第28章-锐角三角函数全章教案
- 格式:doc
- 大小:780.50 KB
- 文档页数:20
【锐角三角函数全章教案】锐角三角函数(第一课时)教学三维目标:一.知识目标:初步了解正弦、余弦、正切概念;能较正确地用siaA、cosA、tanA表示直角三角形中两边的比;熟记功30°、45°、60°角的三角函数,并能根据这些值说出对应的锐角度数。
二.能力目标:逐步培养学生观察、比较、分析,概括的思维能力。
三•情感目标:提高学生对几何图形美的认识。
教材分析:1. 教学重点:正弦,余弦,正切概念2 .教学难点:用含有几个字母的符号组siaA、cosA、tanA表示正弦,余弦,正切教学程序:一.探究活动1 .课本引入问题,再结合特殊角30°、45°、60°的直角三角形探究直角三角形的边角关系。
2. 归纳三角函数定义。
Z A的对边N A的邻边N A的对边siaA= ,cosA= ,ta nA=-斜边斜边N A的邻边3例1.求如图所示的Rt " ABC中的siaA,cosA,tanA 的值。
二.探究活动二1.让学生画30° 45° 60°的直角三角形,分别求sia 30 ° cos45 ° tan60归纳结果30 °45°60°siaAcosAta nA2.求下列各式的值三. 拓展提高 P82例4.(略)73厂1.如图在"ABC 中,/ A=30° ,tan B= ,AC=23 ,2求AB四•小结 五.作业课本 p85— 86 2,3,6,7,8,10解直角三角形应用(一)一•教学三维目标(一) 知识目标使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余 及锐角三角函数解直角三角形.(二) 能力训练点通过综合运用勾股定理, 直角三角形的两个锐角互余及锐角三角函数解直角三角形, 逐步培养学生分析问题、解决问题的能力.(三) 情感目标渗透数形结合的数学思想,培养学生良好的学习习惯. 二、 教学重点、难点和疑点1. 重点:直角三角形的解法.2. 难点:三角函数在解直角三角形中的灵活运用.3•疑点:学生可能不理解在已知的两个元素中,为什么至少有一个是边.三、 教学过程(一)知识回顾1. 在三角形中共有几个元素?2. 直角三角形 ABC 中,/ C=90° , a 、b 、c 、/ A 、/ B 这五个元素间有哪些等量关系呢?(1) sia 30 ° +cos30 °( 2) , 2 sia 45-—cos30cos30sia45°+ta60-tan30aba(1)边角之间关系si nA= cosA= tan A=-c c b⑵三边之间关系a2 +b2 =c2(勾股定理)⑶锐角之间关系/ A+ / B=90° .以上三点正是解直角三角形的依据,通过复习,使学生便于应用.(二)探究活动1•我们已掌握Rt△ ABC的边角关系、三边关系、角角关系,利用这些关系,在知道其中的两个元素(至少有一个是边)后,就可求出其余的元素•这样的导语既可以使学生大概了解解直角三角形的概念,同时又陷入思考,为什么两个已知元素中必有一条边呢?激发了学生的学习热情.2. 教师在学生思考后,继续引导“为什么两个已知元素中至少有一条边?”让全体学生的思维目标一致,在作出准确回答后,教师请学生概括什么是解直角三角形?(由直角三角形中除直角外的两个已知元素,求出所有未知元素的过程,叫做解直角三角形).3•例题评析例1在厶ABC中,/ C为直角,/ A、/ B、/ C所对的边分别为a、b、c,且b= 2 a—. 6,解这个三角形.例2在厶ABC 中,/ C为直角,/ A、/ B、/ C所对的边分别为a、b、c,且b= 20 .B=35°,解这个三角形(精确到0.1).解直角三角形的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用•因此,此题在处理时,首先,应让学生独立完成,培养其分析问题、解决问题能力,同时渗透数形结合的思想.其次,教师组织学生比较各种方法中哪些较好,选一种板演.完成之后引导学生小结“已知一边一角,如何解直角三角形?”答:先求另外一角,然后选取恰当的函数关系式求另两边•计算时,利用所求的量如不比原始数据简便的话,最好用题中原始数据计算,这样误差小些,也比较可靠,防止第一步错导致一错到底.例3在Rt△ ABC中,a=104.0, b=20.49,解这个三角形.(三)巩固练习在厶ABC中,/ C为直角,AC=6 , - BAC的平分线AD=4 . 3,解此直角三角形。
