x>7﹣1,合并同类项得:3x>6,系数化为1得:x>2,故答案为:x>2.【总结归纳】此题主要考查了解一元一次不等式,关键是掌握解不等式的步骤.9.一元二次方程x2+3x﹣1=0根的判别式的值为.【知识考点】根的判别式.【思路分析】根据一元二次方程根的判别式△=b2﹣4ac即可求出值.【解题过程】解:∵a=1,b=3,c=﹣1,∴△=b2﹣4ac=9+4=13.所以一元二次方程x2+3x﹣1=0根的判别式的值为13.故答案为:13.【总结归纳】本题考查了根的判别式,解决本题的关键是掌握根的判别式.10.我国古代数学著作《算学启蒙》中有这样一个数学问题,其大意是:跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,快马几天可以追上慢马?设快马x天可以追上慢马,根据题意,可列方程为.【知识考点】数学常识;由实际问题抽象出一元一次方程.【思路分析】设快马x天可以追上慢马,根据两马的速度之差×快马出发的时间=慢马的速度×慢马提前出发的时间,即可得出关于x的一元一次方程,此题得解.【解题过程】解:设快马x天可以追上慢马,依题意,得:(240﹣150)x=150×12.故答案为:(240﹣150)x=150×12.【总结归纳】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.11.如图,某单位要在河岸l上建一个水泵房引水到C处.他们的做法是:过点C作CD⊥l于点D,将水泵房建在了D处.这样做最节省水管长度,其数学道理是.【知识考点】垂线段最短.【思路分析】根据垂线段的性质解答即可.【解题过程】解:过点C作CD⊥l于点D,将水泵房建在了D处.这样做最节省水管长度,其数学道理是垂线段最短.故答案为:垂线段最短.【总结归纳】本题考查了垂线段的定义和性质.解题的关键是理解题意,灵活运用所学知识解决实际问题.12.如图,AB∥CD∥EF.若=,BD=5,则DF=.【知识考点】平行线分线段成比例.【思路分析】利用平行线分线段成比例定理得到=,然后根据比例性质求DF的长.【解题过程】解:∵AB∥CD∥EF,∴==,∴DF=2BD=2×5=10.故答案为10.【总结归纳】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.13.如图,在△ABC中,D,E分别是边AB,AC的中点.若△ADE的面积为,则四边形DBCE 的面积为.【知识考点】三角形的面积;三角形中位线定理.【思路分析】根据三角形中位线定理得到DE∥BC,DE=BC,证明△ADE∽△ABC,根据相似三角形的性质求出△ABC的面积,即可得到答案.【解题过程】解:∵D,E分别是△ABC的边AB,AC的中点,∴DE是△ABC的中位线,∴DE∥BC,DE=BC,∴△ADE∽△ABC,∴=()2=()2=,∵△ADE的面积为,∴△ABC的面积为2,∴四边形DBCE的面积=2﹣=,故答案为:.【总结归纳】本题考查的是三角形中位线定理、相似三角形的判定和性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.14.如图,在四边形ABCD中,AB=CB,AD=CD,我们把这种两组邻边分别相等的四边形叫做“筝形”.筝形ABCD的对角线AC,BD相交于点O.以点B为圆心,BO长为半径画弧,分别交AB,BC于点E,F.若∠ABD=∠ACD=30°,AD=1,则的长为(结果保留π).【知识考点】全等三角形的判定与性质;弧长的计算.【思路分析】利用SSS证明△ABD≌△CBD,根据全等三角形的对应角相等即可得出∠ABD=∠CBD=30°,∠ADB=∠CDB,CD=AD=1,即可求得∠ABC=60°,根据等腰三角形三线合一的性质得出BD⊥AC,且AO=CO,进一步求得∠ACB=60°,即可求得∠BCD=90°,根据含30°角的直角三角形的性质即可求得OB,然后根据弧长公式求得即可.【解题过程】解:在△ABD与△CBD中,,∴△ABD≌△CBD(SSS),∴∠ABD=∠CBD=30°,∠ADB=∠CDB,CD=AD=1,∴∠ABC=60°,∵AD=CD,∠ADB=∠CDB,∴BD⊥AC,且AO=CO,∴∠ACB=90°﹣30°=60°,∴∠BCD=∠ACB+∠ACD=90°,在Rt△BCD中,∵∠CBD=30°,∴BD=2CD=2,在Rt△COD中,∵∠ACD=30°,∴OD=CD=,∴OB=BD﹣OD=2﹣=,∴的长为:=,故答案为.【总结归纳】本题考查了三角形全等的判定和性质,等腰三角形的性质,直角三角形的判定和性质,含30°角的直角三角形的性质,弧长的计算等,熟练掌握性质定理是解题的关键.三、解答题(每小题5分,共20分)15.先化简,再求值:(a+1)2+a(1﹣a)﹣1,其中a=.【知识考点】整式的混合运算—化简求值.【思路分析】根据整式的混合运算顺序进行化简,再代入值即可.【解题过程】解:原式=a2+2a+1+a﹣a2﹣1=3a.当a=时,原式=3.【总结归纳】本题考查了整式的混合运算﹣化简求值,解决本题的关键是先进行整式的化简,再代入值.16.“中国结”是我国特有的手工编织工艺品,也是一种传统吉祥装饰物.如图,现有三张正面印有“中国结”图案的不透明卡片A,B,C,卡片除正面图案不同外,其余均相同.将三张卡片正面向下洗匀,小吉同学从中随机抽取一张卡片,记下图案后正面向下放回,洗匀后再从中随机抽取一张卡片,请用画树状图或列表的方法,求小吉同学抽出的两张卡片中含有A卡片的概率.【知识考点】列表法与树状图法.【思路分析】根据题意列出图表得出所有等情况数和两张卡片中含有A卡片的情况数,然后根据概率公式即可得出答案.【解题过程】解:根据题意列表如下:A B CA AA BA CAB AB BB CBC AC BC CC共有9种等可能的结果数,其中小吉同学抽出的两张卡片中含有A卡片的有5种情况,∴小吉同学抽出的两张卡片中含有A卡片的概率为.【总结归纳】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.17.甲、乙二人做某种机械零件.已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等.求乙每小时做零件的个数.【知识考点】分式方程的应用.【思路分析】设乙每小时做x个零件,甲每小时做(x+6)个零件,根据时间=总工作量÷工作效率,即可得出关于x的分式方程,解之并检验后即可得出结论.【解题过程】解:设乙每小时做x个零件,甲每小时做(x+6)个零件,根据题意得:=,解得:x=12,经检验,x=12是原方程的解,且符合题意,∴x+6=18.答:乙每小时做12个零件.【总结归纳】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.18.如图,在△ABC中,AB>AC,点D在边AB上,且BD=CA,过点D作DE∥AC,并截取DE=AB,且点C,E在AB同侧,连接BE.求证:△DEB≌△ABC.【知识考点】全等三角形的判定.【思路分析】由DE∥AC,根据平行线的性质得出∠EDB=∠A,又BD=CA,DE=AB,利用SAS即可证明△DEB≌△ABC.【解题过程】证明:∵DE∥AC,∴∠EDB=∠A.在△DEB与△ABC中,,∴△DEB≌△ABC(SAS).【总结归纳】本题考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等,本题是一道较为简单的题目.四、解答题(每小题7分,共28分)19.图①、图②、图③都是3×3的正方形网格,每个小正方形的顶点称为格点.A,B,C均为格点.在给定的网格中,按下列要求画图:(1)在图①中,画一条不与AB重合的线段MN,使MN与AB关于某条直线对称,且M,N为格点.(2)在图②中,画一条不与AC重合的线段PQ,使PQ与AC关于某条直线对称,且P,Q为格点.(3)在图③中,画一个△DEF,使△DEF与△ABC关于某条直线对称,且D,E,F为格点.【知识考点】作图﹣轴对称变换.【思路分析】(1)根据对称性在图①中,画一条不与AB重合的线段MN与AB对称即可;(2)根据对称性即可在图②中,画一条不与AC重合的线段PQ与AC对称;(3)根据对称性在图③中,画一个△DEF,使△DEF与△ABC关于某条直线对称即可.【解题过程】解:(1)如图①,MN即为所求;(2)如图②,PQ即为所求;(3)如图③,△DEF即为所求.【总结归纳】本题考查了作图﹣轴对称变换,解决本题的关键是掌握轴对称性质.20.如图,某班数学小组测量塔的高度,在与塔底部B相距35m的C处,用高1.5m的测角仪CD 测得该塔顶端A的仰角∠EDA为36°.求塔AB的高度(结果精确到1m).(参考数据:sin36°=0.59,cos36°=0.81,tan36°=0.73)【知识考点】解直角三角形的应用﹣仰角俯角问题.【思路分析】设AB与DE交于点F.在Rt△ADF中,利用三角函数定义求出AF,即可得出答案.【解题过程】解:设AB与DE交于点F,如图所示:由题意得:DF⊥AB,BE=CD=1.5m,DF=BC=35m,在Rt△ADF中,∠AFD=90°,tan∠EDA=,∴AF=DF×tan36°≈35×0.73=25.55(m),∴AB=AF+BF=25.55+1.5≈27(m);答:塔AB的高度约27m.【总结归纳】本题考查了解直角三角形的应用,能借助仰角构造直角三角形并解直角三角形是解题的关键.21.如图,在平面直角坐标系中,O为坐标原点,点A,B在函数y=(x>0)的图象上(点B 的横坐标大于点A的横坐标),点A的坐标为(2,4),过点A作AD⊥x轴于点D,过点B作BC⊥x轴于点C,连接OA,AB.(1)求k的值.(2)若D为OC中点,求四边形OABC的面积.【知识考点】反比例函数系数k的几何意义;反比例函数图象上点的坐标特征.【思路分析】(1)将点A的坐标为(2,4)代入y=(x>0),可得结果;(2)利用反比例函数的解析式可得点B的坐标,利用三角形的面积公式和梯形的面积公式可得结果.【解题过程】解:(1)将点A的坐标为(2,4)代入y=(x>0),可得k=xy=2×4=8,∴k的值为8;(2)∵k的值为8,∴函数y=的解析式为y=,∵D为OC中点,OD=2,∴OC=4,∴点B的横坐标为4,将x=4代入y=,可得y=2,∴点B的坐标为(4,2),∴S四边形OABC=S△AOD+S四边形ABCD==10.【总结归纳】本题主要考查了反比例函数的系数k的几何意义,运用数形结合思想是解答此题的关键.22.2020年3月线上授课期间,小莹、小静和小新为了解所在学校九年级600名学生居家减压方式情况,对该校九年级部分学生居家减压方式进行抽样调查.将居家减压方式分为A(享受美食)、B(交流谈心)、C(室内体育活动)、D(听音乐)和E(其他方式)五类,要求每位被调查者选择一种自己最常用的减压方式.他们将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3.表1:小莹抽取60名男生居家减压方式统计表(单位:人)减压方式 A B C D E人数 4 6 37 8 5表2:小静随机抽取10名学生居家减压方式统计表(单位:人)减压方式 A B C D E人数 2 1 3 3 1表3:小新随机抽取60名学生居家减压方式统计表(单位:人)减压方式 A B C D E人数 6 5 26 13 10根据以上材料,回答下列问题:(1)小莹、小静和小新三人中,哪一位同学抽样调查的数据能较好地反映出该校九年级学生居家减压方式情况,并简要说明其他两位同学抽样调查的不足之处.(2)根据三人中能较好地反映出该校九年级居家减压方式的调查结果,估计该校九年级600名学生中利用室内体育活动方式进行减压的人数.【知识考点】抽样调查的可靠性;用样本估计总体;统计表.【思路分析】(1)根据抽取样本的原则,为使样本具有代表性、普遍性、可操作性的原则进行;(2)样本中“采取室内体育锻炼减缓压力”的占,因此估计总体600人的是采取室内体育锻炼减缓压力的人数.【解题过程】解:(1)小新同学抽样调查的数据能较好地反映出该校九年级学生居家减压方式情况,小莹同学调查的只是男生,不具有代表性,小静同学调查的人数偏少,具有片面性,对整体情况的反映容易造成偏差.(2)600×=260(人),答:该校九年级600名学生中利用室内体育活动方式进行减压的大约有260人.【总结归纳】本题考查样本估计总体的统计方法,理解选取样本的原则是正确判断的前提.五、解答题(每小题8分,共16分)23.某种机器工作前先将空油箱加满,然后停止加油立即开始工作.当停止工作时,油箱中油量为5L,在整个过程中,油箱里的油量y(单位:L)与时间x(单位:min)之间的关系如图所示.(1)机器每分钟加油量为L,机器工作的过程中每分钟耗油量为L.(2)求机器工作时y关于x的函数解析式,并写出自变量x的取值范围.(3)直接写出油箱中油量为油箱容积的一半时x的值.【知识考点】一次函数的应用.【思路分析】(1)根据函数图象中的数据,可以得到机器每分钟加油量和机器工作的过程中每分钟耗油量;(2)根据函数图象中的数据,可以得到机器工作时y关于x的函数解析式,并写出自变量x的取值范围;(3)根据(2)中的函数解析式,令函数值为30÷2,即可得到相应的x的值.【解题过程】解:(1)由图象可得,机器每分钟加油量为:30÷10=3(L),机器工作的过程中每分钟耗油量为:(30﹣5)÷(60﹣10)=0.5(L),故答案为:3,0.5;(2)当0≤x≤10时,设y关于x的函数解析式为y=kx,10k=30,得k=3,即当0≤x≤10时,y关于x的函数解析式为y=3x,当10<x≤60时,设y关于x的函数解析式为y=ax+b,,解得,,即当10<x≤60时,y关于x的函数解析式为y=﹣0.5x+35,由上可得,y关于x的函数解析式为y=;(3)当3x=30÷2时,得x=5,当﹣0.5x+35=30÷2时,得x=40,即油箱中油量为油箱容积的一半时x的值是5或40.【总结归纳】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.24.能够完全重合的平行四边形纸片ABCD和AEFG按图①方式摆放,其中AD=AG=5,AB=9.点D,G分别在边AE,AB上,CD与FG相交于点H.【探究】求证:四边形AGHD是菱形.【操作一】固定图①中的平行四边形纸片ABCD,将平行四边形纸片AEFG绕着点A顺时针旋转一定的角度,使点F与点C重合,如图②.则这两张平行四边形纸片未重叠部分图形的周长和为.【操作二】将图②中的平行四边形纸片AEFG绕着点A继续顺时针旋转一定的角度,使点E与点B重合,连接DG,CF,如图③,若sin∠BAD=,则四边形DCFG的面积为.【知识考点】四边形综合题.【思路分析】【探究】先由平行四边形的性质得AE∥GF,DC∥AB,进而得四边形AGHD是平行四边形,再结合邻边相等,得四边形AGHD是菱形;【操作一】这两张平行四边形纸片未重叠部分图形的周长和实际为平行四边形ABCD和平行四边形AEFG的周长和,由此求得结果便可;【操作二】证明△AMD≌△AMG得∠AMD=∠AMG=90°,解Rt△ADM得DM,再证明四边形DCFG为矩形,由矩形面积公式求得结果.【解题过程】解:【探究】∵四边形ABCD和AEFG都是平行四边形,∴AE∥GF,DC∥AB,∴四边形AGHD是平行四边形,∵AD=AG,∴四边形AGHD是菱形;【操作一】根据题意得,这两张平行四边形纸片未重叠部分图形的周长和为:ME+EF+MC+AD+DM+AM+AG+GN+AN+BN+BC+NF=(ME+AM+AG+EF+NF)+(AD+BC+DM+MC+AN+BN)=2(AE+AG)+2(AB+AD)=2×(9+5)+2×(9+5)=56,故答案为:56;【操作二】由题意知,AD=AG=5,∠DAB=∠BAG,又AM=AM,∴△AMD≌△AMG(SAS),∴DM=GM,∠AMD=∠AMG,∵∠AMD+∠AMG=180°,∴∠AMD=∠AMG=90°,∵sin∠BAD=,∴,∴DM=AD=,∴DG=,∵四边形ABCD和四边形AEFG是平行四边形,∴DC∥AB∥GF,DC=AB=GF=9,∴四边形CDGF是平行四边形,∵∠AMD=90°,∴∠CDG=∠AMD=90°,。
