第七章 GPS测量数据处理
- 格式:ppt
- 大小:365.00 KB
- 文档页数:35
GPS测量数据处理的基本过程GPS(全球定位系统)是一种广泛应用于航空航海、地理勘测、车辆定位等领域的定位技术,它利用卫星进行测量,并通过处理获取所需的位置、速度、时间等信息。
而在实际应用中,对GPS测量数据的处理是至关重要的一环。
本文将从GPS测量数据的采集、预处理、定位计算、平差处理等几个方面介绍GPS测量数据处理的基本过程。
一、数据采集1.卫星信号接收在GPS测量中,首先要进行卫星信号的接收。
接收机会从卫星发射的信号中接收到卫星的定位信息,这些信息包括卫星的位置、精确的时间、卫星健康状态信息等。
一般来说,接收机至少需要接收到4颗卫星的信号才能进行定位计算。
2.观测数据记录接收机在接收到卫星信号后会记录下所接收到的观测数据。
这些数据包括接收到的卫星信号的到达时间、卫星的位置、接收机自身的位置、接收机时钟的误差等信息。
二、数据预处理1.数据筛选在接收到的观测数据中,会包含一些干扰数据和误差数据。
这些数据会对接下来的数据处理造成影响,因此需要对数据进行筛选,去除掉那些明显不正常的数据。
2.伪距观测值转换接收机接收到的是卫星信号的到达时间,而我们想要得到的是距离信息。
因此需要将接收到的到达时间转换成伪距观测值,即信号在大气层中传播所需要的时间乘以光速。
三、定位计算1.单点定位计算通过接收到的伪距观测值,接收机自身的位置信息,卫星的位置信息等数据,可以进行单点定位计算。
单点定位是指在未知参考点的情况下,通过接收到的卫星信息计算出接收机的位置信息。
2.差分定位计算在实际应用中,由于大气层的影响以及接收机的时钟误差等因素,单点定位的精度可能不够高。
因此需要通过差分定位计算,利用已知位置的参考站的数据对接收机的数据进行校正,从而提高定位精度。
四、平差处理1.数据平差在进行定位计算过程中,会涉及到各种观测数据和参数,这些数据和参数之间可能存在一定的矛盾和不一致。
为了保证最终计算结果的精度和可靠性,需要进行数据的平差处理,通过最小二乘法等方法对数据进行优化调整。
论GPS测量的数据处理方法及其优化方式。
一、GPS测量数据处理方法1、数据预处理GPS数据预处理包括了资料收集、数据筛选、数据校正、数据过滤、数据插值等步骤。
其中最重要的步骤是数据校正,由于GPS卫星所发出的信号在传输过程中会遭受导航信号、地球大气层、接收机时间、传输媒介等干扰,导致GPS采集的数据有较大的误差,因此需要对GPS数据进行校正。
数据校正包括了数据预处理、误差模型建立、误差分析和校正方法等步骤。
2、数据处理GPS数据处理主要包括了基准的选择和建立、数据分析和拟合、解算算法和数据融合等步骤。
基准的选择和建立是指在数据处理过程中需要明确使用的基准坐标系,例如WGS84坐标系、北京54坐标系等。
数据分析和拟合是指采用数学模型对GPS数据进行处理,例如最小二乘法、卡尔曼滤波、粒子滤波等方法。
解算算法与数据融合主要是指将GPS数据与其他信息进行融合,例如地图数据、气象数据、传感器数据等。
二、GPS测量数据处理优化方式1、信号接收优化GPS信号接收优化是指改善信号接收的操作和环境,例如改善接收机本身的性能、选用合适的天线、改善接收机自身的环境、减少信号干扰等。
2、误差模型优化误差模型建立是将误差分为多个部分,例如常数误差、轨道误差、大气误差、接收机误差等,然后对各部分误差采用不同的方法进行模拟和处理。
误差模型的优化一方面是对误差模型进行精细化建模,另一方面是通过分析误差来源和数据特性来对误差模型进行改进和优化。
3、算法优化GPS数据处理算法的优化可以从多个方面入手,例如减少计算量,提高算法计算速度和鲁棒性,改进算法的精度和可靠性,例如采用粒子滤波算法可以有效地解决非线性滤波问题。
4、数据融合优化数据融合是将不同数据源的数据信息综合起来,以提高得到的GPS数据的精度和可靠性,并提高研究结果的确定性和可靠性。
数据融合的优化可以通过改进融合算法、改善数据质量和改进数据采集的设计等来实现。
5、差分处理差分GPS是基于两个接收机之间的同步观测数据得到相对的精密定位,其可以有效地消除接收机和卫星的共同误差,以实现高精度的测量。
实用G P S测量数据处理教程(总110页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除实用GPS测量数据处理教程武汉测绘科技大学地球科学与测量工程学院目录目录错误!未定义书签。
概述错误!未定义书签。
第一章GPS定位原理概述..................................... 错误!未定义书签。
第1节GPS的组成....................................... 错误!未定义书签。