人教版数学九年级下册第28章《锐角三角函数》课堂教学设计一. 教材分析人教版数学九年级下册第28章《锐角三角函数》是初中数学的重要内容,主要介绍了锐角三角函数的定义、性质和应用。
本章内容为学生提供了研究角度和三角函数的基本工具,对于培养学生的数学思维能力和解决问题的能力具有重要意义。
二. 学情分析学生在学习本章内容前,已经掌握了锐角的概念、三角函数的定义等基础知识,具备了一定的观察、实验、推理的能力。
但部分学生对于抽象的三角函数概念和性质的理解仍有困难,需要通过具体例子和实际应用来加深理解。
三. 教学目标1.理解锐角三角函数的定义和性质;2.学会用锐角三角函数解决实际问题;3.培养学生的数学思维能力和解决问题的能力。
四. 教学重难点1.重点:锐角三角函数的定义和性质;2.难点:用锐角三角函数解决实际问题。
五. 教学方法1.情境教学法:通过生活实例引入锐角三角函数的概念和性质,激发学生的学习兴趣;2.引导发现法:引导学生通过观察、实验、推理等方法发现锐角三角函数的性质;3.实践锻炼法:通过解决实际问题,培养学生的应用能力和解决问题的能力。
六. 教学准备1.教学课件:制作课件,展示锐角三角函数的定义、性质和应用;2.实例材料:准备一些实际问题,用于引导学生应用锐角三角函数解决问题;3.练习题:准备一些练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用课件展示一些生活中的实例,如建筑物的倾斜角度、运动员投篮的抛物线等,引导学生思考这些实例与数学的关系,从而引出锐角三角函数的概念。
2.呈现(15分钟)讲解锐角三角函数的定义和性质,让学生通过观察、实验、推理等方法发现锐角三角函数的性质。
3.操练(15分钟)让学生分组讨论,运用锐角三角函数解决实际问题,如测量建筑物的高度、计算运动员投篮的得分等。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)让学生独立完成一些练习题,巩固所学知识。
教师选取部分题目进行讲解,总结解题方法。
第二十八章锐角三角函数在一个直角三角形中,如果一个锐角是45一、情境导入,初步认识问题我们知道,在直角三角形中,当锐角 A的度数一定时,不管三角形的大小如何,∠A的对边与斜边的比都是一个固定值.试问:∠A的邻边与斜边的比、∠A 的对边与邻边的比是否分别也是一个固定值呢?为什么?二、思考探究,获取新知问题如图,在Rt △ABC和Rt △A B C''',中,∠C=∠C'=90°∠A =∠A'.求证:(1)ACAB=A CA B'''';(2)BCAC=B CA C''''余弦:在Rt△ABC中,∠C=90°,我们把锐角A的邻边与斜边的比叫做∠A的余弦,记作cosA ,即cosA =A bc ∠的对边=斜边正切:在RtAABC中,∠C=90°,我们把锐角A的对边与邻边的比叫做∠A的正切,记作tanA,tanA =A aA b∠的对边=∠的邻边.锐角A的正弦、余弦、正切叫做∠A的锐角三角函数.三、典例精析,掌握新知例1 在Rt△ABC中,∠C = 900,BC= 6,sinA = 35,求 cosA,tanB的值.例2在△ABC中,AB = AC = 20,BC = 30,试求 tanB,sinC 的值.四、运用新知,深化理解1.分别求出下列直角三角形中两个锐角的正弦值、余弦值和正切值.2.如图,在Rt△ABC中,∠C=90°,AC=8,tanA=,求cosB,sinA,tanB的值.3.在Rt△ABC中,∠C=90°,cosB=(1)求cosA和tanA的值;(2)若AB=5,求BC和AC的长.4.在Rt△ABC中,∠C=90°,AC=b,BC=a,AB=c.(1)sinA与cosB的关系如何?为什么?(2)sin2A与cos2A的关系如何?说说你的理由(sin2A=(sinA)2).(3)找出tanA与tanB的关系;(4)由(1),(2),(3),你能发现什么有趣的结论?五、师生互动,课堂小结通过本节课的学习你有哪些收获?你还有哪些疑虑,请与同伴交流.三、典例精析,掌握新知例1 求下列各式的值.(1)cos260°+ sin260°;(2)cos45tan45 sin45︒-︒︒.例2 (1)如图(1),在Rt△ABC中,∠C=90°,AB = 6,BC = 3,求∠A的度数;(2)如图(2),已知圆锥的高AO等于圆锥的底面半径OB的3倍,求α.1.