锐角三角函数章末复习小结教案
- 格式:doc
- 大小:114.50 KB
- 文档页数:3
(一)激趣导入你能根据本章内容画出知识结构图吗?试一试。
(二)指导自学学生查看教材61-77页内容,熟悉本章知识点,教师巡视指导。
(三)合作互助学生分组进行讨论,画出本章知识结构图,学生代表展示结果。
【课件展示】直角三角形中的边角关系锐角三角函数解直角三角形实际问题提问:(1)锐角三角函数定义在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对边分别为a,b,c,如图所示.我们把锐角A的对边与斜边的比叫做∠A的正弦,记作sin A,即sin A=;我们把锐角A的邻边与斜边的比叫做∠A的余弦,记作cos A,即cos A=;我们把锐角A的对边与邻边的比叫做∠A的正切,记作tan A,即tan A=.(2)特殊角的函数值[规律方法] 在非直角三角形中求角的三角函数值,常通过作垂直构造直角三角形,利用直角三角形中的边角关系解决.例2计算°°-°°°.解:原式=°---=---=2---=1-2.[解题策略]准确地代入特殊角的三角函数值,再根据二次根式的性质进行化简计算.例3 如图①所示,一艘渔船位于小岛M的北偏东45°方向、距离小岛180海里的A处,渔船从A处沿正南方向航行一段距离后,到达位于小岛南偏东60°方向的B处. (1)求渔船从A到B的航行过程中与小岛M之间的最短距离(结果用根号表示);(2)若渔船以20海里/小时的速度从B沿BM方向行驶,求渔船从B到达小岛M的航行时间(结果精确到0.1小时,参考数据:≈1.41,≈1.73,≈2.45).〔解析〕(1)如图②所示,过点M作MD⊥AB于点D,由∠AME 的度数得∠AMD=∠MAD=45°,根据AM的值和特殊角的三角函数值可得DM的值,即为所求;(2)在Rt△DMB中,由∠BMF=60°,得∠DMB=30°,进而求出MB的值,最后根据路程÷速度=时间,即可得出答案.解:(1)如图②所示,过点M作MD⊥AB于点D,∵∠AME=45°,∴∠AMD=∠MAD=45°,∵AM=180海里,∴MD=AM·cos 45°=90海里.答:渔船从A到B的航行过程中与小岛M之间的最短距离是90海里.(2)在Rt△DMB中,∵∠BMF=60°,∴∠DMB=30°,∵MD=90海里,∴MB=60海里,∴60÷20=3≈3×2.45=7.35≈7.4(小时).答:渔船从B到达小岛M的航行时间约为7.4小时.[规律方法] 实际问题中的许多问题可以用直角三角形的边角关系解决,解决这类问题的关键是将实际问题转化为解直角三角形问题,选择恰当的边角关系(即三角函数)求解.(五)检测达标1.如图所示,已知Rt△ABC中,∠C=90°,AC=4,tan A=,则BC的长是( )A.2B.8C.2D.42.如图所示,△ABC中,∠ACB=90°,CD⊥AB于点D,若BD∶AD=1∶4,则tan∠BCD的值是( )A. B. C. D.23.10.如图所示,在塔AB前的平地上选择一点C,测出看塔顶的仰角为30°,从C点向塔底B走100米到达D点,测出看塔顶的仰角为45°,则塔AB的高为( )A.50米B.100米米C.米D.-通过本节课的学习,你有什么收获?布置作业:1.-(2015-π)0-4cos 45°+(-3)2;2.如图所示,一渔船由西往东航行,在A点测得海岛C位于北偏东60°的方向,前进20海里到达B点,此时,测得海岛C位于北偏东30°的方向,则海岛C到航线AB的距离CD 等于海里.3.Rt△ABC中,∠C=90°,cos A=,AC=6 cm,那么BC等于( )A.8 cmB. cmC. cmD. cm。
第28章 锐角三角函数复习教案锐角三角函数(第一课时) 教学三维目标:一.知识目标:初步了解正弦、余弦、正切概念;能较正确地用siaA 、cosA 、tanA 表示直角三角形中两边的比;熟记功30°、45°、60°角的三角函数,并能根据这些值说出对应的锐角度数。
二.能力目标:逐步培养学生观察、比较、分析,概括的思维能力。
三.情感目标:提高学生对几何图形美的认识。
教材分析:1.教学重点: 正弦,余弦,正切概念2.教学难点:用含有几个字母的符号组siaA 、cosA 、tanA 表示正弦,余弦,正切 教学程序: 一.探究活动1.课本引入问题,再结合特殊角30°、45°、60°的直角三角形探究直角三角形的边角关系。
2.归纳三角函数定义。