吉林省2020年初中毕业生学业水平考试数学试题(全卷满分120分,考试时间为120分钟)一、单项选择题(每小题2分,共12分)1.﹣6的相反数是()A.6 B.﹣6 C.D.2.国务院总理李克强2020年5月22日在作政府工作报告时说,去年我国农村贫困人口减少11090000,脱贫攻坚取得决定性成就.数据11090000用科学记数法表示为()A.11.09×106B.1.109×107C.1.109×108D.0.1109×1083.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图为()A.B.C.D.4.下列运算正确的是()A.a2•a3=a6B.(a2)3=a5C.(2a)2=2a2D.a3÷a2=a5.将一副三角尺按如图所示的方式摆放,则∠α的大小为()A.85°B.75°C.65°D.60°6.如图,四边形ABCD内接于⊙O,若∠B=108°,则∠D的大小为()A.54°B.62°C.72°D.82°二、填空题(每小题3分,共24分)7.分解因式:a2﹣ab=.8.不等式3x+1>7的解集为.9.一元二次方程x2+3x﹣1=0根的判别式的值为.10.我国古代数学著作《算学启蒙》中有这样一个数学问题,其大意是:跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,快马几天可以追上慢马?设快马x天可以追上慢马,根据题意,可列方程为.11.如图,某单位要在河岸l上建一个水泵房引水到C处.他们的做法是:过点C作CD⊥l于点D,将水泵房建在了D处.这样做最节省水管长度,其数学道理是.12.如图,AB∥CD∥EF.若=,BD=5,则DF=.13.如图,在△ABC中,D,E分别是边AB,AC的中点.若△ADE的面积为,则四边形DBCE的面积为.14.如图,在四边形ABCD中,AB=CB,AD=CD,我们把这种两组邻边分别相等的四边形叫做“筝形”.筝形ABCD的对角线AC,BD相交于点O.以点B为圆心,BO长为半径画弧,分别交AB,BC于点E,F.若∠ABD=∠ACD=30°,AD=1,则的长为(结果保留π).第12题图第13题图第14题图三、解答题(每小题5分,共20分)15.先化简,再求值:(a+1)2+a(1﹣a)﹣1,其中a=.16.“中国结”是我国特有的手工编织工艺品,也是一种传统吉祥装饰物.如图,现有三张正面印有“中国结”图案的不透明卡片A,B,C,卡片除正面图案不同外,其余均相同.将三张卡片正面向下洗匀,小吉同学从中随机抽取一张卡片,记下图案后正面向下放回,洗匀后再从中随机抽取一张卡片,请用画树状图或列表的方法,求小吉同学抽出的两张卡片中含有A卡片的概率.17.甲、乙二人做某种机械零件.已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等.求乙每小时做零件的个数.18.如图,在△ABC中,AB>AC,点D在边AB上,且BD=CA,过点D作DE∥AC,并截取DE=AB,且点C,E在AB同侧,连接BE.求证:△DEB≌△ABC.四、解答题(每小题7分,共28分)19.图①、图②、图③都是3×3的正方形网格,每个小正方形的顶点称为格点.A,B,C均为格点.在给定的网格中,按下列要求画图:(1)在图①中,画一条不与AB重合的线段MN,使MN与AB关于某条直线对称,且M,N为格点.(2)在图②中,画一条不与AC重合的线段PQ,使PQ与AC关于某条直线对称,且P,Q为格点.(3)在图③中,画一个△DEF,使△DEF与△ABC关于某条直线对称,且D,E,F为格点.20.如图,某班数学小组测量塔的高度,在与塔底部B相距35m的C处,用高1.5m的测角仪CD测得该塔顶端A的仰角∠EDA为36°.求塔AB的高度(结果精确到1m).(参考数据:sin36°=0.59,cos36°=0.81,tan36°=0.73)21.如图,在平面直角坐标系中,O为坐标原点,点A,B在函数y=(x>0)的图象上(点B的横坐标大于点A的横坐标),点A的坐标为(2,4),过点A作AD⊥x轴于点D,过点B作BC⊥x轴于点C,连接OA,AB.(1)求k的值.(2)若D为OC中点,求四边形OABC的面积.22.2020年3月线上授课期间,小莹、小静和小新为了解所在学校九年级600名学生居家减压方式情况,对该校九年级部分学生居家减压方式进行抽样调查.将居家减压方式分为A(享受美食)、B(交流谈心)、C(室内体育活动)、D(听音乐)和E(其他方式)五类,要求每位被调查者选择一种自己最常用的减压方式.他们将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3.表1:小莹抽取60名男生居家减压方式统计表(单位:人)减压方式 A B C D E人数 4 6 37 8 5表2:小静随机抽取10名学生居家减压方式统计表(单位:人)减压方式 A B C D E人数 2 1 3 3 1表3:小新随机抽取60名学生居家减压方式统计表(单位:人)减压方式 A B C D E人数 6 5 26 13 10根据以上材料,回答下列问题:(1)小莹、小静和小新三人中,哪一位同学抽样调查的数据能较好地反映出该校九年级学生居家减压方式情况,并简要说明其他两位同学抽样调查的不足之处.(2)根据三人中能较好地反映出该校九年级居家减压方式的调查结果,估计该校九年级600名学生中利用室内体育活动方式进行减压的人数.五、解答题(每小题8分,共16分)23.某种机器工作前先将空油箱加满,然后停止加油立即开始工作.当停止工作时,油箱中油量为5L,在整个过程中,油箱里的油量y(单位:L)与时间x(单位:min)之间的关系如图所示.(1)机器每分钟加油量为L,机器工作的过程中每分钟耗油量为L.(2)求机器工作时y关于x的函数解析式,并写出自变量x的取值范围.(3)直接写出油箱中油量为油箱容积的一半时x的值.24.能够完全重合的平行四边形纸片ABCD和AEFG按图①方式摆放,其中AD=AG=5,AB=9.点D,G分别在边AE,AB上,CD与FG相交于点H.【探究】求证:四边形AGHD是菱形.【操作一】固定图①中的平行四边形纸片ABCD,将平行四边形纸片AEFG绕着点A顺时针旋转一定的角度,使点F与点C重合,如图②.则这两张平行四边形纸片未重叠部分图形的周长和为.【操作二】将图②中的平行四边形纸片AEFG绕着点A继续顺时针旋转一定的角度,使点E与点B重合,连接DG,CF,如图③,若sin∠BAD=,则四边形DCFG的面积为.六、解答题(每小题10分,共20分)25.如图,△ABC是等边三角形,AB=4cm,动点P从点A出发,以2cm/s的速度沿AB向点B匀速运动,过点P作PQ⊥AB,交折线AC﹣CB于点Q,以PQ为边作等边三角形PQD,使点A,D在PQ异侧.设点P的运动时间为x(s)(0<x<2),△PQD与△ABC重叠部分图形的面积为y(cm2).(1)AP的长为cm(用含x的代数式表示).(2)当点D落在边BC上时,求x的值.(3)求y关于x的函数解析式,并写出自变量x的取值范围.26.如图,在平面直角坐标系中,抛物线y=﹣x2+bx+与x轴正半轴交于点A,且点A的坐标为(3,0),过点A作垂直于x轴的直线l.P是该抛物线上的任意一点,其横坐标为m,过点P 作PQ⊥l于点Q,M是直线l上的一点,其纵坐标为﹣m+.以PQ,QM为边作矩形PQMN.(1)求b的值.(2)当点Q与点M重合时,求m的值.(3)当矩形PQMN是正方形,且抛物线的顶点在该正方形内部时,求m的值.(4)当抛物线在矩形PQMN内的部分所对应的函数值y随x的增大而减小时,直接写出m的取值范围.答案与解析一、单项选择题(每小题2分,共12分)1.﹣6的相反数是()A.6 B.﹣6 C.D.【知识考点】相反数.【思路分析】根据相反数的定义,即可解答.【解题过程】解:﹣6的相反数是6,故选:A.【总结归纳】本题考查了相反数,解决本题的关键是熟记相反数的定义.2.国务院总理李克强2020年5月22日在作政府工作报告时说,去年我国农村贫困人口减少11090000,脱贫攻坚取得决定性成就.数据11090000用科学记数法表示为()A.11.09×106B.1.109×107C.1.109×108D.0.1109×108【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解题过程】解:11090000=1.109×107,故选:B.【总结归纳】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图为()A.B.C.D.【知识考点】简单组合体的三视图.【思路分析】根据从左边看得到的图形是左视图,可得答案.【解题过程】解:从左边看第一层是一个小正方形,第二层也是一个小正方形,所以左视图是选项A,故选:A.【总结归纳】本题考查了简单组合体的三视图.解题的关键是掌握简单组合体的三视图的定义,注意:从左边看得到的图形是左视图.4.下列运算正确的是()A.a2•a3=a6B.(a2)3=a5C.(2a)2=2a2D.a3÷a2=a【知识考点】同底数幂的乘法;幂的乘方与积的乘方;同底数幂的除法.【思路分析】根据同底数幂的乘除法、幂的乘方、积的乘方的运算法则,对各选项计算后利用排除法求解.【解题过程】解:A、a2•a3=a5,原计算错误,故此选项不符合题意;B、(a2)3=a6,原计算错误,故此选项不符合题意;C、(2a)2=4a2,原计算错误,故此选项不符合题意;D、a3÷a2=a,原计算正确,故此选项符合题意;故选:D.【总结归纳】本题考查了整式的运算,熟练掌握运算性质和法则是解题的关键.5.将一副三角尺按如图所示的方式摆放,则∠α的大小为()A.85°B.75°C.65°D.60°【知识考点】三角形的外角性质.【思路分析】先根据直角三角板的性质得出∠ACD的度数,再由三角形内角和定理即可得出结论.【解题过程】解:如图所示,∵∠BCD=60°,∠BCA=45°,∴∠ACD=∠BCD﹣∠BCA=60°﹣45°=15°,∠α=180°﹣∠D﹣∠ACD=180°﹣90°﹣15°=75°,故选:B.【总结归纳】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.6.如图,四边形ABCD内接于⊙O,若∠B=108°,则∠D的大小为()A.54°B.62°C.72°D.82°【知识考点】M5:圆周角定理;M6:圆内接四边形的性质.【思路分析】运用圆内接四边形对角互补计算即可.【解题过程】解:∵四边形ABCD内接于⊙O,∠B=108°,∴∠D=180°﹣∠B=180°﹣108°=72°,故选:C.【总结归纳】本题主要考查了圆内接四边形的性质,熟练掌握圆内接四边形对角互补是解答此题的关键.二、填空题(每小题3分,共24分)7.分解因式:a2﹣ab=.【知识考点】因式分解﹣提公因式法.【思路分析】直接把公因式a提出来即可.【解题过程】解:a2﹣ab=a(a﹣b).【总结归纳】本题主要考查提公因式法分解因式,准确找出公因式是a是解题的关键.8.不等式3x+1>7的解集为.【知识考点】解一元一次不等式.【思路分析】移项、合并同类项、系数化为1即可得答案.【解题过程】解:3x+1>7,移项得:3x>7﹣1,合并同类项得:3x>6,系数化为1得:x>2,故答案为:x>2.【总结归纳】此题主要考查了解一元一次不等式,关键是掌握解不等式的步骤.9.一元二次方程x2+3x﹣1=0根的判别式的值为.【知识考点】根的判别式.【思路分析】根据一元二次方程根的判别式△=b2﹣4ac即可求出值.【解题过程】解:∵a=1,b=3,c=﹣1,∴△=b2﹣4ac=9+4=13.所以一元二次方程x2+3x﹣1=0根的判别式的值为13.故答案为:13.【总结归纳】本题考查了根的判别式,解决本题的关键是掌握根的判别式.10.我国古代数学著作《算学启蒙》中有这样一个数学问题,其大意是:跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,快马几天可以追上慢马?设快马x天可以追上慢马,根据题意,可列方程为.【知识考点】数学常识;由实际问题抽象出一元一次方程.【思路分析】设快马x天可以追上慢马,根据两马的速度之差×快马出发的时间=慢马的速度×慢马提前出发的时间,即可得出关于x的一元一次方程,此题得解.【解题过程】解:设快马x天可以追上慢马,依题意,得:(240﹣150)x=150×12.故答案为:(240﹣150)x=150×12.【总结归纳】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.11.如图,某单位要在河岸l上建一个水泵房引水到C处.他们的做法是:过点C作CD⊥l于点D,将水泵房建在了D处.这样做最节省水管长度,其数学道理是.【知识考点】垂线段最短.【思路分析】根据垂线段的性质解答即可.【解题过程】解:过点C作CD⊥l于点D,将水泵房建在了D处.这样做最节省水管长度,其数学道理是垂线段最短.故答案为:垂线段最短.【总结归纳】本题考查了垂线段的定义和性质.解题的关键是理解题意,灵活运用所学知识解决实际问题.12.如图,AB∥CD∥EF.若=,BD=5,则DF=.【知识考点】平行线分线段成比例.【思路分析】利用平行线分线段成比例定理得到=,然后根据比例性质求DF的长.【解题过程】解:∵AB∥CD∥EF,∴==,∴DF=2BD=2×5=10.故答案为10.【总结归纳】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.13.如图,在△ABC中,D,E分别是边AB,AC的中点.若△ADE的面积为,则四边形DBCE 的面积为.【知识考点】三角形的面积;三角形中位线定理.【思路分析】根据三角形中位线定理得到DE∥BC,DE=BC,证明△ADE∽△ABC,根据相似三角形的性质求出△ABC的面积,即可得到答案.【解题过程】解:∵D,E分别是△ABC的边AB,AC的中点,∴DE是△ABC的中位线,∴DE∥BC,DE=BC,∴△ADE∽△ABC,∴=()2=()2=,∵△ADE的面积为,∴△ABC的面积为2,∴四边形DBCE的面积=2﹣=,故答案为:.【总结归纳】本题考查的是三角形中位线定理、相似三角形的判定和性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.14.如图,在四边形ABCD中,AB=CB,AD=CD,我们把这种两组邻边分别相等的四边形叫做“筝形”.筝形ABCD的对角线AC,BD相交于点O.以点B为圆心,BO长为半径画弧,分别交AB,BC于点E,F.若∠ABD=∠ACD=30°,AD=1,则的长为(结果保留π).【知识考点】全等三角形的判定与性质;弧长的计算.【思路分析】利用SSS证明△ABD≌△CBD,根据全等三角形的对应角相等即可得出∠ABD=∠CBD=30°,∠ADB=∠CDB,CD=AD=1,即可求得∠ABC=60°,根据等腰三角形三线合一的性质得出BD⊥AC,且AO=CO,进一步求得∠ACB=60°,即可求得∠BCD=90°,根据含30°角的直角三角形的性质即可求得OB,然后根据弧长公式求得即可.【解题过程】解:在△ABD与△CBD中,,∴△ABD≌△CBD(SSS),∴∠ABD=∠CBD=30°,∠ADB=∠CDB,CD=AD=1,∴∠ABC=60°,∵AD=CD,∠ADB=∠CDB,∴BD⊥AC,且AO=CO,∴∠ACB=90°﹣30°=60°,∴∠BCD=∠ACB+∠ACD=90°,在Rt△BCD中,∵∠CBD=30°,∴BD=2CD=2,在Rt△COD中,∵∠ACD=30°,∴OD=CD=,∴OB=BD﹣OD=2﹣=,∴的长为:=,故答案为.【总结归纳】本题考查了三角形全等的判定和性质,等腰三角形的性质,直角三角形的判定和性质,含30°角的直角三角形的性质,弧长的计算等,熟练掌握性质定理是解题的关键.三、解答题(每小题5分,共20分)15.先化简,再求值:(a+1)2+a(1﹣a)﹣1,其中a=.【知识考点】整式的混合运算—化简求值.【思路分析】根据整式的混合运算顺序进行化简,再代入值即可.【解题过程】解:原式=a2+2a+1+a﹣a2﹣1=3a.当a=时,原式=3.【总结归纳】本题考查了整式的混合运算﹣化简求值,解决本题的关键是先进行整式的化简,再代入值.16.“中国结”是我国特有的手工编织工艺品,也是一种传统吉祥装饰物.如图,现有三张正面印有“中国结”图案的不透明卡片A,B,C,卡片除正面图案不同外,其余均相同.将三张卡片正面向下洗匀,小吉同学从中随机抽取一张卡片,记下图案后正面向下放回,洗匀后再从中随机抽取一张卡片,请用画树状图或列表的方法,求小吉同学抽出的两张卡片中含有A卡片的概率.【知识考点】列表法与树状图法.【思路分析】根据题意列出图表得出所有等情况数和两张卡片中含有A卡片的情况数,然后根据概率公式即可得出答案.【解题过程】解:根据题意列表如下:A B CA AA BA CAB AB BB CBC AC BC CC共有9种等可能的结果数,其中小吉同学抽出的两张卡片中含有A卡片的有5种情况,∴小吉同学抽出的两张卡片中含有A卡片的概率为.【总结归纳】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.17.甲、乙二人做某种机械零件.已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等.求乙每小时做零件的个数.【知识考点】分式方程的应用.【思路分析】设乙每小时做x个零件,甲每小时做(x+6)个零件,根据时间=总工作量÷工作效率,即可得出关于x的分式方程,解之并检验后即可得出结论.【解题过程】解:设乙每小时做x个零件,甲每小时做(x+6)个零件,根据题意得:=,解得:x=12,经检验,x=12是原方程的解,且符合题意,∴x+6=18.答:乙每小时做12个零件.【总结归纳】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.18.如图,在△ABC中,AB>AC,点D在边AB上,且BD=CA,过点D作DE∥AC,并截取DE=AB,且点C,E在AB同侧,连接BE.求证:△DEB≌△ABC.【知识考点】全等三角形的判定.【思路分析】由DE∥AC,根据平行线的性质得出∠EDB=∠A,又BD=CA,DE=AB,利用SAS即可证明△DEB≌△ABC.【解题过程】证明:∵DE∥AC,∴∠EDB=∠A.在△DEB与△ABC中,,∴△DEB≌△ABC(SAS).【总结归纳】本题考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等,本题是一道较为简单的题目.四、解答题(每小题7分,共28分)19.