在△ABC中,∠A,∠B都是锐角,且tanA = 12,cosB =32,则△ABC的形状是() A.直角三角形 B. C.锐角三角形 D.2.计算:(1)3tan30°- tan45°+ 12sin60°= ___________ .(2)60160sincos︒-︒+130tan︒- sin45°= ___________ .3.在Rt△ABC中,∠C=90°,BC = 7,AC = 21,试求∠A、∠B的度数.4.边长为2的正方形ABCD在平面直角坐标系中的位置如图所示,且∠OBC=30°,试求A、D两点坐标.五、师生互动,课堂小结1.如何理解并熟记特殊角的三角函数值?同学间相互交流.2.运用特殊角的三角函数值可解决哪两类问题?二、思考探究,获取新知在上述问题中,我们已知直角三角形的一条直角边和斜边,利用锐角三角函数可求出它的锐角的度数,事实上,我们还可以借助直角三角形中两锐角互余,求出另一个锐角度数,也可以利用勾股定理得到另一条直角边通过它们之间的关系,可以发现,知道其中的2个元素(至少有一条是边)△ABC中,∠C=90°,∠B=40°,且).°,根据下列条件解直角三角形:如图(1),求∠BAC度数;如图(2),试求∠BAC的度数.五、师生互动,课堂小结分析与解从组合体上能直接看到的地球上最远的点,应是视线与地球相切时的切点.如图,⊙O表示地球,点F表示组合体的位置FQ组合体上观测地球时的最远点,的长就是地球上两点两点的距离指第二十八章小结与复习二、释疑解惑,加深理解问题1 请用计算器探索出锐角函数的函数值随自变量锐角从小到大的变化而变化的情况,么发现?【归纳结论】对于锐角必满足0< sinA<1;它的余弦函数<1;它的正切函数(tanA) 的函数值随锐角试一试若锐角A的余弦值A. 60°<A<90°B. 45°<例2 如图,四边形ABCD是平行四边形,以AB为直径的⊙O经过点C,E是⊙O上一点,且∠BEC=45°. (1)试判断CD与⊙O的位置关系,并说明理由.(2)若BE=8 cm,sin∠BCE = 45,求⊙O的半径.例3 小刘同学在课外活动中观察吊车的工作过程,绘制了如图所示的平面图形,已知吊车吊臂的支点O距离地面的高OO'=2米,当吊臂顶端由A点抬升至点A'(吊臂长度不变)时,地面B处的重物(大小忽略不计)被吊至B'处,紧绷着的吊缆A B''=AB.AB垂直地面O'B于点B,A B''垂直地面O'B于点C,吊臂长度O A'=OA=10 m,且cosA = 35,sin A' =12.(1)求此重物在水平方向移动的距离BC;(2)求此重物在竖直方向移动的距离B'C.(结果保留根号)例 4 某校综合实践活动小组的同学欲测量公园内一棵树DE的高度.他们在这棵树正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°,已知A点的高度AB为2 m,台阶AC的坡度为1∶3 (即AB∶BC=1∶3,且B、C、E 三点在同一直线上,请根据以上条件求出树DE的高度(测倾器的高度忽略不计).四、师生互动,课堂小结通过这节课的学习,你有哪些收获?。
课题 锐角三角函数——正弦一、教学目标1、通过探究使学生知道当直角三角形的锐角固定时,它的对边与斜边的比值都固定(即正弦值不变)这一事实。
2、能根据正弦概念正确进行计算3、经历当直角三角形的锐角固定时,它的对边与斜边的比值是固定值这一事实,发展学生的形象思维,培养学生由特殊到一般的演绎推理能力。
二、教学重点、难点重点:理解认识正弦(sinA )概念,通过探究使学生知道当锐角固定时,它的对边与斜边的比值是固定值这一事实.难点:引导学生比较、分析并得出:对任意锐角,它的对边与斜边的比值是固定值的事实。
三、教学过程 (一)复习引入操场里有一个旗杆,老师让小明去测量旗杆高度。
(演示学校操场上的国旗图片)小明站在离旗杆底部10米远处,目测旗杆的顶部,视线与水平线的夹角为34度,并已知目高为1米.然后他很快就算出旗杆的高度了。
你想知道小明怎样算出的吗?师:通过前面的学习我们知道,利用相似三角形的方法可以测算出旗杆的大致高度;实际上我们还可以象小明那样通过测量一些角的度数和一些线段的长度,来测算出旗杆的高度。
这就是我们本章即将探讨和学习的利用锐角三角函数来测算物体长度或高度的方法。
下面我们大家一起来学习锐角三角函数中的第一种:锐角的正弦 (二)实践探索为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行灌溉。