siaA=斜边的对边A ∠,cosA=斜边的邻边A ∠,tanA=的邻边的对边A A ∠∠3例1.求如图所示的Rt ⊿ABC 中的siaA,cosA,tanA 的值。
4.学生练习P21练习1,2,3 二.探究活动二1.让学生画30°45°60°的直角三角形,分别求sia 30°cos45° tan60° 归纳结果2. 求下列各式的值(1)sia 30°+cos30°(2)2sia 45°-21cos30°(3)004530cos sia +ta60°-tan30°三.拓展提高P82例4.(略) 1. 如图在⊿ABC 中,∠A=30°,tanB=23,AC=23,求AB 四.小结 五.作业课本解直角三角形应用(一) 一.教学三维目标 (一)知识目标使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形.(二)能力训练点通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力.(三)情感目标渗透数形结合的数学思想,培养学生良好的学习习惯. 二、教学重点、难点和疑点 1.重点:直角三角形的解法.2.难点:三角函数在解直角三角形中的灵活运用.3.疑点:学生可能不理解在已知的两个元素中,为什么至少有一个是边. 三、教学过程 (一)知识回顾1.在三角形中共有几个元素?2.直角三角形ABC 中,∠C=90°,a 、b 、c 、∠A 、∠B 这五个元素间有哪些等量关系呢? (1)边角之间关系 sinA=c a cosA=c b tanA=ba(2)三边之间关系a 2+b 2=c 2(勾股定理) (3)锐角之间关系∠A+∠B=90°.以上三点正是解直角三角形的依据,通过复习,使学生便于应用. (二) 探究活动1.我们已掌握Rt △ABC 的边角关系、三边关系、角角关系,利用这些关系,在知道其中的两个元素(至少有一个是边)后,就可求出其余的元素.这样的导语既可以使学生大概了解解直角三角形的概念,同时又陷入思考,为什么两个已知元素中必有一条边呢?激发了学生的学习热情.2.教师在学生思考后,继续引导“为什么两个已知元素中至少有一条边?”让全体学生的思维目标一致,在作出准确回答后,教师请学生概括什么是解直角三角形?(由直角三角形中除直角外的两个已知元素,求出所有未知元素的过程,叫做解直角三角形).3.例题评析例 1在△ABC 中,∠C 为直角,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,且b= 2 a=6,解这个三角形.例2在△ABC 中,∠C 为直角,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,且b= 20 B ∠=350,解这个三角形(精确到0.1).解直角三角形的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用.因此,此题在处理时,首先,应让学生独立完成,培养其分析问题、解决问题能力,同时渗透数形结合的思想.其次,教师组织学生比较各种方法中哪些较好,选一种板演.完成之后引导学生小结“已知一边一角,如何解直角三角形?”答:先求另外一角,然后选取恰当的函数关系式求另两边.计算时,利用所求的量如不比原始数据简便的话,最好用题中原始数据计算,这样误差小些,也比较可靠,防止第一步错导致一错到底.例 3在Rt △ABC 中,a=104.0,b=20.49,解这个三角形. (三) 巩固练习在△ABC 中,∠C 为直角,AC=6,BAC ∠的平分线AD=43,解此直角三角形。
锐角三角函数复习教案(总6页) -本页仅作为预览文档封面,使用时请删除本页-锐角三角函数复习教案锐角三角函数复习教案一、案例实施背景本节课是九年级解直角三角形讲完后的一节复习课二、本章的课标要求:1、通过实例锐角三角函数(sinA、cosA、tanA)2、知道特殊角的三角函数值3、会使用计算器由已知锐角求它的三角函数值,已知三角函数值求它对应的锐角4、能运用三角函数解决与直角三角形有关的简单实际问题此外,理解直角三角形中边、角之间的关系会运用勾股定理、直角三角形的两个锐角互余及锐角三角函数解直角三角形,进一步感受数形结合的数学思想方法,通过对实际问题的思考、探索,提高解决实际问题的能力和应用数学的意识。