图①、图②、图③都是3×3的正方形网格,每个小正方形的顶点称为格点.A,B,C均为格点.在给定的网格中,按下列要求画图:(1)在图①中,画一条不与AB重合的线段MN,使MN与AB关于某条直线对称,且M,N为格点.(2)在图②中,画一条不与AC重合的线段PQ,使PQ与AC关于某条直线对称,且P,Q为格点.(3)在图③中,画一个△DEF,使△DEF与△ABC关于某条直线对称,且D,E,F为格点.【知识考点】作图﹣轴对称变换.【思路分析】(1)根据对称性在图①中,画一条不与AB重合的线段MN与AB对称即可;(2)根据对称性即可在图②中,画一条不与AC重合的线段PQ与AC对称;(3)根据对称性在图③中,画一个△DEF,使△DEF与△ABC关于某条直线对称即可.【解题过程】解:(1)如图①,MN即为所求;(2)如图②,PQ即为所求;(3)如图③,△DEF即为所求.【总结归纳】本题考查了作图﹣轴对称变换,解决本题的关键是掌握轴对称性质.20.如图,某班数学小组测量塔的高度,在与塔底部B相距35m的C处,用高1.5m的测角仪CD 测得该塔顶端A的仰角∠EDA为36°.求塔AB的高度(结果精确到1m).(参考数据:sin36°=0.59,cos36°=0.81,tan36°=0.73)【知识考点】解直角三角形的应用﹣仰角俯角问题.【思路分析】设AB与DE交于点F.在Rt△ADF中,利用三角函数定义求出AF,即可得出答案.【解题过程】解:设AB与DE交于点F,如图所示:由题意得:DF⊥AB,BE=CD=1.5m,DF=BC=35m,在Rt△ADF中,∠AFD=90°,tan∠EDA=,∴AF=DF×tan36°≈35×0.73=25.55(m),∴AB=AF+BF=25.55+1.5≈27(m);答:塔AB的高度约27m.【总结归纳】本题考查了解直角三角形的应用,能借助仰角构造直角三角形并解直角三角形是解题的关键.21.如图,在平面直角坐标系中,O为坐标原点,点A,B在函数y=(x>0)的图象上(点B 的横坐标大于点A的横坐标),点A的坐标为(2,4),过点A作AD⊥x轴于点D,过点B作BC⊥x轴于点C,连接OA,AB.(1)求k的值.(2)若D为OC中点,求四边形OABC的面积.【知识考点】反比例函数系数k的几何意义;反比例函数图象上点的坐标特征.【思路分析】(1)将点A的坐标为(2,4)代入y=(x>0),可得结果;(2)利用反比例函数的解析式可得点B的坐标,利用三角形的面积公式和梯形的面积公式可得结果.【解题过程】解:(1)将点A的坐标为(2,4)代入y=(x>0),可得k=xy=2×4=8,∴k的值为8;(2)∵k的值为8,∴函数y=的解析式为y=,∵D为OC中点,OD=2,∴OC=4,∴点B的横坐标为4,将x=4代入y=,可得y=2,∴点B的坐标为(4,2),∴S四边形OABC=S△AOD+S四边形ABCD==10.【总结归纳】本题主要考查了反比例函数的系数k的几何意义,运用数形结合思想是解答此题的关键.22.2020年3月线上授课期间,小莹、小静和小新为了解所在学校九年级600名学生居家减压方式情况,对该校九年级部分学生居家减压方式进行抽样调查.将居家减压方式分为A(享受美食)、B(交流谈心)、C(室内体育活动)、D(听音乐)和E(其他方式)五类,要求每位被调查者选择一种自己最常用的减压方式.他们将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3.表1:小莹抽取60名男生居家减压方式统计表(单位:人)减压方式 A B C D E人数 4 6 37 8 5表2:小静随机抽取10名学生居家减压方式统计表(单位:人)减压方式 A B C D E人数 2 1 3 3 1表3:小新随机抽取60名学生居家减压方式统计表(单位:人)减压方式 A B C D E人数 6 5 26 13 10根据以上材料,回答下列问题:(1)小莹、小静和小新三人中,哪一位同学抽样调查的数据能较好地反映出该校九年级学生居家减压方式情况,并简要说明其他两位同学抽样调查的不足之处.(2)根据三人中能较好地反映出该校九年级居家减压方式的调查结果,估计该校九年级600名学生中利用室内体育活动方式进行减压的人数.【知识考点】抽样调查的可靠性;用样本估计总体;统计表.【思路分析】(1)根据抽取样本的原则,为使样本具有代表性、普遍性、可操作性的原则进行;(2)样本中“采取室内体育锻炼减缓压力”的占,因此估计总体600人的是采取室内体育锻炼减缓压力的人数.【解题过程】解:(1)小新同学抽样调查的数据能较好地反映出该校九年级学生居家减压方式情况,小莹同学调查的只是男生,不具有代表性,小静同学调查的人数偏少,具有片面性,对整体情况的反映容易造成偏差.(2)600×=260(人),答:该校九年级600名学生中利用室内体育活动方式进行减压的大约有260人.【总结归纳】本题考查样本估计总体的统计方法,理解选取样本的原则是正确判断的前提.五、解答题(每小题8分,共16分)23.某种机器工作前先将空油箱加满,然后停止加油立即开始工作.当停止工作时,油箱中油量为5L,在整个过程中,油箱里的油量y(单位:L)与时间x(单位:min)之间的关系如图所示.(1)机器每分钟加油量为L,机器工作的过程中每分钟耗油量为L.(2)求机器工作时y关于x的函数解析式,并写出自变量x的取值范围.(3)直接写出油箱中油量为油箱容积的一半时x的值.【知识考点】一次函数的应用.【思路分析】(1)根据函数图象中的数据,可以得到机器每分钟加油量和机器工作的过程中每分钟耗油量;(2)根据函数图象中的数据,可以得到机器工作时y关于x的函数解析式,并写出自变量x的取值范围;(3)根据(2)中的函数解析式,令函数值为30÷2,即可得到相应的x的值.【解题过程】解:(1)由图象可得,机器每分钟加油量为:30÷10=3(L),机器工作的过程中每分钟耗油量为:(30﹣5)÷(60﹣10)=0.5(L),故答案为:3,0.5;(2)当0≤x≤10时,设y关于x的函数解析式为y=kx,10k=30,得k=3,即当0≤x≤10时,y关于x的函数解析式为y=3x,当10<x≤60时,设y关于x的函数解析式为y=ax+b,,解得,,即当10<x≤60时,y关于x的函数解析式为y=﹣0.5x+35,由上可得,y关于x的函数解析式为y=;(3)当3x=30÷2时,得x=5,当﹣0.5x+35=30÷2时,得x=40,即油箱中油量为油箱容积的一半时x的值是5或40.【总结归纳】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.24.能够完全重合的平行四边形纸片ABCD和AEFG按图①方式摆放,其中AD=AG=5,AB=9.点D,G分别在边AE,AB上,CD与FG相交于点H.【探究】求证:四边形AGHD是菱形.【操作一】固定图①中的平行四边形纸片ABCD,将平行四边形纸片AEFG绕着点A顺时针旋转一定的角度,使点F与点C重合,如图②.则这两张平行四边形纸片未重叠部分图形的周长和为.【操作二】将图②中的平行四边形纸片AEFG绕着点A继续顺时针旋转一定的角度,使点E与点B重合,连接DG,CF,如图③,若sin∠BAD=,则四边形DCFG的面积为.【知识考点】四边形综合题.【思路分析】【探究】先由平行四边形的性质得AE∥GF,DC∥AB,进而得四边形AGHD是平行四边形,再结合邻边相等,得四边形AGHD是菱形;【操作一】这两张平行四边形纸片未重叠部分图形的周长和实际为平行四边形ABCD和平行四边形AEFG的周长和,由此求得结果便可;【操作二】证明△AMD≌△AMG得∠AMD=∠AMG=90°,解Rt△ADM得DM,再证明四边形DCFG为矩形,由矩形面积公式求得结果.【解题过程】解:【探究】∵四边形ABCD和AEFG都是平行四边形,∴AE∥GF,DC∥AB,∴四边形AGHD是平行四边形,∵AD=AG,∴四边形AGHD是菱形;【操作一】根据题意得,这两张平行四边形纸片未重叠部分图形的周长和为:ME+EF+MC+AD+DM+AM+AG+GN+AN+BN+BC+NF=(ME+AM+AG+EF+NF)+(AD+BC+DM+MC+AN+BN)=2(AE+AG)+2(AB+AD)=2×(9+5)+2×(9+5)=56,故答案为:56;【操作二】由题意知,AD=AG=5,∠DAB=∠BAG,又AM=AM,∴△AMD≌△AMG(SAS),∴DM=GM,∠AMD=∠AMG,∵∠AMD+∠AMG=180°,∴∠AMD=∠AMG=90°,∵sin∠BAD=,∴,∴DM=AD=,∴DG=,∵四边形ABCD和四边形AEFG是平行四边形,∴DC∥AB∥GF,DC=AB=GF=9,∴四边形CDGF是平行四边形,∵∠AMD=90°,∴∠CDG=∠AMD=90°,。
2020年吉林省中考数学试卷一、选择题(本大题共18小题,共48.0分)1.下列实数是无理数的是()A. √2B. 1C. 0D. −52.下列图形是中心对称图形的是()A. B. C. D.3.2020年2月至5月,由广西教育厅主办,南宁市教育局承办的广西中小学“空中课堂”是同期全国服务中小学学科最齐、学段最全、上线最早的线上学习课程,深受广大师生欢迎.其中某节数学课的点击观看次数约889000次,则数据889000用科学记数法表示为()A. 88.9×103B. 88.9×104C. 8.89×105D. 8.89×1064.下列运算正确的是()A. 2x2+x2=2x4B. x3⋅x3=2x3C. (x5)2=x7D. 2x7÷x5=2x25.以下调查中,最适合采用全面调查的是()A. 检测长征运载火箭的零部件质量情况B. 了解全国中小学生课外阅读情况C. 调查某批次汽车的抗撞击能力D. 检测某城市的空气质量6.一元二次方程x2−2x+1=0的根的情况是()A. 有两个不等的实数根B. 有两个相等的实数根C. 无实数根D. 无法确定7.如图,在△ABC中,BA=BC,∠B=80°,观察图中尺规作图的痕迹,则∠DCE的度数为()A. 60°B. 65°C. 70°D. 75°8.一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都随机选择一条路径,则它获得食物的概率是()A. 16B. 14C. 13D. 129.如图,在△ABC中,BC=120,高AD=60,正方形EFGH一边在BC上,点E,F分别在AB,AC上,AD交EF于点N,则AN的长为()A. 15B. 20C. 25D. 3010.甲、乙两地相距600km,提速前动车的速度为vkm/ℎ,提速后动车的速度是提速前的1.2倍,提速后行车时间比提速前减少20min,则可列方程为()A. 600v −13=6001.2vB. 600v=6001.2v−13C. 600v −20=6001.2vD. 600v=6001.2v−2011.《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(读kǔn,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图1、2(图2为图1的平面示意图),推开双门,双门间隙CD的距离为2寸,点C和点D距离门槛AB都为1尺(1尺=10寸),则AB的长是()A. 50.5寸B. 52寸C. 101寸D. 104寸12.如图,点A,B是直线y=x上的两点,过A,B两点分别作x轴的平行线交双曲线y=1x(x>0)于点C,D.若AC=√3BD,则3OD2−OC2的值为()B. 3√2C. 4D. 2√313.−6的相反数是()A. 6B. −6C. 16D. −1614.国务院总理李克强2020年5月22日在作政府工作报告时说,去年我国农村贫困人口减少11090000,脱贫攻坚取得决定性成就.数据11090000用科学记数法表示为()A. 11.09×106B. 1.109×107C. 1.109×108D. 0.1109×10815.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图为()A.B.C.D.16.下列运算正确的是()A. a2⋅a3=a6B. (a2)3=a5C. (2a)2=2a2D. a3÷a2=a17.将一副三角尺按如图所示的方式摆放,则∠α的大小为()A. 85°B. 75°C. 65°D. 60°18.如图,四边形ABCD内接于⊙O,若∠B=108°,则∠D的大小为()A. 54°B. 62°C. 72°二、填空题(本大题共14小题,共42.0分)19.如图,在数轴上表示的x的取值范围是______.20.计算:√12−√3=______.21.某射击运动员在同一条件下的射击成绩记录如下:射击次数20401002004001000“射中9环以上”的次数153378158231801“射中9环以上”的频率0.750.830.780.790.800.80(结果保留小数点后两位)根据频率的稳定性,估计这名运动员射击一次时“射中9环以上”的概率是______(结果保留小数点后一位).22.如图,某校礼堂的座位分为四个区域,前区一共有8排,其中第1排共有20个座位(含左、右区域),往后每排增加两个座位,前区最后一排与后区各排的座位数相同,后区一共有10排,则该礼堂的座位总数是______.23.以原点为中心,把点M(3,4)逆时针旋转90°得到点N,则点N的坐标为______.24.如图,在边长为2√3的菱形ABCD中,∠C=60°,点E,F分别是AB,AD上的动点,且AE=DF,DE与BF交于点P.当点E从点A运动到点B时,则点P的运动路径长为______.25.分解因式:a2−ab=______.26.不等式3x+1>7的解集为______.27.一元二次方程x2+3x−1=0根的判别式的值为______.28.我国古代数学著作《算学启蒙》中有这样一个数学问题,其大意是:跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,快马几天可以追上慢马?设快马x天可以追上慢马,根据题意,可列方程为______.29.如图,某单位要在河岸l上建一个水泵房引水到C处.他们的做法是:过点C作CD⊥l于点D,将水泵房建在了D处.这样做最节省水管长度,其数学道理是______.30.如图,AB//CD//EF.若ACCE =12,BD=5,则DF=______.31.如图,在△ABC中,D,E分别是边AB,AC的中点.若△ADE的面积为12,则四边形DBCE的面积为______.32.如图,在四边形ABCD中,AB=CB,AD=CD,我们把这种两组邻边分别相等的四边形叫做“筝形”.筝形ABCD的对角线AC,BD相交于点O.以点B为圆心,BO长为半径画弧,分别交AB,BC于点E,F.若∠ABD=∠ACD=30°,AD=1,则EF⏜的长为______(结果保留π).三、计算题(本大题共1小题,共6.0分)33.计算:−(−1)+32÷(1−4)×2.四、解答题(本大题共19小题,共144.0分)34.先化简,再求值:x+1x ÷(x−1x),其中x=3.35.如图,点B,E,C,F在一条直线上,AB=DE,AC=DF,BE=CF.(1)求证:△ABC≌△DEF;(2)连接AD,求证:四边形ABED是平行四边形.36.小手拉大手,共创文明城.某校为了了解家长对南宁市创建全国文明城市相关知识的知晓情况,通过发放问卷进行测评,从中随机抽取20份答卷,并统计成绩(成绩得分用x表示,单位:分),收集数据如下:90829986989690100898387888190931001009692100整理数据:80≤x<8585≤x<9090≤x<9595≤x<10034a8分析数据:平均分中位数众数92b c根据以上信息,解答下列问题:(1)直接写出上述表格中a,b,c的值;(2)该校有1600名家长参加了此次问卷测评活动,请估计成绩不低于90分的人数是多少?(3)请从中位数和众数中选择一个量,结合本题解释它的意义.37.如图,一艘渔船位于小岛B的北偏东30°方向,距离小岛40n mile的点A处,它沿着点A的南偏东15°的方向航行.(1)渔船航行多远距离小岛B最近(结果保留根号)?(2)渔船到达距离小岛B最近点后,按原航向继续航行20√6n mile到点C处时突然发生事故,渔船马上向小岛B上的救援队求救,问救援队从B处出发沿着哪个方向航行到达事故地点航程最短,最短航程是多少(结果保留根号)?38.倡导垃圾分类,共享绿色生活.为了对回收的垃圾进行更精准的分类,某机器人公司研发出A型和B型两款垃圾分拣机器人,已知2台A型机器人和5台B型机器人同时工作2h共分拣垃圾3.6吨,3台A型机器人和2台B型机器人同时工作5h共分拣垃圾8吨.(1)1台A型机器人和1台B型机器人每小时各分拣垃圾多少吨?(2)某垃圾处理厂计划向机器人公司购进一批A型和B型垃圾分拣机器人,这批机器人每小时一共能分拣垃圾20吨.设购买A型机器人a台(10≤a≤45),B型机器人b台,请用含a的代数式表示b;(3)机器人公司的报价如下表:在(2)的条件下,设购买总费用为w万元,问如何购买使得总费用w最少?请说明理由.39.如图,在△ACE中,以AC为直径的⊙O交CE于点D,连接AD,且∠DAE=∠ACE,连接OD并延长交AE的延长线于点P,PB与⊙O相切于点B.(1)求证:AP 是⊙O 的切线;(2)连接AB 交OP 于点F ,求证:△FAD∽△DAE ; (3)若tan∠OAF =12,求AEAP 的值.40. 