现测得斜坡与水平面所成角的度数是30o,为使出水口的高度为35m ,那么需要准备多长的水管? 分析:问题转化为,在Rt △ABC 中,∠C=90o,∠A=30o,BC=35m,求AB 根据“再直角三角形中,30o角所对的边等于斜边的一半”,即341米10米?可得AB=2BC=70m.即需要准备70m长的水管结论:在一个直角三角形中,如果一个锐角等于30o,那么不管三角形的大小如何,这个角的对边与斜边的比值都等于如图,任意画一个Rt△ABC,使∠C=90o,∠A=45o,计算∠A的对边与斜边的比,能得到什么结论?分析:在Rt△ABC 中,∠C=90o,由于∠A=45o,所以Rt△ABC是等腰直角三角形,由勾股定理得,故结论:在一个直角三角形中,如果一个锐角等于45o,那么不管三角形的大小如何,这个角的对边与斜边的比值都等于.一般地,当∠A取其他一定度数的锐角时,它的对边与斜边的比是否也是一个固定值?如图:Rt△ABC与Rt△A`B`C`,∠C=∠C` =90o,∠A=∠A`=α,那么与有什么关系分析:由于∠C=∠C` =90o,∠A=∠A`=α,所以Rt△ABC∽Rt△A`B`C`,,即结论:在直角三角形中,当锐角A的度数一定时,不管三角形的大小如何,∠A的对边与斜边的比也是一个固定值。
认识正弦如图,在Rt△ABC中,∠A、∠B、∠C所对的边分别记为a、b、c。
师:在Rt△ABC中,∠C=90°,我们把锐角A的对边与斜边的比叫做∠A的正弦。
记作sinA。
板书:sinA=A aA c∠=∠的对边的斜边(举例说明:若a=1,c=3,则sinA=31)注意:1、sinA不是 sin与A的乘积,而是一个整体;2、正弦的三种表示方式:sinA、sin56°、sin∠DEF3、sinA 是线段之间的一个比值;sinA 没有单位。
提问:∠B 的正弦怎么表示?要求一个锐角的正弦值,我们需要知道直角三角形中的哪些边? (三)教学互动 例1如图,在中,,求sin和sin的值.解答按课本 (四)巩固再现1.三角形在正方形网格纸中的位置如图所示,则sin α的值是﹙ ﹚ A .43 B .34 C .53 D .542.如图,在直角△ABC 中,∠C =90o,若AB =5,AC =4,则sinA =( ) A .35 B .45 C .34 D .43 3.在△ABC 中,∠C=90°,BC=2,sinA=23,则边AC 的长是( )A .13B .3C .43 D . 5四、布置作业课题 锐角三角函数——余弦和正切一、教学目标1、使学生知道当直角三角形的锐角固定时,它的邻边与斜边、对边与邻边的比值也都固定这一事实.2、逐步培养学生观察、比较、分析、概括的思维能力. 二、教学重点、难点 重点:理解余弦、正切的概念难点:熟练运用锐角三角函数的概念进行有关计算 三、教学过程 (一)复习引入 1、口述正弦的定义2、(1)如图,已知AB 是⊙O 的直径,点C 、D 在⊙O 上,且AB =5,BC =3.则sin ∠BAC= ;sin ∠ADC= . (2)如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于点D 。
已知AC= 5 ,BC=2,那么sin ∠ACD =( )CB AEOABD·ABCDA .53B .23C .255D .52(二)实践探索一般地,当∠A 取其他一定度数的锐角时,它的邻边与斜边的比是否也是一个固定值?如图:Rt △ABC 与Rt △A`B`C`,∠C=∠C` =90o ,∠B=∠B`=α,那么''''B A C B AB BC 与有什么关系? 分析:由于∠C=∠C` =90o,∠B=∠B`=α,所以Rt △ABC ∽Rt △'''C B A ,''''B A AB C B BC =,即''''B A C B AB BC =结论:在直角三角形中,当锐角B 的度数一定时,不管三角形的大小如何,∠B 的邻边与斜边的比也是一个固定值。