三、课时安排:1课时四、学情分析:本节是在学完本章的前提之下进行的总复习,因此本节选取三个知识回顾和四个例题,使学生将有关锐角三角函数基础知识条理化,系统化,进一步培养学生总结归纳的能力和运用知识的能力.因此,本节的重点是通过复习,使学生进一步体会知识之间的相互联系,能够很好地运用知识.进一步体会三角函数在解决实际问题中的作用,从而发展数学的应用意识和解决问题的能力.五、教学目标:知识与技能目标1、通过复习使学生将有关锐角三角函数基础知识条理化,系统化.2、通过复习培养学生总结归纳的能力和运用知识的能力.过程与方法:1、通过本节课的复习,使学生进一步体会知识之间的相互联系,能够很好地运用知识.2、通过复习锐角三角函数,进一步体会它在解决实际问题中的作用.情感、态度、价值观充分发挥学生的积极性,让学生从实际运用中得到锻炼和发展.六、重点难点:1.重点:锐角三角函数的定义;直角三角形中五个元素之间的相互联系.2.难点:知识的深化与运用.七、教学过程:知识回顾一:(1)在Rt△ABC中,C=90,AB=6,AC=3,则BC=_________,sinA=_________,cosA=______,tanA=______,A=_______,B=________.知识回顾二:(2)比较大小:sin50______sin70cos50______cos70tan50______tan70.知识回顾三:(3)若A为锐角,且cos(A+15)=,则A=________.本环节的设计意图:通过三个小题目回顾:1、锐角三角函数的定义:在Rt△ABC中,C=90锐角A的正弦、余弦、和正切统称A的锐角三角函数。
第四章锐角三角函数教学目标【知识与技能】1.了解锐角三角函数的概念,熟记30°、45°、60°的正弦、余弦和正切的函数值.2.能够正确地使用计算器,由已知锐角的度数求出它的三角函数值,由已知三角函数值求出相应的锐角的度数.3.会用解直角三角形的有关知识解决简单的实际问题.【过程与方法】通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想.【情感态度】通过解直角三角形的学习,体会数学在解决实际问题中的作用.【教学重点】会用解直角三角形的有关知识解决简单的实际问题.【教学难点】会用解直角三角形的有关知识解决简单的实际问题.教学过程【布置作业】完成本课时对应练习,并提醒学生预习下一节的内容。
一、知识结构【教学说明】引导学生回顾本章知识点,使学生系统地了解本章知识及它们之间的关系.二、释疑解惑,加深理解1.正弦的概念:在直角三角形中,我们把锐角α的对边与斜边的比叫作角α的正弦.记作sinα,即:sinα=角α的对边/斜边.2.余弦的概念:在直角三角形中,我们把锐角α的邻边与斜边的比叫作角α的余弦.记作cosα.即cosα=角α的邻边/斜边.3.正切的概念:在直角三角形中,我们把锐角α的对边与邻边的比叫作角α的正切.记作tanα,即:tanα=角α的对边/角α的邻边4.特殊角的三角函数值:5.三角函数的概念:我们把锐角α的正弦、余弦、正切统称为角α的锐角三角函数.6.解直角三角形的概念:在直角三角形中,利用已知元素求其余未知元素的过程,叫作解直角三角形.7.仰角、俯角的概念:当我们进行测量时,在视线与水平线所成的角中,视线在水平线上方的角叫作仰角,在水平线下方的角叫作俯角.8.坡度的概念:坡面的铅垂高度与水平前进的距离的比叫作坡度(或坡比);记作i,坡度通常用l∶m 的形式;坡面与水平面的夹角叫作坡角,记作α.坡度越大,坡角越大,坡面就越陡.【教学说明】引导学生回忆本章所学的有关概念,知识点.加深学生的印象.三、运用新知,深化理解1.已知,如图,D是△ABC中BC边的中点,∠BAD=90°,tanB=2/3,求sin∠DAC.解:过D作DE∥AB交AC于E,则∠ADE=∠BAD=90°,由tanB=2/3,得ADAB=2/3,设AD=2k,AB=3k,∵D是△ABC中BC边的中点,∴DE=3/2k∴在Rt△ADE中,AE=5/2k,2.计算:tan230°+cos230°-sin245°tan45°3.如图所示,菱形ABCD的周长为20 cm,DE⊥AB,垂足为E,sinA=3/5,则下列结论正确的个数为()①DE=3 cm;②BE=1 cm;③菱形的面积为15 cm2;④BD=2 .A.1个B.2个C.3个D.4个分析:由菱形的周长为20 cm知菱形边长是5 cm.综上所述①②③正确.【答案】 C4.