如图1,在平面直角坐标系中,直线l 1:y =x +1与直线l 2:x =−2相交于点D ,点A 是直线l 2上的动点,过点A 作AB ⊥l 1于点B ,点C 的坐标为(0,3),连接AC ,BC.设点A 的纵坐标为t ,△ABC 的面积为s . (1)当t =2时,请直接写出点B 的坐标; (2)s 关于t 的函数解析式为s ={14t 2+bt −54,t <−1或t >5a(t +1)(t −5),−1<t <5,其图象如图2所示,结合图1、2的信息,求出a 与b 的值;(3)在l 2上是否存在点A ,使得△ABC 是直角三角形?若存在,请求出此时点A 的坐标和△ABC 的面积;若不存在,请说明理由.41.先化简,再求值:(a+1)2+a(1−a)−1,其中a=√7.42.“中国结”是我国特有的手工编织工艺品,也是一种传统吉祥装饰物.如图,现有三张正面印有“中国结”图案的不透明卡片A,B,C,卡片除正面图案不同外,其余均相同.将三张卡片正面向下洗匀,小吉同学从中随机抽取一张卡片,记下图案后正面向下放回,洗匀后再从中随机抽取一张卡片,请用画树状图或列表的方法,求小吉同学抽出的两张卡片中含有A卡片的概率.43.甲、乙二人做某种机械零件.已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等.求乙每小时做零件的个数.44.如图,在△ABC中,AB>AC,点D在边AB上,且BD=CA,过点D作DE//AC,并截取DE=AB,且点C,E在AB同侧,连接BE.求证:△DEB≌△ABC.45.图①、图②、图③都是3×3的正方形网格,每个小正方形的顶点称为格点.A,B,C均为格点.在给定的网格中,按下列要求画图:(1)在图①中,画一条不与AB重合的线段MN,使MN与AB关于某条直线对称,且M,N为格点.(2)在图②中,画一条不与AC重合的线段PQ,使PQ与AC关于某条直线对称,且P,Q为格点.(3)在图③中,画一个△DEF,使△DEF与△ABC关于某条直线对称,且D,E,F为格点.46.如图,某班数学小组测量塔的高度,在与塔底部B相距35m的C处,用高1.5m的测角仪CD测得该塔顶端A的仰角∠EDA为36°.求塔AB的高度(结果精确到1m).(参考数据:sin36°=0.59,cos36°=0.81,tan36°=0.73)(x>0)的图象47.如图,在平面直角坐标系中,O为坐标原点,点A,B在函数y=kx 上(点B的横坐标大于点A的横坐标),点A的坐标为(2,4),过点A作AD⊥x轴于点D,过点B作BC⊥x轴于点C,连接OA,AB.(1)求k的值.(2)若D为OC中点,求四边形OABC的面积.48.2020年3月线上授课期间,小莹、小静和小新为了解所在学校九年级600名学生居家减压方式情况,对该校九年级部分学生居家减压方式进行抽样调查.将居家减压方式分为A(享受美食)、B(交流谈心)、C(室内体育活动)、D(听音乐)和E(其他方式)五类,要求每位被调查者选择一种自己最常用的减压方式.他们将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3.表1:小莹抽取60名男生居家减压方式统计表(单位:人)减压方式A B C D E人数463785表2:小静随机抽取10名学生居家减压方式统计表(单位:人)减压方式A B C D E人数21331表3:小新随机抽取60名学生居家减压方式统计表(单位:人)减压方式A B C D E人数65261310根据以上材料,回答下列问题:(1)小莹、小静和小新三人中,哪一位同学抽样调查的数据能较好地反映出该校九年级学生居家减压方式情况,并简要说明其他两位同学抽样调查的不足之处.(2)根据三人中能较好地反映出该校九年级居家减压方式的调查结果,估计该校九年级600名学生中利用室内体育活动方式进行减压的人数.49.某种机器工作前先将空油箱加满,然后停止加油立即开始工作.当停止工作时,油箱中油量为5L,在整个过程中,油箱里的油量y(单位:L)与时间x(单位:min)之间的关系如图所示.(1)机器每分钟加油量为______L,机器工作的过程中每分钟耗油量为______L.(2)求机器工作时y关于x的函数解析式,并写出自变量x的取值范围.(3)直接写出油箱中油量为油箱容积的一半时x的值.50.能够完全重合的平行四边形纸片ABCD和AEFG按图①方式摆放,其中AD=AG=5,AB=9.点D,G分别在边AE,AB上,CD与FG相交于点H.【探究】求证:四边形AGHD是菱形.【操作一】固定图①中的平行四边形纸片ABCD,将平行四边形纸片AEFG绕着点A顺时针旋转一定的角度,使点F与点C重合,如图②.则这两张平行四边形纸片未重叠部分图形的周长和为______.【操作二】将图②中的平行四边形纸片AEFG绕着点A继续顺时针旋转一定的角,则四边形DCFG 度,使点E与点B重合,连接DG,CF,如图③,若sin∠BAD=43的面积为______.51.如图,△ABC是等边三角形,AB=4cm,动点P从点A出发,以2cm/s的速度沿AB向点B匀速运动,过点P作PQ⊥AB,交折线AC−CB于点Q,以PQ为边作等边三角形PQD,使点A,D在PQ异侧.设点P的运动时间为x(s)(0<x<2),△PQD 与△ABC重叠部分图形的面积为y(cm2).(1)AP的长为______cm(用含x的代数式表示).(2)当点D落在边BC上时,求x的值.(3)求y关于x的函数解析式,并写出自变量x的取值范围.52.如图,在平面直角坐标系中,抛物线y=−12x2+bx+32与x轴正半轴交于点A,且点A的坐标为(3,0),过点A作垂直于x轴的直线l.P是该抛物线上的任意一点,其横坐标为m,过点P作PQ⊥l于点Q,M是直线l上的一点,其纵坐标为−m+32.以PQ,QM为边作矩形PQMN.(1)求b的值.(2)当点Q与点M重合时,求m的值.(3)当矩形PQMN是正方形,且抛物线的顶点在该正方形内部时,求m的值.(4)当抛物线在矩形PQMN内的部分所对应的函数值y随x的增大而减小时,直接写出m的取值范围.答案和解析1.【答案】A【知识点】无理数【解析】【分析】本题考查无理数的意义,准确把握无理数的意义是正确判断的前提.无限不循环小数是无理数,而1,0,−5是整数,也是有理数,因此√2是无理数.【解答】解:无理数是无限不循环小数,而1,0,−5是有理数,因此√2是无理数,故选:A.2.【答案】D【知识点】中心对称图形【解析】【分析】此题主要考查了中心对称图形,关键是要寻找对称中心,旋转180度后两部分重合.根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形可得答案.【解答】解:A、不是中心对称图形,故此选项不合题意;B、不是中心对称图形,故此选项不合题意;C、不是中心对称图形,故此选项不合题意;D、是中心对称图形,故此选项符合题意;故选:D.3.【答案】C【知识点】科学记数法-绝对值较大的数【解析】【分析】此题考查科学记数法表示较大的数的方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于889000有6位,所以可以确定n=6−1=5.【解答】解:889000=8.89×105.故选:C.4.【答案】D【知识点】同底数幂的乘法、幂的乘方与积的乘方、合并同类项【解析】【分析】此题主要考查了整式的运算,正确掌握相关运算法则是解题关键.直接利用合并同类项法则以及幂的乘方运算法则、同底数幂的乘除运算法则分别计算得出答案.【解答】解:A、2x2+x2=3x2,故此选项错误;B、x3⋅x3=x6,故此选项错误;C、(x5)2=x10,故此选项错误;D、2x7÷x5=2x2,正确.故选:D.5.【答案】A【知识点】全面调查与抽样调查【解析】【分析】本题考查全面调查、抽样调查的意义,在具体实际的问题情境中理解全面调查、抽样调查的意义是正确判断的前提.利用全面调查、抽样调查的意义,结合具体的问题情境进行判断即可.【解答】解:检测长征运载火箭的零部件质量情况适合用全面调查,而“了解全国中小学生课外阅读情况”,“调查某批次汽车的抗撞击能力”,“检测某城市的空气质量”则不适合用全面调查,宜采取抽样调查,故选:A.6.【答案】B【知识点】根的判别式【解析】【分析】本题主要考查根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2−4ac 有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.先根据方程的一般式得出a、b、c的值,再计算出△=b2−4ac的值,继而利用一元二次方程的根的情况与判别式的值之间的关系可得答案.【解答】解:∵a=1,b=−2,c=1,∴△=(−2)2−4×1×1=4−4=0,∴有两个相等的实数根,故选:B.7.【答案】B【知识点】作一个角的平分线、等腰三角形的性质【解析】【分析】本题考查了作图−基本作图、等腰三角形的性质,解决本题的关键是掌握等腰三角形的性质.根据等腰三角形的性质可得∠ACB的度数,观察作图过程可得,进而可得∠DCE的度数.【解答】解:∵BA=BC,∠B=80°,×(180°−80°)=50°,∴∠A=∠ACB=12∴∠ACD=180°−∠ACB=130°,观察作图过程可知:CE平分∠ACD,∴∠DCE=12∠ACD=65°,∴∠DCE的度数为65°,故选:B.8.【答案】C【知识点】概率公式【解析】【分析】此题考查了列表法与树状图法有关知识,概率公式.用到的知识点为:概率=所求情况数与总情况数之比.由一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机的选择一条路径,观察图可得:它有6种路径,且获得食物的有2种路径,然后利用概率公式求解即可求得答案.【解答】解:∵一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机的选择一条路径,∴它有6种路径,∵获得食物的有2种路径,∴获得食物的概率是26=13,故选:C.9.【答案】B【知识点】相似三角形的判定与性质、正方形的性质【解析】【分析】本题考查了相似三角形的判定和性质,矩形的判定和性质.解题的关键是掌握相似三角形的判定和性质,矩形的判定和性质的运用,注意:矩形的对边相等且平行,相似三角形的对应高的比等于相似比,题目是一道中等题,难度适中.设正方形EFGH的边长EF=EH=x,易证四边形EHDN是矩形,则DN=x,根据正方形的性质得出EF//BC,推出△AEF∽△ABC,根据相似三角形的性质计算即可得解.【解答】解:设正方形EFGH的边长EF=EH=x,∵四边EFGH是正方形,∴∠HEF=∠EHG=90°,EF//BC,∴△AEF∽△ABC,∵AD是△ABC的高,∴∠HDN=90°,∴四边形EHDN是矩形,∴DN=EH=x,∵△AEF∽△ABC,∴ANAD =EFBC,∵BC=120,AD=60,∴AN=60−x,∴60−x60=x120,解得:x=40,∴AN=60−x=60−40=20.故选:B.10.【答案】A【知识点】由实际问题抽象出分式方程【解析】【分析】此题主要考查了由实际问题抽象出分式方程,正确表示出行驶时间是解题关键.直接利用总时间的差值进而得出等式求出答案.【解答】解:因为提速前动车的速度为vkm/ℎ,提速后动车的速度是提速前的1.2倍,所以提速后动车的速度为1.2vkm/ℎ,根据题意可得:600v −13=6001.2v.故选:A.11.【答案】C【知识点】勾股定理的应用【解析】【分析】本题考查了勾股定理的应用,弄懂题意,构建直角三角形是解题的关键.构造直角三角形,根据勾股定理即可得到结论.【解答】解:过D作DE⊥AB于E,如图2所示:由题意得:OA=OB=AD=BC,设OA=OB=AD=BC=r,CD=1,AE=r−1,则AB=2r,DE=10,OE=12在Rt△ADE中,AE2+DE2=AD2,即(r−1)2+102=r2,解得:r=50.5,∴2r=101(寸),∴AB=101寸,故选:C.12.【答案】C【知识点】反比例函数图象上点的坐标特征、一次函数图象上点的坐标特征、勾股定理【解析】【分析】本题考查了反比例函数、一次函数图象上点的坐标特征,勾股定理,正确利用AC=√3BD 得到a,b的关系是解题的关键.延长CA交y轴于E,延长BD交y轴于F.设A、B的横坐标分别是a,b,点A、B为直线y=x上的两点,A的坐标是(a,a),B的坐标是(b,b).则AE=OE=a,BF=OF=b.根据AC=√3BD得到a,b的关系,然后利用勾股定理,即可用a,b表示出所求的式子从而求解.【解答】解:延长CA交y轴于E,延长BD交y轴于F.设A、B的横坐标分别是a,b,∵点A、B为直线y=x上的两点,∴A的坐标是(a,a),B的坐标是(b,b).则AE=OE=a,BF=OF=b.∵C、D两点在交双曲线y=1x (x>0)上,则CE=1a,DF=1b.∴BD=BF−DF=b−1b ,AC=1a−a.又∵AC=√3BD,∴1a −a=√3(b−1b),两边平方得:a2+1a2−2=3(b2+1b2−2),即a2+1a2=3(b2+1b2)−4,在直角△ODF中,OD2=OF2+DF2=b2+1b2,同理OC2=a2+1a2,∴3OD2−OC2=3(b2+1b2)−(a2+1a2)=4.故选:C.13.【答案】A【知识点】相反数【解析】【分析】本题考查了相反数,解决本题的关键是熟记相反数的定义.根据相反数的定义,即可解答.【解答】解:−6的相反数是6,故选A.14.【答案】B【知识点】科学记数法-绝对值较大的数【解析】解:11090000=1.109×107,故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.15.【答案】A【知识点】简单组合体的三视图【解析】解:从左边看第一层是一个小正方形,第二层也是一个小正方形,所以左视图是选项A,故选:A.根据从左边看得到的图形是左视图,可得答案.本题考查了简单组合体的三视图.解题的关键是掌握简单组合体的三视图的定义,注意:从左边看得到的图形是左视图.16.【答案】D【知识点】同底数幂的除法、幂的乘方与积的乘方、同底数幂的乘法【解析】解:A、a2⋅a3=a5,原计算错误,故此选项不符合题意;B、(a2)3=a6,原计算错误,故此选项不符合题意;C、(2a)2=4a2,原计算错误,故此选项不符合题意;D、a3÷a2=a,原计算正确,故此选项符合题意;故选:D.根据同底数幂的乘除法、幂的乘方、积的乘方的运算法则,对各选项计算后利用排除法求解.本题考查了整式的运算,熟练掌握运算性质和法则是解题的关键.17.【答案】B【知识点】三角形内角和定理【解析】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.先根据直角三角板的性质得出∠ACD的度数,再由三角形内角和定理即可得出结论.【解答】解:如图所示,∵∠BCD=60°,∠BCA=45°,∴∠ACD=∠BCD−∠BCA=60°−45°=15°,∠α=180°−∠D−∠ACD=180°−90°−15°=75°,故选B.18.【答案】C【知识点】圆内接四边形的性质、圆周角定理【解析】解:∵四边形ABCD内接于⊙O,∠B=108°,∴∠D=180°−∠B=180°−108°=72°,故选:C.运用圆内接四边形对角互补计算即可.本题主要考查了圆内接四边形的性质,熟练掌握圆内接四边形对角互补是解答此题的关键.19.【答案】x<1【知识点】在数轴上表示不等式的解集【解析】【分析】本题主要考查在数轴上表示不等式的解集.用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.解:在数轴上表示的x的取值范围是x<1,故答案为:x<1.20.【答案】√3【知识点】二次根式的加减【解析】【分析】本题主要考查了二次根式的加减,属于基础题型.先化简√12=2√3,再合并同类二次根式即可.【解答】解:√12−√3=2√3−√3=√3.故答案为:√3.21.【答案】0.8【知识点】利用频率估计概率【解析】【分析】本题考查了利用频率估计概率,解决本题的关键是理解当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.【解答】解:根据表格数据可知:根据频率稳定在0.8,估计这名运动员射击一次时“射中9环以上”的概率是0.8.故答案为:0.8.22.【答案】556个【知识点】数式规律问题【解析】本题考查了规律型:数字的变化类,解决本题的关键是根据数字的变化性质规律.根据题意可得前区最后一排座位数为:20+2(8−1)=34,所以前区座位数为:(20+ 34)×8÷2=216,后区的座位数为:10×34=340,进而可得该礼堂的座位总数.【解答】解:因为前区一共有8排,其中第1排共有20个座位(含左、右区域),往后每排增加两个座位,所以前区最后一排座位数为:20+2(8−1)=34,所以前区座位数为:(20+34)×8÷2=216,以为前区最后一排与后区各排的座位数相同,后区一共有10排,所以后区的座位数为:10×34=340,所以该礼堂的座位总数是216+340=556个.故答案为:556个.23.【答案】(−4,3)【知识点】旋转中的坐标变化*【解析】【分析】本题考查了坐标与图形变化−旋转,解决本题的关键是掌握旋转的性质.画出图示,根据点M(3,4)逆时针旋转90°得到点N,则可得点N的坐标为(−4,3).【解答】解:如图,∵点M(3,4)逆时针旋转90°得到点N,则点N的坐标为(−4,3).故答案为:(−4,3).24.【答案】43π【知识点】菱形的性质、全等三角形的判定与性质、等边三角形的判定与性质、轨迹【解析】【分析】本题考查菱形的性质,等边三角形的判定和性质,弧长公式等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.作△CBD的外接圆⊙O,连接OB,OD.利用全等三角形的性质证明∠BPD=120°,推出B,C,D,P四点共圆,利用弧长公式计算即可.【解答】解:如图,作△CBD的外接圆⊙O,连接OB,OD.∵四边形ABCD是菱形,∵∠A=∠C=60°,AB=BC=CD=AD,∴△ABD,△BCD都是等边三角形,∴BD=AD,∠BDF=∠DAE,∵DF=AE,∴△BDF≌△DAE(SAS),∴∠DBF=∠ADE,∵∠ADE+∠BDE=60°,∴∠DBF+∠BDP=60°,∴∠BPD=120°,∵∠C=60°,∴∠C+∠DPB=180°,∴B,C,D,P四点共圆,由BC=CD=BD=2√3,可得OB=OD=2,∵∠BOD=2∠C=120°,∴点P的运动的路径的长=120⋅π⋅2180=43π.故答案为43π.25.【答案】a(a−b)【知识点】因式分解-提公因式法【解析】解:a2−ab=a(a−b).直接把公因式a提出来即可.本题主要考查提公因式法分解因式,属于基础题.26.【答案】x>2【知识点】一元一次不等式的解法【解析】解:3x+1>7,移项得:3x>7−1,合并同类项得:3x>6,系数化为1得:x>2,故答案为:x>2.移项、合并同类项、系数化为1即可得答案.此题主要考查了解一元一次不等式,关键是掌握解不等式的步骤.27.【答案】13【知识点】根的判别式【解析】解:∵a=1,b=3,c=−1,∴△=b2−4ac=9+4=13.所以一元二次方程x2+3x−1=0根的判别式的值为13.故答案为:13.根据一元二次方程根的判别式△=b2−4ac即可求出值.本题考查了根的判别式,解决本题的关键是掌握根的判别式.28.【答案】(240−150)x=150×12【知识点】数学传统文化-代数类、由实际问题抽象出一元一次方程【解析】解:设快马x天可以追上慢马,依题意,得:(240−150)x=150×12.故答案为:(240−150)x=150×12.设快马x天可以追上慢马,根据两马的速度之差×快马出发的时间=慢马的速度×慢马提。