如图,在Rt △ABC 中,∠C=90o ,把锐角B 的邻边与斜边的比叫做∠B 的余弦,记作cosB 即c a B B =∠=斜边的邻边cos ,把∠A 的对边与邻边的比叫做∠A 的正切.记作tanA,即baA A A =∠∠=的邻边的对边tan ,锐角A 的正弦,余弦,正切都叫做∠A 的锐角三角函数. (三)教学互动 例2:如图,在中,,BC=6,53sin =A 求cos 和tan 的值.解:∵AB BC A =sin ,∴10356sin =⨯==A BC AB 又86102222=-=-=BC AB AC例3:(1)如图(1), 在中,,,,求的度数.(2)如图(2),已知圆锥的高AO 等于圆锥的底面半径OB 的倍,求.(四)巩固再现 1.在中,∠C =90°,a ,b ,c 分别是∠A 、∠B 、∠C 的对边,则有()A .B .C .D .2. 在中,∠C =90°,如果54cos =A 那么的值为()A .53B .45C .43D .34 3、如图:P 是∠的边OA 上一点,且P 点的坐标为(3,4), 则cos=_____________.4、P81 练习1、2、3 四、布置作业 P85 1课题 锐角三角函数间的关系一、教学目标1、使学生了解一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系.2、使学生了解同一个锐角正弦与余弦之间的关系3、使学生了解正切与正弦、余弦的关系4、使学生了解三角函数值随锐角的变化而变化的情况 二、教学重点、难点重点:三个锐角三角函数间几个简单关系难点:能独立根据三角函数的定义推导出三个锐角三角函数间几个简单关系 三、教学过程 (一)复习引入叫学生结合直角三角形说出正弦、余弦、正切的定义 (二)实践探索1、从定义可以看出sin A 与cos B 有什么关系?sin B 与cos A 呢?满足这种关系的A ∠与B ∠又是什么关系呢?2、利用定义及勾股定理你还能发现sin A 与cos A 的关系吗?3、再试试看tan A 与sin A 和cos A 存在特殊关系吗?经过教师引导学生探索之后总结出如下几种关系: (1)若90A B ∠+∠= 那么sin A =cos B 或sin B =cos A(2)22sin cos 1A A +=(3)sin tan cos AA A=4、在正弦中它的值随锐角的增大而增大还是随锐角的增大而减少?为什么?余弦呢?正切呢? 通过一番讨论后得出:(1)锐角的正弦值随角度的增加(或减小)而增加(或减小); (2)锐角的余弦值随角度的增加(或减小)而减小(或增加); (3)锐角的正切值随角度的增加(或减小)而增加(或减小)。
(三)教学互动(1)判断题:i 对于任意锐角α,都有0<sinα<1和0<cosα<1 ()ii 对于任意锐角α1,α2,如果α1<α2,那么cosα1<cosα2()iii 如果sinα1<sinα2,那么锐角α1<锐角α2I ()iv 如果cosα1<cosα2,那么锐角α1>锐角α2()(2)在Rt△ABC中,下列式子中不一定成立的是______A.sinA=sinB B.cosA=sinB C.sinA=cosB D.sin(A+B)=sinC(3)在390,sin.cos,sin tan5ABC C A A B A∠==中,求和的值A.0°<∠A≤30°B.30°<∠A≤45°C.45<∠A≤60°D.60°<∠A<90°四、布置作业课题 30°、45°、60°角的三角函数值一、教学目标1、能推导并熟记30°、45°、60°角的三角函数值,并能根据这些值说出对应的锐角度数。
2、能熟练计算含有30°、45°、60°角的三角函数的运算式二、教学重点、难点重点:熟记30°、45°、60°角的三角函数值,熟练计算含有30°、45°、60°角的三角函数的运算式难点:30°、45°、60°角的三角函数值的推导过程三、教学过程(一)复习引入还记得我们推导正弦关系的时候所到结论吗?即01sin 302=,02sin 452=你还能推导出0sin 60的值及30°、45°、60°角的其它三角函数值吗? (二)实践探索1.让学生画30°45°60°的直角三角形,分别求sia 30° cos45° tan60° 归纳结果30° 45° 60° siaA cosA tanA(三)教学互动例 求下列各式的值:(1)02245sin 30sin 245cos 60cos ++ (2)00000000cos 60sin 45cos 60cos 45cos 60sin 45sin 30cos 45+-+-+解 (1)原式=22212222122⨯⨯+⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛45212141=++=(2)原式=22321212221222122212221--=-+=+-+-+说明:本题主要考查特殊角的正弦余弦值,解题关键是熟悉并牢记特殊角的正弦余弦值。