如图所示,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为80海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,求此时轮船所在的B处与灯塔P的距离(结果保留根号).分析:由题意知,在△ABP中∠A=60°,∠B=45°,∠APB=75°联想到两个三角板拼成的三角形.因此很自然作PC⊥AB交AB于C.解:过点P作PC⊥AB,垂足为C,则∠APC=30°,∠BPC=45°,AP=80,∴当轮船位于灯塔P南偏东45°方向时,轮船与灯塔P的距离是【教学说明】通过上面的解题分析,再对整个学习过程进行总结,能够促进理解,提高认知水平,从而促进数学观点的形成和发展.四、复习训练,巩固提高1.如图,△ABC是等边三角形,P是∠ABC的平分线BD上一点,PE⊥AB于点E,线段BP 的垂直平分线交BC于点F,垂足为点Q.若BF=2,则PE的长为()A.2 B..3 D.3分析:∵△ABC是等边三角形,点P是∠ABC的平分线上一点,∴∠EBP=∠QBF=30°,∵BF=2,FQ⊥BP,∴BQ=BF·cos30°=2∵FQ是BP的垂直平分线,∴在Rt△BEP中,∵∠EBP=30°,∴【答案】 C2.如图,为了测量某山AB的高度,小明先在山脚下C点测得山顶A的仰角为45°,然后沿坡角为30°的斜坡走100米到达D点,在D点测得山顶A的仰角为30°,求山AB的高1.73)解:过D作DE⊥BC于E,作DF⊥AB于F,设AB=x,在Rt△DEC中,∠DCE=30°,CD=100,∴≈236.6.答:山AB的高度约为236.6米.3.如图,小红同学用仪器测量一棵大树AB的高度,在C处测得∠ADG=30°,在E处测得∠AFG=60°,CE=8米,仪器高度CD=1.5米,求这棵树AB的高度(结果保留两位有效数字,3≈1.732).解:根据题意得:四边形DCEF、DCBG是矩形,∴GB=EF=CD=1.5米,DF=CE=8米.设AG=x米,GF=y米,∴这棵树AB的高度约为8.4米.五、师生互动,课堂小结师生共同总结,对于本章的知识.你掌握了多少?还存在哪些疑惑?同学之间可以相互交流.课后作业布置作业:教材“复习题4”中第1、3、6、8、12、14题.教学反思根据学生掌握的情况,对掌握不够好的知识点、题型多加练习、讲解.力争更多的学生学好本章内容.昨天我所在学校期中考试成绩,有个别同学考的不太理想,跟我发微信,自己在期中考试前已经非常努力的做题了,但最后的成绩却很差。
课 题锐角三角函数小结与复习(1)课 型复 习教 学 目 标知 识 与技能 学过的知识条理画、系统化,同时通过复习找出平时的不足之处,以便及时弥补。
过 程 与方法 培养学生综合、概括等逻辑思维能力及分析问题解决问题的能力情 感 与态度 培养学生独立思考、积极探索的思维品质,善于用数学知识解决身边的数学 问题,提高学习数学的热情和积极性. 教 学 重 点 锐角三角函数的定义,特殊角的三角函数值 教 学 难 点 锐角三角函数的定义,特殊角的三角函数值 教 具 准 备教 学 过 程教 师 活 动学 生 活 动 一、知识回顾、查漏补缺1、 请同学思考锐角三角函数是如何定义? 如图:斜边的对边αα∠=sin 斜边的邻边αα∠=cos 的邻边的对边ααα∠∠=tan请同学思考特殊角的三角函数值300、450、600、的记忆规律: 2、 记住两个基本图形如图所示:αBCA030BCA045BCA3、 请同学思考角度变化与锐角三角函数的关系?当锐角α在00∽900之间变化时,正弦(切)值随着角度的增 大而增大;余弦(切)值随着角度的增大而减少。
4、 请同学思考同角三角函数之间有哪些关系式?平方关系:sin 2A +cos 2A =1;商数关系:sinA/cosA =tanA ; 5、 请同学思考互为余角的三角函数有哪些关系式?Sin (900-A )=cosA ;cos (900-A )=sin A ; 6、 直角三角形的边角关系(∠C =900)(1)三边之间的关系:222c b a =+; (2)两锐角之间的关系:A +B =900; (3)边角之间关系:斜边的对边αα∠=sin 斜边的邻边αα∠=cos 的邻边的对边ααα∠∠=tan二、当堂训练、知识巩固1、结合右图,学生口答:什么是∠A 的正弦、余弦、正切?2、互余两角的正弦和余弦、正切和余切 有什么关系?(1)若coaA =23,且∠B =90º-∠A ,则sinB =______。