2020年吉林省中考数学试卷一、单项选择题(每小题2分,共12分)1.﹣6的相反数是()A.6B.﹣6C.D.2.国务院总理李克强2020年5月22日在作政府工作报告时说,去年我国农村贫困人口减少11090000,脱贫攻坚取得决定性成就.数据11090000用科学记数法表示为()A.11.09×106B.1.109×107C.1.109×108D.0.1109×108 3.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图为()A.B.C.D.4.下列运算正确的是()A.a2•a3=a6B.(a2)3=a5C.(2a)2=2a2D.a3÷a2=a5.将一副三角尺按如图所示的方式摆放,则∠α的大小为()A.85°B.75°C.65°D.60°6.如图,四边形ABCD内接于⊙O,若∠B=108°,则∠D的大小为()A.54°B.62°C.72°D.82°二、填空题(每小题3分,共24分)7.分解因式:a2﹣ab=.8.不等式3x+1>7的解集为.9.一元二次方程x2+3x﹣1=0根的判别式的值为.10.我国古代数学著作《算学启蒙》中有这样一个数学问题,其大意是:跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,快马几天可以追上慢马?设快马x 天可以追上慢马,根据题意,可列方程为.11.如图,某单位要在河岸l上建一个水泵房引水到C处.他们的做法是:过点C作CD⊥l于点D,将水泵房建在了D处.这样做最节省水管长度,其数学道理是.12.如图,AB∥CD∥EF.若=,BD=5,则DF=.13.如图,在△ABC中,D,E分别是边AB,AC的中点.若△ADE的面积为,则四边形DBCE的面积为.14.如图,在四边形ABCD中,AB=CB,AD=CD,我们把这种两组邻边分别相等的四边形叫做“筝形”.筝形ABCD的对角线AC,BD相交于点O.以点B为圆心,BO长为半径画弧,分别交AB,BC于点E,F.若∠ABD=∠ACD=30°,AD=1,则的长为(结果保留π).三、解答题(每小题5分,共20分)15.(5分)先化简,再求值:(a+1)2+a(1﹣a)﹣1,其中a=.16.(5分)“中国结”是我国特有的手工编织工艺品,也是一种传统吉祥装饰物.如图,现有三张正面印有“中国结”图案的不透明卡片A,B,C,卡片除正面图案不同外,其余均相同.将三张卡片正面向下洗匀,小吉同学从中随机抽取一张卡片,记下图案后正面向下放回,洗匀后再从中随机抽取一张卡片,请用画树状图或列表的方法,求小吉同学抽出的两张卡片中含有A卡片的概率.17.(5分)甲、乙二人做某种机械零件.已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等.求乙每小时做零件的个数.18.(5分)如图,在△ABC中,AB>AC,点D在边AB上,且BD=CA,过点D作DE∥AC,并截取DE=AB,且点C,E在AB同侧,连接BE.求证:△DEB≌△ABC.四、解答题(每小题7分,共28分)19.(7分)图①、图②、图③都是3×3的正方形网格,每个小正方形的顶点称为格点.A,B,C均为格点.在给定的网格中,按下列要求画图:(1)在图①中,画一条不与AB重合的线段MN,使MN与AB关于某条直线对称,且M,N为格点.(2)在图②中,画一条不与AC重合的线段PQ,使PQ与AC关于某条直线对称,且P,Q为格点.(3)在图③中,画一个△DEF,使△DEF与△ABC关于某条直线对称,且D,E,F为格点.20.(7分)如图,某班数学小组测量塔的高度,在与塔底部B相距35m的C处,用高1.5m的测角仪CD测得该塔顶端A的仰角∠EDA为36°.求塔AB的高度(结果精确到1m).(参考数据:sin36°=0.59,cos36°=0.81,tan36°=0.73)21.(7分)如图,在平面直角坐标系中,O为坐标原点,点A,B在函数y=(x>0)的图象上(点B的横坐标大于点A的横坐标),点A的坐标为(2,4),过点A作AD⊥x轴于点D,过点B作BC⊥x轴于点C,连接OA,AB.(1)求k的值.(2)若D为OC中点,求四边形OABC的面积.22.(7分)2020年3月线上授课期间,小莹、小静和小新为了解所在学校九年级600名学生居家减压方式情况,对该校九年级部分学生居家减压方式进行抽样调查.将居家减压方式分为A(享受美食)、B(交流谈心)、C(室内体育活动)、D(听音乐)和E(其他方式)五类,要求每位被调查者选择一种自己最常用的减压方式.他们将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3.表1:小莹抽取60名男生居家减压方式统计表(单位:人)减压方式A B C D E人数463785表2:小静随机抽取10名学生居家减压方式统计表(单位:人)减压方式A B C D E人数21331表3:小新随机抽取60名学生居家减压方式统计表(单位:人)减压方式A B C D E人数65261310根据以上材料,回答下列问题:(1)小莹、小静和小新三人中,哪一位同学抽样调查的数据能较好地反映出该校九年级学生居家减压方式情况,并简要说明其他两位同学抽样调查的不足之处.(2)根据三人中能较好地反映出该校九年级居家减压方式的调查结果,估计该校九年级600名学生中利用室内体育活动方式进行减压的人数.五、解答题(每小题8分,共16分)23.(8分)某种机器工作前先将空油箱加满,然后停止加油立即开始工作.当停止工作时,油箱中油量为5L,在整个过程中,油箱里的油量y(单位:L)与时间x(单位:min)之间的关系如图所示.(1)机器每分钟加油量为L,机器工作的过程中每分钟耗油量为L.(2)求机器工作时y关于x的函数解析式,并写出自变量x的取值范围.(3)直接写出油箱中油量为油箱容积的一半时x的值.24.(8分)能够完全重合的平行四边形纸片ABCD和AEFG按图①方式摆放,其中AD=AG=5,AB=9.点D,G分别在边AE,AB上,CD与FG相交于点H.【探究】求证:四边形AGHD是菱形.【操作一】固定图①中的平行四边形纸片ABCD,将平行四边形纸片AEFG绕着点A顺时针旋转一定的角度,使点F与点C重合,如图②.则这两张平行四边形纸片未重叠部分图形的周长和为.【操作二】将图②中的平行四边形纸片AEFG绕着点A继续顺时针旋转一定的角度,使点E与点B重合,连接DG,CF,如图③,若sin∠BAD=,则四边形DCFG的面积为.六、解答题(每小题10分,共20分)25.(10分)如图,△ABC是等边三角形,AB=4cm,动点P从点A出发,以2cm/s的速度沿AB向点B匀速运动,过点P作PQ⊥AB,交折线AC﹣CB于点Q,以PQ为边作等边三角形PQD,使点A,D在PQ异侧.设点P的运动时间为x(s)(0<x<2),△PQD 与△ABC重叠部分图形的面积为y(cm2).(1)AP的长为cm(用含x的代数式表示).(2)当点D落在边BC上时,求x的值.(3)求y关于x的函数解析式,并写出自变量x的取值范围.26.(10分)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+与x轴正半轴交于点A,且点A的坐标为(3,0),过点A作垂直于x轴的直线l.P是该抛物线上的任意一点,其横坐标为m,过点P作PQ⊥l于点Q,M是直线l上的一点,其纵坐标为﹣m+.以PQ,QM为边作矩形PQMN.(1)求b的值.(2)当点Q与点M重合时,求m的值.(3)当矩形PQMN是正方形,且抛物线的顶点在该正方形内部时,求m的值.(4)当抛物线在矩形PQMN内的部分所对应的函数值y随x的增大而减小时,直接写出m的取值范围.2020年吉林省中考数学试卷参考答案与试题解析一、单项选择题(每小题2分,共12分)1.﹣6的相反数是()A.6B.﹣6C.D.【解答】解:﹣6的相反数是6,故选:A.2.国务院总理李克强2020年5月22日在作政府工作报告时说,去年我国农村贫困人口减少11090000,脱贫攻坚取得决定性成就.数据11090000用科学记数法表示为()A.11.09×106B.1.109×107C.1.109×108D.0.1109×108【解答】解:11090000=1.109×107,故选:B.3.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图为()A.B.C.D.【解答】解:从左边看第一层是一个小正方形,第二层也是一个小正方形,所以左视图是选项A,故选:A.4.下列运算正确的是()A.a2•a3=a6B.(a2)3=a5C.(2a)2=2a2D.a3÷a2=a【解答】解:A、a2•a3=a5,原计算错误,故此选项不符合题意;B、(a2)3=a6,原计算错误,故此选项不符合题意;C、(2a)2=4a2,原计算错误,故此选项不符合题意;D、a3÷a2=a,原计算正确,故此选项符合题意;故选:D.5.将一副三角尺按如图所示的方式摆放,则∠α的大小为()A.85°B.75°C.65°D.60°【解答】解:如图所示,∵∠BCD=60°,∠BCA=45°,∴∠ACD=∠BCD﹣∠BCA=60°﹣45°=15°,∠α=180°﹣∠D﹣∠ACD=180°﹣90°﹣15°=75°,故选:B.6.如图,四边形ABCD内接于⊙O,若∠B=108°,则∠D的大小为()A.54°B.62°C.72°D.82°【解答】解:∵四边形ABCD内接于⊙O,∠B=108°,∴∠D=180°﹣∠B=180°﹣108°=72°,故选:C.二、填空题(每小题3分,共24分)7.分解因式:a2﹣ab=a(a﹣b).【解答】解:a2﹣ab=a(a﹣b).8.不等式3x+1>7的解集为x>2.【解答】解:3x+1>7,移项得:3x>7﹣1,合并同类项得:3x>6,系数化为1得:x>2,故答案为:x>2.9.一元二次方程x2+3x﹣1=0根的判别式的值为13.【解答】解:∵a=1,b=3,c=﹣1,∴△=b2﹣4ac=9+4=13.所以一元二次方程x2+3x﹣1=0根的判别式的值为13.故答案为:13.10.我国古代数学著作《算学启蒙》中有这样一个数学问题,其大意是:跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,快马几天可以追上慢马?设快马x 天可以追上慢马,根据题意,可列方程为(240﹣150)x=150×12.【解答】解:设快马x天可以追上慢马,依题意,得:(240﹣150)x=150×12.故答案为:(240﹣150)x=150×12.11.如图,某单位要在河岸l上建一个水泵房引水到C处.他们的做法是:过点C作CD⊥l于点D,将水泵房建在了D处.这样做最节省水管长度,其数学道理是垂线段最短.【解答】解:过点C作CD⊥l于点D,将水泵房建在了D处.这样做最节省水管长度,其数学道理是垂线段最短.故答案为:垂线段最短.12.如图,AB∥CD∥EF.若=,BD=5,则DF=10.【解答】解:∵AB∥CD∥EF,∴==,∴DF=2BD=2×5=10.故答案为10.13.如图,在△ABC中,D,E分别是边AB,AC的中点.若△ADE的面积为,则四边形DBCE的面积为.【解答】解:∵D,E分别是△ABC的边AB,AC的中点,∴DE是△ABC的中位线,∴DE∥BC,DE=BC,∴△ADE∽△ABC,∴=()2=()2=,∵△ADE的面积为,∴△ABC的面积为2,∴四边形DBCE的面积=2﹣=,故答案为:.14.如图,在四边形ABCD中,AB=CB,AD=CD,我们把这种两组邻边分别相等的四边形叫做“筝形”.筝形ABCD的对角线AC,BD相交于点O.以点B为圆心,BO长为半径画弧,分别交AB,BC于点E,F.若∠ABD=∠ACD=30°,AD=1,则的长为(结果保留π).【解答】解:在△ABD与△CBD中,,∴△ABD≌△CBD(SSS),∴∠ABD=∠CBD=30°,∠ADB=∠CDB,CD=AD=1,∴∠ABC=60°,∵AD=CD,∠ADB=∠CDB,∴BD⊥AC,且AO=CO,∴∠ACB=90°﹣30°=60°,∴∠BCD=∠ACB+∠ACD=90°,在Rt△BCD中,∵∠CBD=30°,∴BD=2CD=2,在Rt△COD中,∵∠ACD=30°,∴OD=CD=,∴OB=BD﹣OD=2﹣=,∴的长为:=,故答案为.三、解答题(每小题5分,共20分)15.(5分)先化简,再求值:(a+1)2+a(1﹣a)﹣1,其中a=.【解答】解:原式=a2+2a+1+a﹣a2﹣1=﹣a.当a=时,原式=﹣.16.(5分)“中国结”是我国特有的手工编织工艺品,也是一种传统吉祥装饰物.如图,现有三张正面印有“中国结”图案的不透明卡片A,B,C,卡片除正面图案不同外,其余均相同.将三张卡片正面向下洗匀,小吉同学从中随机抽取一张卡片,记下图案后正面向下放回,洗匀后再从中随机抽取一张卡片,请用画树状图或列表的方法,求小吉同学抽出的两张卡片中含有A卡片的概率.【解答】解:根据题意列表如下:A B CA AA BA CAB AB BB CBC AC BC CC共有9种等可能的结果数,其中小吉同学抽出的两张卡片中含有A卡片的有1种情况,∴小吉同学抽出的两张卡片中含有A卡片的概率为.17.(5分)甲、乙二人做某种机械零件.已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等.求乙每小时做零件的个数.【解答】解:设乙每小时做x个零件,甲每小时做(x+6)个零件,根据题意得:=,解得:x=12,经检验,x=12是原方程的解,且符合题意,∴x+6=18.答:乙每小时做12个零件.18.(5分)如图,在△ABC中,AB>AC,点D在边AB上,且BD=CA,过点D作DE∥AC,并截取DE=AB,且点C,E在AB同侧,连接BE.求证:△DEB≌△ABC.【解答】证明:∵DE∥AC,∴∠EDB=∠A.在△DEB与△ABC中,,∴△DEB≌△ABC(SAS).四、解答题(每小题7分,共28分)19.(7分)图①、图②、图③都是3×3的正方形网格,每个小正方形的顶点称为格点.A,B,C均为格点.在给定的网格中,按下列要求画图:(1)在图①中,画一条不与AB重合的线段MN,使MN与AB关于某条直线对称,且M,N为格点.(2)在图②中,画一条不与AC重合的线段PQ,使PQ与AC关于某条直线对称,且P,Q为格点.(3)在图③中,画一个△DEF,使△DEF与△ABC关于某条直线对称,且D,E,F为格点.【解答】解:(1)如图①,MN即为所求;(2)如图②,PQ即为所求;(3)如图③,△DEF即为所求.20.(7分)如图,某班数学小组测量塔的高度,在与塔底部B相距35m的C处,用高1.5m的测角仪CD测得该塔顶端A的仰角∠EDA为36°.求塔AB的高度(结果精确到1m).(参考数据:sin36°=0.59,cos36°=0.81,tan36°=0.73)【解答】解:设AB与DE交于点F,如图所示:由题意得:DF⊥AB,BE=CD=1.5m,DF=BC=35m,在Rt△ADF中,∠AFD=90°,tan∠EDA=,∴AF=DF×tan36°≈35×0.73=25.55(m),∴AB=AF+BF=25.55+1.5≈27(m);答:塔AB的高度约27m.21.