第2节GPS信号......................................... 错误!未定义书签。
第3节GPS定位的常用观测值............................. 错误!未定义书签。
第4节GPS定位的误差源................................. 错误!未定义书签。
第5节GPS定位方法..................................... 错误!未定义书签。
第二章坐标系、基准和坐标系统............................... 错误!未定义书签。
第1节地球的形状 ...................................... 错误!未定义书签。
一、地球的自然表面 ................................ 错误!未定义书签。
二、地球的质量和重力 .............................. 错误!未定义书签。
三、大地水准面 .................................... 错误!未定义书签。
四、参考椭球 ...................................... 错误!未定义书签。
五、投影 .......................................... 错误!未定义书签。
GPS测量数据处理8.1.1 GPS测量数据粗加工的两个部分GPS测量数据的粗加工包括数据传输和数据分流两部分内容。
大多数GPS接收机采集的数据记录在接收机内存模块上。
在数据通过专用电缆线从接收机传输至计算机的同时完成数据的分流,以将各类数据按照类别特性归入不同的数据文件中,数据传输和分流未作任何实质性的加工处理,只是存储介质的交换。
不同接收机的数据记录格式各不相同,难被同一处理程序所用,因而传输至计算机的数据还需解译,提取出有用信息,分别建立不同的数据文件,其中最分主要的是生成四个数据文件;载波相位和伪距观测值文件、星历参数文件、电离层参数和UTC参数文件、测站信息文件。
(1)观测值文件,这是容量最大的文件,内含观测历元,C/A码伪距、教波相位以(L1/L2)积分多普勒计数、信噪比等等,其中最主要的是伪距和毅波相位观测值。
(2)星历参数文件。
包括所有被测卫星的轨道位置信息,根据这些信息可以计算出任一时刻的卫星轨道上的位置。
(3)电离层参数和UTC参敬文件,电离层参数可用于改正观测值的电离层影响,UTC参数则用于将GPS时间修正成UTC时间。
(4)测站信息文件。
其中包括测站的基本信息和本测站上的观测情况。
例如:测站名、测站号、测站的概略坐标、接收机号、天线号、天线高观测的起止时间、记录的数框量、初步定位结果等。
8.1.2 GPS测量数据的预处理GPS测量数据的预处理的目的在于:对数据进行平滑滤波检验,剔除粗差,删除无效无用数据;统一数据文件格式,将各类接收机的数据文件加工成彼此兼容的标准化文件;GPS卫星轨道方程的标准化,一般用一多项式拟合观测时短内的星历数据;探测并修复整周跳变,使观洲值复原;对观测值进行各种模型改正,如大气折射模型改正。
预处理所采用的模型和方法的优劣,将直接影响最终成果的质量,因而是提高GPS测量作业效率和精度的重要环节。
8.1.3基线向量解算和网平差计算经过预处理后,观测值作了必要的修正。
测绘技术中的GPS航测数据处理方法GPS(全球定位系统)航测数据处理方法是测绘技术中的重要组成部分。
随着技术的不断进步和应用的不断拓展,GPS航测数据处理方法也在不断发展和完善。
本文将从数据收集、数据处理和数据应用等方面来探讨GPS航测数据处理方法的相关内容。
一、数据收集GPS航测数据的收集是基础且关键的一步。
在数据收集过程中,航空器上搭载的GPS接收机将接收到的信号转化为电信号,并通过航空通信系统传输回地面。
采集到的数据除了包含航空器的位置坐标外,还应包含时间戳、卫星数量、PDOP (位置精度因子)等信息。
同时,还需要考虑到天线相位中心的误差、跨频率的接收机差异以及星历改正等因素的影响。
二、数据处理数据处理是将GPS航测数据转化为实际应用中所需信息的关键环节。
数据处理的步骤包括数据预处理、数据平滑、数据解算、数据检核等。
数据预处理主要是对接收到的原始数据进行质量控制和纠正,例如去除错误的数据和异常值。
数据平滑则是为了减小测量误差带来的影响,使用不同的滤波算法对数据进行平滑处理。
数据解算是根据接收到的GPS航测数据,通过数学模型和算法推导出需要的结果,例如航空器的位置坐标和速度等。
数据检核则是对处理后的数据进行验证,确保其准确性和可靠性。