锐角三角函数复习教案一、【教材分析】二、【教学流程】运用第2题图3.式子2cos30°-tan45°-〔1-tan60°〕2的值是 ( )A.2 3-2B.0C.2 3D.24.在△ABC中,假设|cos A-12|+(1-tan B)2=0,那么∠C的度数是( )A.45°B.60°C.75°D.105°【组内交流】学生根据问题解决的思路和解题中所呈现的问题进行组内交流,归纳出方法、规律、技巧.【成果展示】教师要有意识引导学生体会锐角三角函数在题目解决中所表达的解题规律.给学生充足的时间思考分析通过学生思考梳理锐角三角函数的知识运用.一生展示,其它小组补充完善,展示问题解决的方法,注重一题多解及解题过程中的共性问题,教师注意总结问题的深度和广度.直击1.(威海中考)如图,在以下网格中,小正方形的边长均为1,点A,B,O都在格点上,那么∠AOB的正弦值是( )3101110A B C D102310....第1题图2.(重庆中考)计算6tan 45°-2cos 60°的结果是( )A. B.4 C. D.5教师展示问题,学生有针对性独立思考解答,3435三、【板书设计】锐角三角函数复习作 业必做题1.(重庆中考)如图,△ABC 中,AD ⊥BC ,垂足为点D ,假设BC =14,AD =12,tan ∠BAD =求sin C 的值.1题图 2.(苏州中考)如图,在△ABC ,AB =AC =5,BC =8.假设∠BPC = ∠BAC ,那么tan ∠BPC = .选做题 2题图 3.的值,求为锐角,若αααααcos sin 34cos sin -=+第一,二题学生课下独立完成,延续课堂.第三题课下交流讨论有选择性完成.以生为本,正视学生学习能力、认知水平等个体差异,让不同的学生都能学有所得,学有所成,体验学习带来的成功与快乐.34,12锐角三角函数1、锐角三角函数的定义⑴、正弦⑵、余弦⑶、正切2、30°、45°、60°特殊角的三角函数值3、各锐角三角函数间的函数关系式⑴、互余关系;⑵、平方关系;⑶、相除关系四、【教后反思】。
中考锐角三角函数复习教案【教案内容】一、教学目标1.知识与技能(1)复习锐角三角函数的定义;(2)掌握常见锐角三角函数的计算方法;2.过程与方法(1)通过讲解、分析和解题等学习方法,帮助学生全面复习锐角三角函数的相关知识;(2)通过练习题,巩固学生的计算能力和应用能力;3.情感态度价值观通过学习锐角三角函数,培养学生的数学思维能力,提高学生的逻辑思维和分析问题的能力,培养学生的合作意识和团队精神。
二、教学重点1.锐角三角函数的定义;2.常见锐角三角函数的计算方法。
三、教学难点1.锐角三角函数的综合运用;2.有关锐角三角函数的实际问题。
四、教学过程1.复习(1)复习锐角三角函数的定义;(2)回顾与锐角三角函数相关的练习题。
2.讲授(1)解析定义法解析定义法是指通过三角形的几何关系来定义锐角三角函数的方法。
其基本定义如下:- 正弦函数sinA:在一个锐角三角形中,对于任意锐角A,a/b就是其正弦函数。
- 余弦函数cosA:在一个锐角三角形中,对于任意锐角A,b/c就是其余弦函数。
- 正切函数tanA:在一个锐角三角形中,对于任意锐角A,a/c就是其正切函数。
(2)练习题演练通过一些具体的练习题,帮助学生巩固解析定义法的运用。
3.拓展(1)锐角三角函数的性质-在锐角三角形中,锐角的对边是锐角三角函数的对边,锐角的邻边是锐角三角函数的邻边。
-在锐角三角形中,正弦函数的值总是小于等于1,余弦函数的值总是小于等于1,正切函数的值没有上界。
(2)常用锐角三角函数的计算- 根据锐角的大小和所在象限,计算sinA、cosA和tanA的值。
- 根据锐角的大小和所在象限,计算cscA、secA和cotA的值。
(3)练习题演练通过一些具体的练习题,帮助学生巩固常用锐角三角函数的计算方法。
4.整合与应用(1)综合运用通过一些综合的锐角三角函数计算题,帮助学生综合应用所学知识解答问题。
(2)实际问题通过一些与现实生活相关的锐角三角函数问题,帮助学生发现锐角三角函数在实际应用中的重要性和作用。
第二十八章锐角三角函数(复习)一、教学目标::1、掌握锐角三角函数的概念,利用锐角三角函数的意义及直角三角形的边角关系解决一些数学问题。
2、通过运用勾股定理,直角三角形的边角关系以及锐角三角函数知识,培养学生分析问题、解决问题的能力。
3、渗透数形结合思想,培养学生良好的学习习惯。