(7分)如图,在平面直角坐标系中,O为坐标原点,点A,B在函数y=(x>0)的图象上(点B的横坐标大于点A的横坐标),点A的坐标为(2,4),过点A作AD⊥x 轴于点D,过点B作BC⊥x轴于点C,连接OA,AB.(1)求k的值.(2)若D为OC中点,求四边形OABC的面积.【解答】解:(1)将点A的坐标为(2,4)代入y=(x>0),可得k=xy=2×4=8,∴k的值为8;(2)∵k的值为8,∴函数y=的解析式为y=,∵D为OC中点,OD=2,∴OC=4,∴点B的横坐标为4,将x=4代入y=,可得y=2,∴点B的坐标为(4,2),∴S四边形OABC=S△AOD+S四边形ABCD==10.22.(7分)2020年3月线上授课期间,小莹、小静和小新为了解所在学校九年级600名学生居家减压方式情况,对该校九年级部分学生居家减压方式进行抽样调查.将居家减压方式分为A(享受美食)、B(交流谈心)、C(室内体育活动)、D(听音乐)和E(其他方式)五类,要求每位被调查者选择一种自己最常用的减压方式.他们将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3.表1:小莹抽取60名男生居家减压方式统计表(单位:人)减压方式A B C D E人数463785表2:小静随机抽取10名学生居家减压方式统计表(单位:人)减压方式A B C D E人数21331表3:小新随机抽取60名学生居家减压方式统计表(单位:人)减压方式A B C D E人数65261310根据以上材料,回答下列问题:(1)小莹、小静和小新三人中,哪一位同学抽样调查的数据能较好地反映出该校九年级学生居家减压方式情况,并简要说明其他两位同学抽样调查的不足之处.(2)根据三人中能较好地反映出该校九年级居家减压方式的调查结果,估计该校九年级600名学生中利用室内体育活动方式进行减压的人数.【解答】解:(1)小新同学抽样调查的数据能较好地反映出该校九年级学生居家减压方式情况,小莹同学调查的只是男生,不具有代表性,小静同学调查的人数偏少,具有片面性,对整体情况的反映容易造成偏差.(2)600×=260(人),答:该校九年级600名学生中利用室内体育活动方式进行减压的大约有260人.五、解答题(每小题8分,共16分)23.(8分)某种机器工作前先将空油箱加满,然后停止加油立即开始工作.当停止工作时,油箱中油量为5L,在整个过程中,油箱里的油量y(单位:L)与时间x(单位:min)之间的关系如图所示.(1)机器每分钟加油量为3L,机器工作的过程中每分钟耗油量为0.5L.(2)求机器工作时y关于x的函数解析式,并写出自变量x的取值范围.(3)直接写出油箱中油量为油箱容积的一半时x的值.【解答】解:(1)由图象可得,机器每分钟加油量为:30÷10=3(L),机器工作的过程中每分钟耗油量为:(30﹣5)÷(60﹣10)=0.5(L),故答案为:3,0.5;(2)当0≤x≤10时,设y关于x的函数解析式为y=kx,10k=30,得k=3,即当0≤x≤10时,y关于x的函数解析式为y=3x,当10<x≤60时,设y关于x的函数解析式为y=ax+b,,解得,,即当10<x≤60时,y关于x的函数解析式为y=﹣0.5x+35,由上可得,y关于x的函数解析式为y=;(3)当3x=30÷2时,得x=5,当﹣0.5x+35=30÷2时,得x=40,即油箱中油量为油箱容积的一半时x的值是5或40.24.(8分)能够完全重合的平行四边形纸片ABCD和AEFG按图①方式摆放,其中AD=AG=5,AB=9.点D,G分别在边AE,AB上,CD与FG相交于点H.【探究】求证:四边形AGHD是菱形.【操作一】固定图①中的平行四边形纸片ABCD,将平行四边形纸片AEFG绕着点A顺时针旋转一定的角度,使点F与点C重合,如图②.则这两张平行四边形纸片未重叠部分图形的周长和为56.【操作二】将图②中的平行四边形纸片AEFG绕着点A继续顺时针旋转一定的角度,使点E与点B重合,连接DG,CF,如图③,若sin∠BAD=,则四边形DCFG的面积为120.【解答】解:【探究】∵四边形ABCD和AEFG都是平行四边形,∴AE∥GF,DC∥AB,∴四边形AGHD是平行四边形,∵AD=AG,∴四边形AGHD是菱形;【操作一】根据题意得,这两张平行四边形纸片未重叠部分图形的周长和为:ME+EF+MC+AD+DM+AM+AG+GN+AN+BN+BC+NF=(ME+AM+AG+EF+NF)+(AD+BC+DM+MC+AN+BN)=2(AE+AG)+2(AB+AD)=2×(9+5)+2×(9+5)=56,故答案为:56;【操作二】由题意知,AD=AG=5,∠DAB=∠BAG,又AM=AM,∴△AMD≌△AMG(SAS),∴DM=GM,∠AMD=∠AMG,∵∠AMD+∠AMG=180°,∴∠AMD=∠AMG=90°,∵sin∠BAD=,∴,∴DM=AD=,∴DG=,∵四边形ABCD和四边形AEFG是平行四边形,∴DC∥AB∥GF,DC=AB=GF=9,∴四边形CDGF是平行四边形,∵∠AMD=90°,∴∠CDG=∠AMD=90°,∴四边形CDGF是矩形,∴,故答案为:120.六、解答题(每小题10分,共20分)25.(10分)如图,△ABC是等边三角形,AB=4cm,动点P从点A出发,以2cm/s的速度沿AB向点B匀速运动,过点P作PQ⊥AB,交折线AC﹣CB于点Q,以PQ为边作等边三角形PQD,使点A,D在PQ异侧.设点P的运动时间为x(s)(0<x<2),△PQD 与△ABC重叠部分图形的面积为y(cm2).(1)AP的长为2x cm(用含x的代数式表示).(2)当点D落在边BC上时,求x的值.(3)求y关于x的函数解析式,并写出自变量x的取值范围.【解答】解:(1)∵动点P从点A出发,以2cm/s的速度沿AB向点B匀速运动,∴AP的长为2xcm;故答案为:2x;(2)当点D落在BC上时,如图1,BP=AB﹣AP=4﹣2x,∵PQ⊥AB,∴∠QP A=90°,∵△PQD等边三角形,△ABC是等边三角形,∴∠A=∠B=∠DPQ=60°,∴∠BPD=30°,∴∠PDB=90°,∴PD⊥BC,∴△APQ≌△BDP(AAS),∴BD=AP=2x,∵BP=2BD,∴4﹣2x=4x,解得x=;(3)①如图2,当0<x≤时,∵在Rt△APQ中,AP=2x,∠A=60°,∴PQ=AP•tan60°=2x,∵△PQD等边三角形,∴S△PQD=2x•3x=3x2cm2,所以y=3x2;②如图3,当点Q运动到与点C重合时,此时CP⊥AB,所以AP=AB,即2x═2,解得x=1,所以当<x≤1时,如图4,设PD、QD与BC分别相交于点G、H,∵AP=2x,∴BP=4﹣2x,AQ=2AP=4x,∴BG=BP=2﹣x∴PG=BG=(2﹣x),∴S△PBG=BG•PG=(2﹣x)2,∵AQ=2AP=4x,∴CQ=AC﹣AQ=4﹣4x,∴QH=CQ=(4﹣4x),∴S△QCH=CQ•QH=(4﹣4x)2,∵S△ABC=4×2=4,∴S四边形PGHQ=S△ABC﹣S△PBG﹣S△QCH=4﹣(2﹣x)2﹣(4﹣4x)2=﹣x2+18x﹣6,所以y=﹣x2+18x﹣6;③如图5,当1<x<2时,点Q运动到BC边上,设PD与BC相交于点G,此时PG=BP•sin60°=(4﹣2x)×=(2﹣x),∵PB=4﹣2x,∴BQ=2BP=2(4﹣2x)=4(2﹣x),∴BG=BP=2﹣x,∴QG=BQ﹣BG=3(2﹣x),∴重叠部分的面积为:S△PQG=PG•QG=(2﹣x)•3(2﹣x)=(2﹣x)2.所以y=(2﹣x)2.综上所述:y关于x的函数解析式为:当0<x≤时,y=3x2;当<x≤1时,y=﹣x2+18x﹣6;当1<x<2时,y=(2﹣x)2.26.(10分)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+与x轴正半轴交于点A,且点A的坐标为(3,0),过点A作垂直于x轴的直线l.P是该抛物线上的任意一点,其横坐标为m,过点P作PQ⊥l于点Q,M是直线l上的一点,其纵坐标为﹣m+.以PQ,QM为边作矩形PQMN.(1)求b的值.(2)当点Q与点M重合时,求m的值.(3)当矩形PQMN是正方形,且抛物线的顶点在该正方形内部时,求m的值.(4)当抛物线在矩形PQMN内的部分所对应的函数值y随x的增大而减小时,直接写出m的取值范围.【解答】解:(1)把点A(3,0)代入y=﹣x2+bx+,得到0=﹣+3b+,解得b=1.(2)∵抛物线的解析式为y=﹣x2+x+,∴P(m,﹣m2+m+),∵M,Q重合,∴﹣m+=﹣m2+m+,解得m=0或4.(3)由题意PQ=MQ,且抛物线的顶点在该正方形内部∴3﹣m=﹣m+﹣(﹣m2+m+),解得m=1﹣或1+(不合题意舍弃),∴m=1﹣.(4)当点P在直线l的左边,点M在点Q是下方下方时,抛物线在矩形PQMN内的部分所对应的函数值y随x的增大而减小,则有﹣m+<﹣m2+m+,∴m2﹣4m<0,解得0<m<4,观察图象可知.当0<m<3时,抛物线在矩形PQMN内的部分所对应的函数值y随x的增大而减小,如图4﹣1中,当m>4时,点M在点Q的上方,也满足条件,如图4﹣2中,综上所述,满足条件的m的值为0<m<3或m>4.。
2020年吉林省中考数学试卷班级:___________姓名:___________得分:___________一、选择题(本大题共6小题,共18.0分)1.−6的相反数是()A. 6B. −6C. 16D. −162.国务院总理李克强2020年5月22日在作政府工作报告时说,去年我国农村贫困人口减少11090000,脱贫攻坚取得决定性成就.数据11090000用科学记数法表示为()A. 11.09×106B. 1.109×107C. 1.109×108D. 0.1109×1083.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图为()A. B. C. D.4.下列运算正确的是()A. a2⋅a3=a6B. (a2)3=a5C. (2a)2=2a2D. a3÷a2=a5.将一副三角尺按如图所示的方式摆放,则∠α的大小为()A. 85°B. 75°C. 65°D. 60°6.如图,四边形ABCD内接于⊙O,若∠B=108°,则∠D的大小为()A. 54°B. 62°C. 72°D. 82°二、填空题(本大题共8小题,共24.0分)7.分解因式:a2−ab=______.8.不等式3x+1>7的解集为______.9.一元二次方程x2+3x−1=0根的判别式的值为______.10.我国古代数学著作《算学启蒙》中有这样一个数学问题,其大意是:跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,快马几天可以追上慢马?设快马x天可以追上慢马,根据题意,可列方程为______.11.如图,某单位要在河岸l上建一个水泵房引水到C处.他们的做法是:过点C作CD⊥l于点D,将水泵房建在了D处.这样做最节省水管长度,其数学道理是______.12.如图,AB//CD//EF.若ACCE =12,BD=5,则DF=______.13.如图,在△ABC中,D,E分别是边AB,AC的中点.若△ADE的面积为12,则四边形DBCE的面积为______.14.如图,在四边形ABCD中,AB=CB,AD=CD,我们把这种两组邻边分别相等的四边形叫做“筝形”.筝形ABCD的对角线AC,BD相交于点O.以点B为圆心,BO长为半径画弧,分别交AB,BC于点E,F.若∠ABD=∠ACD=30°,AD=1,则EF⏜的长为______(结果保留π).三、计算题(本大题共1小题,共6.0分)15.先化简,再求值:(a+1)2+a(1−a)−1,其中a=√7.四、解答题(本大题共11小题,共102.0分)16.“中国结”是我国特有的手工编织工艺品,也是一种传统吉祥装饰物.如图,现有三张正面印有“中国结”图案的不透明卡片A,B,C,卡片除正面图案不同外,其余均相同.将三张卡片正面向下洗匀,小吉同学从中随机抽取一张卡片,记下图案后正面向下放回,洗匀后再从中随机抽取一张卡片,请用画树状图或列表的方法,求小吉同学抽出的两张卡片中含有A卡片的概率.17.甲、乙二人做某种机械零件.已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等.求乙每小时做零件的个数.18.如图,在△ABC中,AB>AC,点D在边AB上,且BD=CA,过点D作DE//AC,并截取DE=AB,且点C,E在AB同侧,连接BE.求证:△DEB≌△ABC.19.图①、图②、图③都是3×3的正方形网格,每个小正方形的顶点称为格点.A,B,C均为格点.在给定的网格中,按下列要求画图:(1)在图①中,画一条不与AB重合的线段MN,使MN与AB关于某条直线对称,且M,N为格点.(2)在图②中,画一条不与AC重合的线段PQ,使PQ与AC关于某条直线对称,且P,Q为格点.(3)在图③中,画一个△DEF,使△DEF与△ABC关于某条直线对称,且D,E,F为格点.20.如图,某班数学小组测量塔的高度,在与塔底部B相距35m的C处,用高1.5m的测角仪CD测得该塔顶端A的仰角∠EDA为36°.求塔AB的高度(结果精确到1m).(参考数据:sin36°=0.59,cos36°=0.81,tan36°=0.73)21.如图,在平面直角坐标系中,O为坐标原点,点A,B(x>0)的图象上(点B的横坐标大于点A在函数y=kx的横坐标),点A的坐标为(2,4),过点A作AD⊥x轴于点D,过点B作BC⊥x轴于点C,连接OA,AB.(1)求k的值.(2)若D为OC中点,求四边形OABC的面积.22.2020年3月线上授课期间,小莹、小静和小新为了解所在学校九年级600名学生居家减压方式情况,对该校九年级部分学生居家减压方式进行抽样调查.将居家减压方式分为A(享受美食)、B(交流谈心)、C(室内体育活动)、D(听音乐)和E(其他方式)五类,要求每位被调查者选择一种自己最常用的减压方式.他们将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3.表1:小莹抽取60名男生居家减压方式统计表(单位:人)表2:小静随机抽取10名学生居家减压方式统计表(单位:人)表3:小新随机抽取60名学生居家减压方式统计表(单位:人)根据以上材料,回答下列问题:(1)小莹、小静和小新三人中,哪一位同学抽样调查的数据能较好地反映出该校九年级学生居家减压方式情况,并简要说明其他两位同学抽样调查的不足之处.(2)根据三人中能较好地反映出该校九年级居家减压方式的调查结果,估计该校九年级600名学生中利用室内体育活动方式进行减压的人数.23.某种机器工作前先将空油箱加满,然后停止加油立即开始工作.当停止工作时,油箱中油量为5L,在整个过程中,油箱里的油量y(单位:L)与时间x(单位:min)之间的关系如图所示.(1)机器每分钟加油量为______L,机器工作的过程中每分钟耗油量为______L.(2)求机器工作时y关于x的函数解析式,并写出自变量x的取值范围.(3)直接写出油箱中油量为油箱容积的一半时x的值.24.能够完全重合的平行四边形纸片ABCD和AEFG按图①方式摆放,其中AD=AG=5,AB=9.点D,G分别在边AE,AB上,CD与FG相交于点H.【探究】求证:四边形AGHD是菱形.【操作一】固定图①中的平行四边形纸片ABCD,将平行四边形纸片AEFG绕着点A顺时针旋转一定的角度,使点F与点C重合,如图②.则这两张平行四边形纸片未重叠部分图形的周长和为______.【操作二】将图②中的平行四边形纸片AEFG绕着点A继续顺时针旋转一定的角度,使点E与点B重合,连接DG,CF,如图③,若sin∠BAD=4,则四边形DCFG3的面积为______.25.如图,△ABC是等边三角形,AB=4cm,动点P从点A出发,以2cm/s的速度沿AB向点B匀速运动,过点P作PQ⊥AB,交折线AC−CB于点Q,以PQ为边作等边三角形PQD,使点A,D在PQ异侧.设点P的运动时间为x(s)(0<x<2),△PQD 与△ABC重叠部分图形的面积为y(cm2).(1)AP的长为______cm(用含x的代数式表示).(2)当点D落在边BC上时,求x的值.(3)求y关于x的函数解析式,并写出自变量x的取值范围.26.如图,在平面直角坐标系中,抛物线y=−12x2+bx+32与x轴正半轴交于点A,且点A的坐标为(3,0),过点A作垂直于x轴的直线l.P是该抛物线上的任意一点,其横坐标为m,过点P作PQ⊥l于点Q,M是直线l上的一点,其纵坐标为−m+32.以PQ,QM为边作矩形PQMN.(1)求b的值.(2)当点Q与点M重合时,求m的值.(3)当矩形PQMN是正方形,且抛物线的顶点在该正方形内部时,求m的值.(4)当抛物线在矩形PQMN内的部分所对应的函数值y随x的增大而减小时,直接写出m的取值范围.答案和解析1.A解:−6的相反数是6,2.B解:11090000=1.109×107,3.A解:从左边看第一层是一个小正方形,第二层也是一个小正方形,所以左视图是选项A,4.D解:A、a2⋅a3=a5,原计算错误,故此选项不符合题意;B、(a2)3=a6,原计算错误,故此选项不符合题意;C、(2a)2=4a2,原计算错误,故此选项不符合题意;D、a3÷a2=a,原计算正确,故此选项符合题意;5.B解:如图所示,∵∠BCD=60°,∠BCA=45°,∴∠ACD=∠BCD−∠BCA=60°−45°=15°,∠α=180°−∠D−∠ACD=180°−90°−15°=75°,解:∵四边形ABCD内接于⊙O,∠B=108°,∴∠D=180°−∠B=180°−108°=72°,7.a(a−b)解:a2−ab=a(a−b).8.x>2解:3x+1>7,移项得:3x>7−1,合并同类项得:3x>6,系数化为1得:x>2,9.13解:∵a=1,b=3,c=−1,∴△=b2−4ac=9+4=13.