三、数据应用GPS航测数据的应用十分广泛,包括大地测量、导航和地图制作等领域。
在大地测量方面,GPS航测数据能够提供高精度的位置坐标信息,为地壳运动研究、地质灾害监测和地形测量等提供重要参考数据。
在导航方面,GPS航测数据可用于定位和导航系统,为航空、航海和车辆导航等提供精确的位置信息。
在地图制作方面,GPS航测数据可以提供精确的地理信息,为地图绘制和更新提供数据支持。
四、GPS航测数据处理方法的发展趋势随着技术的不断进步,GPS航测数据处理方法也在不断发展和完善。
一方面,随着卫星系统的更新换代,如北斗导航系统的建立,GPS航测数据的可用性和精度将进一步提高。
另一方面,随着人工智能和大数据技术的应用,GPS航测数据处理方法将更加智能化和高效化。
第一部分GPS静态测量第一章GPS静态测量基础一、GPS静态测量基础在GPS测量中,最常用的静态定位模式是相待定位。
所谓静态定位指的是:在进行GPS定位时,认为在整个观测过程中,接收机天线的位置相对于地球保持不变;而在数据处理时,则将接收机天线的位置作为一个不随时间变化的量。
而相对定位则指的是在进行GPS定位时,多台接收机进行同步观测,采集同步观测数据;在数据处理时,则利用这些同步观测数据,计算出向步观测站之间的相对位置(坐标差/基线向量)。
其具体观测模式为多台接收机在不同的测站上进行静止同步观测,时间从几分钟到长年不间断不等。
接收机测定在观测期间到卫星的伪距和载波相位等观测值,并记录在相应的存储器中。
观测结束后,将观测值下载到计算机中进行处理。
数据处理过程一胶包括基线处理、网平差、坐标转换和高程转换,最终求出高精度的网点坐标。
在GPS测量中,静态定位一般用于高精度的测量定位,如各种等级的大地网、工程控制网、变形监侧网等。
二、GPS接收机分类GPS测量型接收机一般可以根据其能够跟踪、处理的GPS卫星信号频率的数量分为单频和双频两大类。
1.单频GPS测量型接收机接收信号:GPS导航电文、C/A码、Ll载波。
接收机特点:(1)一体化接收机:包含带有显示灯的GPS接收机、天线、内置电源。
(2)分体设计:包含天线、GPS接收机、电源分体设计的配置。
可以配置手持计算机设置或阅读参数信息。
2.双频GPS测量型接收机(双频GPS脚量仪)接收信号:GPS肥导航电文、C/A码伪距、P码伪距、L1载波相位、L2载波相位。
接收机特点:(1)一体化:包含带有显示灯的GPS接收机、天线、内置电源。
可以配置手持计算机设置或阅读参数信息。
(2)分体设计:天线、GPS接收机(内置电源、带有显示灯或显示器)分体设计。
第二章GPS静态测量工作的流程一项GPS静态测量工作分为三个阶段.即测前准备、外业实施和数据处理第一节测前准备在这一阶段所进行的主要工作包括项目立项、技术设计、实地踏勘、设备检定、资料收集整理、人员组织等。
gps 静态测量数据处理一、基线解算的类型1、单基线解(1)定义:当有台GPS接收机进行了一个时段的同步观测后,每两台接收机之间就可以形成一条基线向量,共有条同步观测基线,其中最多可以选出相互独立的条同步观测基线,至于这条独立基线如何选取,只要保证所选的条独立基线不构成闭和环就可以了。
这也是说,凡是构成了闭和环的同步基线是函数相关的,同步观测所获得的独立基线虽然不具有函数相关的特性,但它们却是误差相关的,实际上所有的同步观测基线间都是误差相关的。
所谓单基线解算,就是在基线解算时不顾及同步观测基线间误差相关性,对每条基线单独进行解算。
( 2)特点:单基线解算的算法简单,但由于其解算结果无法反映同步基线间的误差相关的特性,不利于后面的网平差处理,一般只用在普通等级GPS网的测设中。
2、多基线解( 1)定义:与单基线解算不同的是,多基线解算顾及了同步观测基线间的误差相关性,在基线解算时对所有同步观测的独立基线一并解算。
( 2)特点:多基线解由于在基线解算时顾及了同步观测基线间的误差相关特性,因此,在理论上是严密的。
( 3)多站整体解(绝对坐标)( 4)单基线解算的过程帜测・S3i :. Ft复、程底蚤守屢酎1)硒.石.噪崩瓦币孕宦f rftfiliTDir蛰不帶禅仪壽)* »(• ?:» >wsam電曲打小"(5)利用基线解算软件解算基线向量的过程・例I!舸鑒历.汽變元続测断I 总誓”匹B 站信息、m测站的近ici^标養巳蛭创坐斬.弹定豪瑚解再肝在机餐勲t @站时陌隙、J2S *虽蜩,处理专王等),、基线解算结果的质量评定指标平 «itn 叭师包括■護卜向.MKS跖"1、单位权方差因子(1)定义:(2)实质:反映观测值的质量,又称为参考方差因子。
越小越好2、RMS -均方根误差(1)定义:(2)实质:表明了观测值的质量,观测值质量越好,越小,反之,观测值质量越差,则越大,它不受观测条件(观测期间卫星分布图形)的好坏的影响。