二、教学重点:锐角三角函数及直角三角形有关知识的综合运用三、教学难点:实际问题转化成数学模型。
四、教学过程:(一)师生共同复习本章知识结构(1)锐角三角函数及特殊角的三角函数值:①如图所示,在Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C的对边.那么∠A的正弦:sin A=∠A的余弦:cos A=∠A的正切:tan A=∠B的正弦:sin A=∠B的余弦:cos B=∠B的正切:tan B=思考:通过边角关系,你发现了什么规律?②特殊角的三角函数值:③三角函数的增减性:当0°< α < 90°时对于sinα与tanα,角度越大,函数值越;对于cosα,角度越大,函数值越 .(2). 解直角三角形①在Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C的对边.三边关系:三角关系:边角关系:(3). 三角函数的应用 ①仰角和俯角在进行测量时,从下向上看,视线与水平线的夹角叫做仰角;从上往下看,视线与水平线的夹角叫做俯角. ② 坡度,坡角如图:坡面的铅垂高度(h )和水平长度(l ) 的比叫做坡面坡度.记作i ,即i= h l.坡面与水平面的夹角叫做坡角,记作α,有 i = tan α. 坡度通常写成1∶m 的形式,如i =1∶6.显然,坡度越大,坡角α就越大,坡面就越陡. ③ 方位角:以正南或正北方向为准,正南或正北方向线与目标方向线构成的小于900的角,叫做方位角. 如图所示 (二)、双基练习1、若∠A 为锐角,sinA=13,则:cosA=_____,tanA=______2、比较大小:sin530_____ sin540 sin270______ cos7203、(2014·凉山州)在△ABC 中,若|cos A -12|+(1-tan B)2=0,则∠C 的度数是( )A .45°B .60°C .75°D .105°4、(2015·兰州)如图,△ABC 中,∠B =90°,BC =2AB ,则cos A =( )A .52B .12C .255D .555、如图,在菱形ABCD 中,DE ⊥AB ,cos A =35,BE =2,则tan ∠DBE的值是_ __. (三)、能力提升练习 6、(2015·巴中)计算:|2-3|-(2015-π)0+2sin 60°+(13)-1.7、(2015·丽水)如图,点A 为∠α边上的任意一点,作AC ⊥BC 于点C ,CD ⊥AB 于点D ,下列用线段比表示cos ∠α的值,错误的是( )A .BD BCB .BC AB C .AD AC D .CD AC8、(2015·太原)如图,在网格中,小正方形的边长均为1,点A ,B ,C 都在格点上,则∠ABC 的正切值是( )A .2 B.255 C .55 D .129、如图在菱形ABCD 中,对角线AC 、BD 相交于点O ,BD=8,tan ∠BDC=34,则线段AB 的长为( ) A 、 4 B 、5 C 、6 D 、1010、如图,在□ABCD 中,对角线AC ,BD 相交所成的锐角为α,若AC=a ,BD=b ,则:S □ABCD=( )A 、12absinaB 、absinaC 、abcosaD 、 12abcosa11、如图,直径为10的⊙A 经过点C(0,5)和点O(0,0),B 是y 轴右侧⊙A 优弧上一点,则∠OBC 的余弦值为( )A .12B .34C .32D .4512、(2014·临沂)如图,在某监测点B 处望见一艘正在作业的渔船在南偏西15°方向的A 处,若渔船沿北偏西75°方向以40海里/小时的速度航行,航行半小时后到达C 处,在C 处观测到B 在C 的北偏东60°方向上,则B ,C 之间的距离为( )A .20海里B .10 3 海里C .20 2 海里D .30海里13、(2015·曲靖)如图,在半径为3的⊙O 中,直径AB 与弦CD 相交于点E ,连接AC ,BD ,若AC =2,则cos D =____. 14、(2015·宁波)如图,在数学活动课中,小敏为了测量校园内旗杆AB 的高度.站在教学楼的C 处测得旗杆底端B 的俯角为45°,测得旗杆顶端A 的俯角为30°.若旗杆与教学楼的距离为9 m ,则旗杆AB 的高度是__________m (结果保留根号)15、(2015·牡丹江)在△ABC 中,AB =122,AC =13,cos B =22,求BC 的长。