所以一元二次方程x2+3x−1=0根的判别式的值为13.10.(240−150)x=150×12解:设快马x天可以追上慢马,依题意,得:(240−150)x=150×12.11.垂线段最短解:过点C作CD⊥l于点D,将水泵房建在了D处.这样做最节省水管长度,其数学道理是垂线段最短.解:∵AB//CD//EF,∴BDDF =ACCE=12,∴DF=2BD=2×5=10.13.32解:∵D,E分别是△ABC的边AB,AC的中点,∴DE是△ABC的中位线,∴DE//BC,DE=12BC,∴△ADE∽△ABC,∴S△ADES△ABC =(DEBC)2=(12)2=14,∵△ADE的面积为12,∴△ABC的面积为2,∴四边形DBCE的面积=2−12=32,14.12π解:在△ABD与△CBD中,{AB=CB AD=CD BD=BD,∴△ABD≌△CBD(SSS),∴∠ABD=∠CBD=30°,∠ADB=∠CDB,CD=AD=1,∴∠ABC=60°,∵AD=CD,∠ADB=∠CDB,∴BD⊥AC,且AO=CO,∴∠ACB=90°−30°=60°,∴∠BCD=∠ACB+∠ACD=90°,在Rt△BCD中,∵∠CBD=30°,∴BD=2CD=2,在Rt△COD中,∵∠ACD=30°,∴OD=12CD=12,∴OB=BD−OD=2−12=32,∴EF⏜的长为:60π⋅3 2180=12π,15.解:原式=a2+2a+1+a−a2−1=−a.当a=√7时,原式=−√7.16.解:根据题意列表如下:共有9种等可能的结果数,其中小吉同学抽出的两张卡片中含有A卡片的有1种情况,∴小吉同学抽出的两张卡片中含有A卡片的概率为19.17.解:设乙每小时做x个零件,甲每小时做(x+6)个零件,根据题意得:90x+6=60x,解得:x=12,经检验,x=12是原方程的解,且符合题意,∴x+6=18.答:乙每小时做12个零件.18.证明:∵DE//AC,∴∠EDB=∠A.在△DEB与△ABC中,{DE=AB∠EDB=∠A BD=CA,∴△DEB≌△ABC(SAS).19.解:(1)如图①,MN即为所求;(2)如图②,PQ即为所求;(3)如图③,△DEF即为所求.20.解:设AB与DE交于点F,如图所示:由题意得:DF⊥AB,BE=CD=1.5m,DF=BC= 35m,在Rt△ADF中,∠AFD=90°,tan∠EDA=AFDF,∴AF=DF×tan36°≈35×0.73=25.55(m),∴AB=AF+BF=25.55+1.5≈27(m);答:塔AB的高度约27m.21.解:(1)将点A的坐标为(2,4)代入y=kx(x>0),可得k=xy=2×4=8,∴k的值为8;(2)∵k的值为8,∴函数y=kx 的解析式为y=8x,∵D为OC中点,OD=2,∴OC=4,∴点B的横坐标为4,将x=4代入y=8x,可得y=2,∴点B 的坐标为(4,2),∴S 四边形OABC =S △AOD +S 四边形ABCD =12×2×4+12(2+4)×2=10.22. 解:(1)小新同学抽样调查的数据能较好地反映出该校九年级学生居家减压方式情况,小莹同学调查的只是男生,不具有代表性,小静同学调查的人数偏少,具有片面性,对整体情况的反映容易造成偏差.(2)600×2660=260(人),答:该校九年级600名学生中利用室内体育活动方式进行减压的大约有260人.23. 3 0.5解:(1)由图象可得,机器每分钟加油量为:30÷10=3(L),机器工作的过程中每分钟耗油量为:(30−5)÷(60−10)=0.5(L),故答案为:3,0.5;(2)当0≤x ≤10时,设y 关于x 的函数解析式为y =kx ,10k =30,得k =3,即当0≤x ≤10时,y 关于x 的函数解析式为y =3x ,当10<x ≤60时,设y 关于x 的函数解析式为y =ax +b ,{10a +b =3060a +b =5, 解得,{a =−0.5b =35, 即当10<x ≤60时,y 关于x 的函数解析式为y =−0.5x +35,由上可得,y 关于x 的函数解析式为y ={3x (0≤x ≤10)−0.5x +35(10<x ≤60); (3)当3x =30÷2时,得x =5,当−0.5x +35=30÷2时,得x =40,即油箱中油量为油箱容积的一半时x 的值是5或40.24. 56 120解:【探究】∵四边形ABCD和AEFG都是平行四边形,∴AE//GF,DC//AB,∴四边形AGHD是平行四边形,∵AD=AG,∴四边形AGHD是菱形;【操作一】根据题意得,这两张平行四边形纸片未重叠部分图形的周长和为:ME+EF+MC+AD+DM+AM+AG+GN+AN+BN+BC+NF=(ME+AM+ AG+EF+NF)+(AD+BC+DM+MC+AN+BN)=2(AE+AG)+2(AB+AD)= 2×(9+5)+2×(9+5)=56,故答案为:56;【操作二】由题意知,AD=AG=5,∠DAB=∠BAG,又AM=AM,∴△AMD≌△AMG(SAS),∴DM=GM,∠AMD=∠AMG,∵∠AMD+∠AMG=180°,∴∠AMD=∠AMG=90°,∵sin∠BAD=43,∴DMAD =43,∴DM=43AD=203,∴DG=403,∵四边形ABCD和四边形AEFG是平行四边形,∴DC//AB//GF,DC=AB=GF=9,∴四边形CDGF是平行四边形,∵∠AMD=90°,∴∠CDG=∠AMD=90°,∴四边形CDGF是矩形,∴S矩形DCFG =DG⋅DC=403×9=120,故答案为:120.25.2x解:(1)∵动点P从点A出发,以2cm/s的速度沿AB向点B匀速运动,∴AP的长为2xcm;故答案为:2x;(2)当点D落在BC上时,如图1,BP=AB−AP=4−2x,∵PQ⊥AB,∴∠QPA=90°,∵△PQD等边三角形,△ABC是等边三角形,∴∠A=∠B=∠DPQ=60°,∴∠BPD=30°,∴∠PDB=90°,∴PD⊥BC,∴△APQ≌△BDP(AAS),∴BD=AP=2x,∵BP=2BD,∴4−2x=4x,解得x=2;3(3)①如图2,当0<x≤2时,3∵在Rt△APQ中,AP=2x,∠A=60°,∴PQ=AP⋅tan60°=2√3x,∵△PQD等边三角形,∴S△PQD=12×2√3x⋅3x=3√3x2cm2,所以y=3√3x2;②如图3,当点Q运动到与点C重合时,此时CP⊥AB,所以AP=12AB,即2x═2,解得x=1,所以当23<x≤1时,如图4,设PD、QD与BC分别相交于点G、H,∵AP=2x,∴BP=4−2x,AQ=2AP=4x,∴BG=12BP=2−x∴PG=√3BG=√3(2−x),∴S△PBG=12×BG⋅PG=√32(2−x)2,∵AQ=2AP=4x,∴CQ=AC−AQ=4−4x,∴QH=√3CQ=√3(4−4x),∴S△QCH=12×CQ⋅QH=√32(4−4x)2,∵S△ABC=12×4×2√3=4√3,∴S四边形PGHQ=S△ABC−S△PBG−S△QCH=4√3−√32(2−x)2−√32(4−4x)2=−17√32x2+18√3x−6√3,所以y=−17√32x2+18√3x−6√3;③如图5,当1<x<2时,点Q运动到BC边上,设PD与BC相交于点G,此时PG=BP⋅sin60°=(4−2x)×√32=√3(2−x),∵PB=4−2x,∴BQ=2BP=2(4−2x)=4(2−x),∴BG=12BP=2−x,∴QG=BQ−BG=3(2−x),∴重叠部分的面积为:S△PQG=12×PG⋅QG=12×√3(2−x)⋅3(2−x)=3√32(2−x)2.所以y=3√32(2−x)2.综上所述:y关于x的函数解析式为:当0<x≤23时,y=3√3x2;当23<x≤1时,y=−17√32x2+18√3x−6√3;当1<x<2时,y=3√32(2−x)2.26.解:(1)把点A(3,0)代入y=−12x2+bx+32,得到0=−92+3b+32,解得b=1.(2)∵抛物线的解析式为y=−12x2+x+32,∴P(m,−12m2+m+32),∵M,Q重合,∴−m+32=−12m2+m+32,解得m=0或4.(3)由题意PQ=MQ,且抛物线的顶点在该正方形内部∴3−m=−m+32−(−12m2+m+32),解得m=1−√7或1+√3(不合题意舍弃),∴m=1−√7.(4)当点P在直线l的左边,点M在点Q是下方下方时,抛物线在矩形PQMN内的部分所对应的函数值y随x的增大而减小,则有−m+32<−12m2+m+32,∴m2−4m<0,解得0<m<4,观察图象可知.当0<m<3时,抛物线在矩形PQMN内的部分所对应的函数值y随x 的增大而减小,如图4−1中,当m>4时,点M在点Q的上方,也满足条件,如图4−2中,综上所述,满足条件的m的值为0<m<3或m>4.第21页,共21页。
2020年吉林省中考数学试卷参考答案与试题解析一、单项选择题(每小题2分,共12分)1.【解答】解:﹣6的相反数是6,故选:A.2.【解答】解:11090000=1.109×107,故选:B.3.【解答】解:从左边看第一层是一个小正方形,第二层也是一个小正方形,所以左视图是选项A,故选:A.4.【解答】解:A、a2•a3=a5,原计算错误,故此选项不符合题意;B、(a2)3=a6,原计算错误,故此选项不符合题意;C、(2a)2=4a2,原计算错误,故此选项不符合题意;D、a3÷a2=a,原计算正确,故此选项符合题意;故选:D.5.【解答】解:如图所示,∵∠BCD=60°,∠BCA=45°,∴∠ACD=∠BCD﹣∠BCA=60°﹣45°=15°,∠α=180°﹣∠D﹣∠ACD=180°﹣90°﹣15°=75°,故选:B.6.【解答】解:∵四边形ABCD内接于⊙O,∠B=108°,∴∠D=180°﹣∠B=180°﹣108°=72°,故选:C.二、填空题(每小题3分,共24分)7.【解答】解:a2﹣ab=a(a﹣b).8.【解答】解:3x+1>7,移项得:3x>7﹣1,合并同类项得:3x>6,系数化为1得:x>2,故答案为:x>2.9.【解答】解:∵a=1,b=3,c=﹣1,∴△=b2﹣4ac=9+4=13.所以一元二次方程x2+3x﹣1=0根的判别式的值为13.故答案为:13.10.【解答】解:设快马x天可以追上慢马,依题意,得:(240﹣150)x=150×12.故答案为:(240﹣150)x=150×12.11.【解答】解:过点C作CD⊥l于点D,将水泵房建在了D处.这样做最节省水管长度,其数学道理是垂线段最短.故答案为:垂线段最短.12.【解答】解:∵AB∥CD∥EF,∴==,∴DF=2BD=2×5=10.故答案为10.13.【解答】解:∵D,E分别是△ABC的边AB,AC的中点,∴DE是△ABC的中位线,∴DE∥BC,DE=BC,∴△ADE∽△ABC,∴=()2=()2=,∵△ADE的面积为,∴△ABC的面积为2,∴四边形DBCE的面积=2﹣=,故答案为:.14.【解答】解:在△ABD与△CBD中,,∴△ABD≌△CBD(SSS),∴∠ABD=∠CBD=30°,∠ADB=∠CDB,CD=AD=1,∴∠ABC=60°,∵AD=CD,∠ADB=∠CDB,∴BD⊥AC,且AO=CO,∴∠ACB=90°﹣30°=60°,∴∠BCD=∠ACB+∠ACD=90°,在Rt△BCD中,∵∠CBD=30°,∴BD=2CD=2,在Rt△COD中,∵∠ACD=30°,∴OD=CD=,∴OB=BD﹣OD=2﹣=,∴的长为:=,故答案为.三、解答题(每小题5分,共20分)15.【解答】解:原式=a2+2a+1+a﹣a2﹣1=3a.当a=时,原式=3.16.【解答】解:根据题意列表如下:共有9种等可能的结果数,其中小吉同学抽出的两张卡片中含有A卡片的有5种情况,∴小吉同学抽出的两张卡片中含有A卡片的概率为.17.【解答】解:设乙每小时做x个零件,甲每小时做(x+6)个零件,根据题意得:=,解得:x=12,经检验,x=12是原方程的解,且符合题意,答:乙每小时做12个零件.18.【解答】证明:∵DE∥AC,∴∠EDB=∠A.在△DEB与△ABC中,,∴△DEB≌△ABC(SAS).四、解答题(每小题7分,共28分)19.【解答】解:(1)如图①,MN即为所求;(2)如图②,PQ即为所求;(3)如图③,△DEF即为所求.(答案不唯一).20.【解答】解:设AB与DE交于点F,如图所示:由题意得:DF⊥AB,BF=CD=1.5m,DF=BC=35m,在Rt△ADF中,∠AFD=90°,tan∠EDA=,∴AF=DF×tan36°≈35×0.73=25.55(m),∴AB=AF+BF=25.55+1.5≈27(m);答:塔AB的高度约27m.21.【解答】解:(1)将点A的坐标为(2,4)代入y=(x>0),可得k=xy=2×4=8,∴k的值为8;(2)∵k的值为8,∴函数y=的解析式为y=,∵D为OC中点,OD=2,∴OC=4,∴点B的横坐标为4,将x=4代入y=,可得y=2,∴点B的坐标为(4,2),∴S四边形OABC=S△AOD+S四边形ABCD==10.22.【解答】解:(1)小新同学抽样调查的数据能较好地反映出该校九年级学生居家减压方式情况,小莹同学调查的只是男生,不具有代表性,小静同学调查的人数偏少,具有片面性,对整体情况的反映容易造成偏差.(2)600×=260(人),答:该校九年级600名学生中利用室内体育活动方式进行减压的大约有260人.五、解答题(每小题8分,共16分)23.【解答】解:(1)由图象可得,机器每分钟加油量为:30÷10=3(L),机器工作的过程中每分钟耗油量为:(30﹣5)÷(60﹣10)=0.5(L),故答案为:3,0.5;(2)当10<x≤60时,设y关于x的函数解析式为y=ax+b,,解得,,即机器工作时y关于x的函数解析式为y=﹣0.5x+35(10<x≤60);(3)当3x=30÷2时,得x=5,当﹣0.5x+35=30÷2时,得x=40,即油箱中油量为油箱容积的一半时x的值是5或40.24.【解答】解:【探究】∵四边形ABCD和AEFG都是平行四边形,∴AE∥GF,DC∥AB,∴四边形AGHD是平行四边形,∵AD=AG,∴四边形AGHD是菱形;【操作一】根据题意得,这两张平行四边形纸片未重叠部分图形的周长和为:ME+EF+MC+AD+DM+AM+AG+GN+AN+BN+BC+NF=(ME+AM+AG+EF+NF+GN)+(AD+BC+DM+MC+AN+BN)=2(AE+AG)+2(AB+AD)=2×(9+5)+2×(9+5)=56,故答案为:56;【操作二】由题意知,AD=AG=5,∠DAB=∠BAG,又AM=AM,∴△AMD≌△AMG(SAS),∴DM=GM,∠AMD=∠AMG,∵∠AMD+∠AMG=180°,∴∠AMD=∠AMG=90°,∵sin∠BAD=,∴,∴DM=AD=4,∴DG=8,∵四边形ABCD和四边形AEFG是平行四边形,∴DC∥AB∥GF,DC=AB=GF=9,∴四边形CDGF是平行四边形,∵∠AMD=90°,∴∠CDG=∠AMD=90°,∴四边形CDGF是矩形,∴S矩形DCFG=DG•DC=8×9=72,故答案为:72.六、解答题(每小题10分,共20分)25.【解答】解:(1)∵动点P从点A出发,以2cm/s的速度沿AB向点B匀速运动,∴AP的长为2xcm;故答案为:2x;(2)当点D落在BC上时,如图1,BP=AB﹣AP=4﹣2x,∵PQ⊥AB,∴∠QP A=90°,∵△PQD等边三角形,△ABC是等边三角形,∴∠A=∠B=∠DPQ=60°,PQ=PD,∴∠BPD=30°,∴∠PDB=90°,∴PD⊥BC,∴△APQ≌△BDP(AAS),∴BD=AP=2x,∵BP=2BD,∴4﹣2x=4x,解得x=;(3)①如图2,当0<x≤时,∵在Rt△APQ中,AP=2x,∠A=60°,∴PQ=AP•tan60°=2x,∵△PQD等边三角形,∴S△PQD=2x•3x=3x2cm2,所以y=3x2;②如图3,当点Q与点C重合时,此时CP⊥AB,所以AP=AB,即2x═2,解得x=1,所以当<x≤1时,如图4,设PD、QD与BC分别相交于点G、H,∵AP=2x,∴BP=4﹣2x,AQ=2AP=4x,∴BG=BP=2﹣x∴PG=BG=(2﹣x),∴S△PBG=BG•PG=(2﹣x)2,∵AQ=2AP=4x,∴CQ=AC﹣AQ=4﹣4x,∴QH=CQ=(4﹣4x),∴S△QCH=CQ•QH=(4﹣4x)2,∵S△ABC=4×2=4,∴S四边形PGHQ=S△ABC﹣S△PBG﹣S△QCH﹣S△APQ=4﹣(2﹣x)2﹣(4﹣4x)2﹣×2x×2x=﹣x2+18x﹣6,所以y=﹣x2+18x﹣6;③如图5,当1<x<2时,点Q运动在BC边上,设PD与BC相交于点G,此时PG=BP•sin60°=(4﹣2x)×=(2﹣x),∵PB=4﹣2x,∴BQ=2BP=2(4﹣2x)=4(2﹣x),∴BG=BP=2﹣x,∴QG=BQ﹣BG=3(2﹣x),∴重叠部分的面积为:S△PQG=PG•QG=(2﹣x)•3(2﹣x)=(2﹣x)2.所以y=(2﹣x)2.综上所述:y关于x的函数解析式为:当0<x≤时,y=3x2;当<x≤1时,y=﹣x2+18x﹣6;当1<x<2时,y=(2﹣x)2.26.【解答】解:(1)把点A(3,0)代入y=﹣x2+bx+,得到0=﹣+3b+,解得b=1.(2)∵抛物线的解析式为y=﹣x2+x+,∴P(m,﹣m2+m+),∵M,Q重合,∴﹣m+=﹣m2+m+,解得m=0或4.(3)y=﹣x2+x+=﹣(x﹣1)2+2,∴抛物线的顶点坐标为(1,2),由题意PQ=MQ,且抛物线的顶点在该正方形内部,∴3﹣m=﹣m+﹣(﹣m2+m+)且﹣m+>2,得m<﹣解得m=1﹣或1+(不合题意舍弃),∴m=1﹣.(4)当点P在直线l的左边,点M在点Q下方时,抛物线在矩形PQMN内的部分所对应的函数值y随x的增大而减小,则有﹣m+<﹣m2+m+,∴m2﹣4m<0,解得0<m<4,观察图象可知.当0<m<3时,抛物线在矩形PQMN内的部分所对应的函数值y随x的增大而减小,如图4﹣1中,当3<m<4时,抛物线不在矩形PQMN内部,不符合题意,当m>4时,点M在点Q的上方,也满足条件,如图4﹣2中,综上所述,满足条件的m的值为0<m<3或m>4.第11 页共11 页。
吉林省辽源市2020年(春秋版)中考数学试卷A卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)在3.14,,﹣,π这四个数中,无理数有()A . 1个B . 2个C . 3个D . 4个2. (2分)在下面的四个几何图形中,左视图与主视图不相同的几何体是()A . 长方体B . 正方体C . 球D . 圆锥3. (2分)“植草种树,防风治沙”.某地今年植草种树36700公顷,数据36700用科学记数法表示是()A . 36.7×102B . 36.7×103C . 3.67×103D . 3.67×1044. (2分)(2016·济宁) 如图,直线a∥b,点B在直线b上,且AB⊥BC,∠1=55°,那么∠2的度数是()A . 20°B . 30°C . 35°D . 50°5. (2分) (2019九上·邯郸开学考) 为了解某社区居民的用电情况,随机对该社区10户居民进行了调查,下表是这10户居民2014年4月份用电量的调查结果:那么关于这10户居民月用电量(单位:度),下列说法错误的是()A . 中位数是55B . 众数是60C . 平均数是54D . 方差是296. (2分)(2017·丰南模拟) 求1+2+22+23+…+22014的值,可令S=1+2+22+23+…+22014 ,则2S=2+22+23+24+…+22015 ,因此2S﹣S=22015﹣1,S=22015﹣1,我们把这种求和的方法叫错位相加减,仿照上述的思路方法,计算出1+5+52+53+…+52014的值为()A . 52014﹣1B . 52015﹣1C .D .7. (2分)已知:如图△ABC的顶点坐标分别为A(-4,-3),B(0,-3),C(-2,1),如将B点向右平移2个单位后再向上平移4个单位到达B1点,若设△ABC的面积为S1 ,△AB1C的面积为S2 ,则S1 , S2的大小关系为()A . S1>S2B . S1=S2C . S1<S2D . 不能确定8. (2分)下列说法:①位似图形都相似;②位似图形都是平移后再放大(或缩小)得到;③直角三角形斜边上的中线与斜边的比为1:2;④两个相似多边形的面积比为4:9,则周长的比为16:81中,正确的有()A . 1个B . 2个C . 3个D . 4个9. (2分) (2019八下·澧县期中) 如图,在中,于点D,且是的中点,若则的长等于()A . 5B . 6C . 7D . 810. (2分)已知关于x、y的方程组的解是,那么m,n的值为()A .B .C .D .二、填空题 (共8题;共8分)11. (1分) (2018七上·桐乡期中) ①在数轴上没有点能表示 +1;②无理数是开不尽方的数;③存在最小的实数;④4的平方根是±2,用式子表示是=±2;⑤某数的绝对值,相反数,算术平方根都是它本身,则这个数是0,其中正确的是________.12. (1分)(2019·婺城模拟) 任意抛掷一枚质地均匀的正方体骰子2次,骰子的6个面上分别刻有1到6的点数,记第一次掷得面朝上的点数为横坐标,第二次掷得面朝上的点数为纵坐标,这样组成的点的坐标恰好在正比例函数y=x上的概率为________.13. (1分)(2019·双柏模拟) 已知,正比例函数y=kx与反比例函数的图象有一个交点P(2,m),则正比例函数y=kx的解析式为________.14. (1分) (2019八上·嘉兴期末) 如图是不等式组的解在数轴上的表示,则此不等式组的整数解是________。
吉林省辽源市2020年(春秋版)中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2019·营口) ﹣5的相反数是()A .B .C .D . 52. (2分)两个不同长度的物体在同一时刻同一地点的太阳光下得到的投影是()A . 相等B . 长的较长C . 短的较长D . 不能确定3. (2分) (2020七上·恩平期末) 用科学记数法表示3080000,正确的是()A .B .C .D .4. (2分)(2020·乾县模拟) 若正比例函数的图象经过点A,且点与点关于y轴对称,则k的值为()A .B .C . 4D . -45. (2分)(2018·重庆模拟) 李老师为了了解学生暑期在家的阅读情况,随机调查了20名学生某一天的阅读小时数,具体情况统计如下:阅读时间2 2.53 3.54(小时)学生人数(名)12863则关于这20名学生阅读小时数的说法正确的是()A . 众数是8B . 中位数是3C . 平均数是3D . 方差是0.346. (2分)如图,四边形ABCD为梯形,AD∥BC,∠ABC=30°,∠BCD=60°,AD=4,AB=,则下底BC的长为()A . 6B . 8C . 10D . 127. (2分)(2019·宝鸡模拟) 下列计算正确的是()A . a+a=a2B . (2a)3=6a3C . a3×a3=2a3D . a3÷a=a28. (2分)在下列关系中,y不是x的函数的是()A . y + x = 0B . |y|= 2xC . y =|2x|D . y + 2x2=49. (2分)在半径为R的圆内有长为R的弦,则此弦所对的圆周角是()A . 30°B . 60°C . 30°或150°D . 60°或120°10. (2分) (2018七下·深圳期末) 某商店出售两件衣服,每件卖了200元,其中一件赚了25%,而另一件赔了20%,那么商店在这次交易中()A . 赚了10元B . 亏了10元C . 赚了20元D . 亏了20元11. (2分)(2017·台湾) 如图,O为锐角三角形ABC的外心,四边形OCDE为正方形,其中E点在△ABC的外部,判断下列叙述何者正确()A . O是△AEB的外心,O是△AED的外心B . O是△AEB的外心,O不是△AED的外心C . O不是△AEB的外心,O是△AED的外心D . O不是△AEB的外心,O不是△AED的外心12. (2分)(2020·历下模拟) 如果我们把函数称为二次函数的“镜子函数”,那么对于二次函数:的“镜子函数” :,下列说法:① 的图像关于y轴对称;② 有最小值,最小值为;③当方程有两个不相等的实数根时,;④直线与的图像有三个交点时,中,正确的有()A . 1个B . 2个C . 3个D . 4个二、填空题 (共6题;共7分)13. (1分)(2019·广西模拟) 若xy<0,化筒 =________14. (1分)(2017·陆良模拟) 如图,在⊙O中,弦AB∥CD,若∠ABC=40°,则∠BOD=________.15. (1分) (2016七上·钦州期末) 分解因式:a2﹣6a+9﹣b2=________.16. (1分)粗圆体的汉字“口天土”等多是轴对称图形.请再写出至少三个以上这样的汉字________17. (1分) (2018九上·娄星期末) 如图,点A为反比例函数的图象上一点,B点在轴上且OA=BA,则△AOB的面积为________.18. (2分)(2020·遵化模拟) 阅读下文,寻找规律填空:已知x≠1时,(1-x)(1+x)=1-x2 ,(1-x)(1+x+x2)=1-x3 ,(1-x)(1+x+x2+x3)=1-x4…(1)(1-x)(________)=1-x8;(2)观察上式,并猜想:(1-x)(1+x+x2+…+xn)=________.三、解答题 (共8题;共76分)19. (5分)计算:(3.14﹣π)0﹣| ﹣2|+ .20. (5分)(2018·惠州模拟) 解不等式组,并把解集在数轴上表示出来.21. (15分) (2016七下·下陆期中) 如图,△ABC在直角坐标系中,(1)请写出△ABC各点的坐标.(2)若把△ABC向上平移2个单位,再向左平移1个单位得到△A′B′C′,写出A′、B′、C′的坐标,并在图中画出平移后图形.(3)求出三角形ABC的面积.22. (6分)(2019·信丰模拟) 如图,三张“黑桃”扑克牌,背面完全相同将三张扑克牌背面朝上,洗匀后放在桌面上甲,乙两人进行摸牌游戏,甲先从中随机抽取一张,记下数字再放回洗匀,乙再从中随机抽取一张.(1)甲抽到“黑桃”,这一事件是________事件(填“不可能“,“随机“,“必然”);(2)利用树状图或列表的方法,求甲乙两人抽到同一张扑克牌的概率.23. (10分)已知如图,以Rt△ABC的AC边为直径作⊙O交斜边AB于点E,连接EO并延长交BC的延长线于点D,点F为BC的中点,连接EF.(1)求证:EF是⊙O的切线;(2)若⊙O的半径为3,∠EAC=60°,求AD的长.24. (10分) (2017七下·罗定期末) “节能环保,低碳生活”是我们倡导的一种生活方式,某家电商场计划用11.8万元购进节能型电视机、洗衣机和空调共40台,三种家电的进价和售价如表所示:价格种类进价(元/台)售价(元/台)电视机50005500洗衣机20002160空调24002700(1)在不超出现有资金的前提下,若购进电视机的数量和洗衣机的数量相同,空调的数量不超过电视机的数量的3倍.请问商场有哪几种进货方案?(2)在“2012年消费促进月”促销活动期间,商家针对这三种节能型产品推出“现金每购1000元送50元家电消费券一张、多买多送”的活动.在(1)的条件下,若三种电器在活动期间全部售出,商家预估最多送出多少张?25. (15分) (2019八上·陇西期中) 如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C 运动(与A、C不重合),Q是CB延长线上一动点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.(1)若AE=1时,求AP的长;(2)当∠BQD=30°时,求AP的长;(3)在运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果发生变化,请说明理由.26. (10分)已知关于x的函数y=ax2﹣2abx+ab2﹣1,直线y=﹣ax+3与y轴交于点A,与x轴的正半轴交于点P,点B的纵坐标为3,且AP⊥BP,AP=BP.(1)求实数a的值及点B的坐标;(2)若该二次函数的图象与线段AB只有一个公共点,请结合函数图象,求出实数b的取值范围.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共7分)13-1、14-1、15-1、16-1、17-1、18-1、18-2、三、解答题 (共8题;共76分)19-1、20-1、21-1、21-2、21-3、22-1、22-2、23-1、23-2、24-1、24-2、25-1、25-2、25-3、26-1、26-2、。
吉林省辽源市2020版中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2017·烟台) 下列实数中的无理数是()A .B . πC . 0D .2. (2分) (2019七下·醴陵期末) 下列说法正确的是()A . 同旁内角相等,两直线平行B . 两直线平行,同位角互补C . 相等的角是对顶角D . 等角的余角相等3. (2分) (2019九上·莘县期中) 的算术平方根等于()A .B .C .D .4. (2分)(2019·郫县模拟) 如图,是一个几何体的三视图,则这个几何体是()A . 长方体B . 圆柱体C . 球体D . 圆锥体5. (2分) (2017七下·嘉兴期中) 下列等式中成立的是()A . a4•a=a4B . a6﹣a3=a3C . (ab2)3=a3•b5D . (a3)2=a66. (2分)若点C数线段AB的黄金分割点,且AC>BC,则下列说法正确的有()①AB= AC;②AC=3﹣ AB;③AB:AC=AC:AB;④AC≈0.618AB.A . 1个B . 2个C . 3个D . 4个7. (2分) (2020八下·哈尔滨月考) 如果x=4是一元二次方程x²-3x=a²的一个根,则常数a的值是()A . 2B . ﹣2C . ±2D . ±48. (2分)如图,若菱形ABCD的对角线AC,BD的长分别为6和8,则这个菱形的周长是()A . 20B . 24C . 40D . 489. (2分)(2018·南宁模拟) 如图,内接于,连接OA,OB,若,则的度数是A .B .C .D .10. (2分)(2017·柘城模拟) 如图,正方形ABCD中,以AD为底边作等腰△ADE,将△ADE沿DE折叠,点A 落到点F处,连接EF刚好经过点C,再连接AF,分别交DE于G,交CD于H.在下列结论中:①△ABM≌△DCN;②∠DAF=30°;③△AEF是等腰直角三角形;④EC=CF;⑤S△HCF=S△ADH ,其中正确的结论有()A . 2个B . 3个C . 4个D . 5个二、填空题 (共8题;共9分)11. (1分) (2019七上·盐津月考) 若电视天线高出楼顶3米,记作+3米,则比楼顶低12米,记作:________米12. (2分)(2018·灌南模拟) 分解因式:2mx-6my=________.13. (1分) (2017七下·双柏期末) 一家商店将某种服装按成本价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的成本是多少元?如果设每件服装的成本价为x元,那么:每件服装的标价为:________ ;每件服装的实际售价为:________ ;每件服装的利润为:________ ;由此,列出方程:________ ;解方程,得x = ________ .因此每件服装的成本价是________ 元.14. (1分)(2017·鹤岗) 函数y= 中,自变量x的取值范围是________.15. (1分)(2019·广西模拟) 从-1,0,,,中随机任取一数,取到无理数的概率是________.16. (1分) (2018七下·赵县期末) 如图甲,对于平面上不大于90°的∠MON,我们给出如下定义:如果点P 在∠MON的内部,作PE⊥OM,PF⊥ON,垂足分别为点E、F,那么称PE+PF的值为点P相对于∠M ON的点角距离”,记为d(P,∠MON)如图乙,在平面直角坐标系xOy中,点P在坐标平面内,且点P的横坐标比织坐标大1,对于∠xOy,满足d(P,∠xOy)=5,点P的坐标是________ .17. (1分) (2018九上·衢州期中) 如图,在平行四边形ABCD中,AB<AD,∠D=30°,CD=4,以AB为直径的⊙O交BC于点E,则阴影部分的面积为________.18. (1分)(2020·北碚模拟) 已知xy=3,那么的值为________ .三、解答题 (共10题;共89分)19. (5分) (2019七上·镇海期末) 计算:(1)(2)20. (5分) (2017七下·蒙阴期末) 解不等式组:,并把解集在数轴上表示出来.21. (10分) (2019八上·江山期中) 如图,AB与CB是两条公路,C , D是两个村庄,现在要建一个菜市场,使它到两个村庄的距离相等,而且还要使它到两条公路的距离也相等,用尺规作图画出菜市场的位置.(不写作法,保留作图痕迹)22. (5分)(2020·淮安模拟) 在△ABC中,tanA=,tanB=1,CD⊥AB于点D,且BD=4,请画出示意图并且求边AB的长.23. (10分)(2016·南京) 某景区7月1日﹣7月7日一周天气预报如图,小丽打算选择这期间的一天或两天去该景区旅游,求下列事件的概率:(1)随机选择一天,恰好天气预报是晴;(2)随机选择连续的两天,恰好天气预报都是晴.24. (12分)(2020·温岭模拟) 在新冠状病毒的影响下,某学校积极响应政府号召,开展了“停课不停学”网上授课工作,为了网上授课工作顺利开展和取得良好成效,该校在授课第一周和授课第二周分别随机抽取部分学生进行“网上授课教学效果反馈”网上调查,并将调查结果绘制成如下两幅不完整的统计图,调查显示:两次调查反馈教学效果为“较差”人数相等,第二周反馈教学效果为“很好”人数比例比第一周多20%,请根据调查显示和统计图中的信息解决下列问题:(1)在图1中,表示“较好”的扇形圆心角∠α的度数为▲度,并把图2条形统计图补充完整;(2)若把调查反馈教学效果“很好”和“较好”作为网上授课成效良好的标准,该校大约有2500名学生,请估计授课第二周学校网上授课成效良好的学生人数;(3)有一位家长认为,两次调查反馈授课效果为“较差”人数相等,因此学校在一周后调整的措施并没有提高网上授课效果,这位家长分析数据的方法合理吗?请结合统计图,对这位家长分析数据的方法及学校在一周后调整措施对网上授课效果的影响谈谈你的看法。