Australian Mathematics Competition Warm Up Paper J9
- 格式:pdf
- 大小:40.51 KB
- 文档页数:3
THURSDAY 1 AUGUST 2013SENIOR DIVISIONAUSTRALIAN S CHOOL YEARS 11 and 12TIME ALLOWED: 75 MINUTES©AMT P ublishing 2013 AMTT liMiTed Acn 083 950 341A ustrAliAn M AtheMAtics c oMpetitionsponsored by the c oMMonweAlth b AnkAn AcTiviTy of The AusTrAliAn MATheMATics TrusTNAMEYEAR TEACHERA u s T r A l i A n M A T h e M A T i c s T r u s T姓 名: 年 级: 监考老师:意事项一般规定1.未获监考老师许可之前不可翻开此测验题本。
2.各种通讯器材一律不得携入考场,不准使用电子计算器、计算尺、对数表、数学公式等计算器具。
作答时可使用直尺与圆规,以及两面全空白的草稿纸。
3.题目所提供之图形只是示意图,不一定精准。
4.最前25题为选择题,每题有五个选项。
最后题要求填入的答案为000至999的正整数。
题目一般而言是依照越来越难的顺序安排,对于错误的答案不会倒扣分数。
5.本活动是数学竞赛而不同于学校测验,别期望每道题目都会作。
考生只与同地区同年级的其它考生评比,因此不同年级的考生作答相同的试卷将不作评比。
6.请依照监考老师指示,谨慎地在答案卡上填写您的基本数据。
若因填写错误或不详所造成之后果由学生自行负责。
7.进入试场后,须等待监考老师宣布开始作答后,才可以打开题本进行答题。
作答须知1.限用B 或2B 铅笔填写答案。
2.请用B 或2B 铅笔在答案卡上(不是在题本上)将您认为正确选项的圆圈涂满。
3.您的答案卡将由计算机阅卷,为避免计算机误判,请不要在答案卡上其它任何地方涂划任何记号。
填写答案卡时,若需要修改,可使用软性橡皮小心擦拭,并确定答案卡上无残留痕迹。
2023澳洲amc e级26题解析摘要:1.澳洲AMC E级26题解析概述2.问题分析与解题思路3.解题步骤与答案展示4.类似题型总结与建议正文:【提纲】一、澳洲AMC E级26题解析概述澳洲AMC(Australian Mathematics Competition)是一项全球性的数学竞赛,旨在激发学生对数学的兴趣和潜能。
E级考试针对的是小学生,题目设置注重启发思维、培养数学素养。
本文将解析2023年澳洲AMC E级第26题,帮助大家掌握解题思路和方法。
二、问题分析与解题思路题目:小明有8个苹果,他打算将苹果均匀地分给他的4个朋友。
但是,他发现如果将苹果均匀地分给每个朋友,会剩下2个苹果。
请问小明有多少个朋友?分析:本题考查的是整数除法及余数的概念。
题目给出了苹果的总数和分配后的剩余苹果数,需要求解朋友的人数。
解题思路:1.用苹果总数减去剩余的苹果数,得到实际分配的苹果数;2.将实际分配的苹果数除以朋友的人数,得到每个朋友分到的苹果数;3.检查每个朋友分到的苹果数是否为整数,如果不是整数,说明朋友人数有误。
三、解题步骤与答案展示步骤1:计算实际分配的苹果数8(总数)- 2(剩余)= 6(实际分配的苹果数)步骤2:计算每个朋友分到的苹果数6(实际分配的苹果数)÷ 朋友人数= 1.5(每个朋友分到的苹果数)步骤3:判断每个朋友分到的苹果数是否为整数由于1.5不是整数,说明朋友人数有误。
四、类似题型总结与建议1.掌握整数除法及余数的概念;2.在解题过程中,注意检查分配结果是否合理;3.遇到类似题目,先计算实际分配的苹果数,再求解朋友人数;4.熟练运用整数除法运算,提高解题速度。
通过以上解析,希望大家能够掌握这类题目的解题方法,并在实际应用中灵活运用。
2020澳洲amc解析澳大利亚数学竞赛(Australian Mathematics Competition,简称AMC)是一项面向全球学生的数学竞赛,由澳大利亚数学联合会(Australian Mathematics Trust)举办。
该项竞赛始于1978年,每年吸引了超过100个国家和地区的30万名学生参加。
以下是2020年澳洲AMC的解析:1. 竞赛时间:2020年澳洲AMC分为三个年龄组别,分别为小学四年级和五年级(Year 4/5 及 Year 6),初中一年级至高中二年级(Year 7-12)以及高中三年级及以上(Year 12及以上)。
各个组别的时间安排如下:- Year 4/5 组:2020年9月18日(星期五)下午12:00-12:40- Year 6/7/8 组:2020年9月18日(星期五)下午1:45-2:25- Year 9/10/11 组:2020年9月18日(星期五)下午3:15-4:15- Year 12及以上组:2020年9月18日(星期五)下午4:45-5:452. 竞赛题型:澳洲AMC竞赛题目包括选择题、填空题和解答题三种题型。
其中,Year 4/5组以选择题为主,Year 6/7/8组包含选择题和填空题,Year 9/10/11组和Year 12及以上组以解答题为主。
3. 试题难度:澳洲AMC试题分为简单、中等和困难三个难度级别。
各个难度级别的题目在试卷中的分布如下:- Year 4/5组:60%简单题,30%中等题,10%困难题- Year 6/7/8组:50%简单题,30%中等题,20%困难题- Year 9/10/11组:35%简单题,35%中等题,30%困难题- Year 12及以上组:20%简单题,50%中等题,30%困难题4. 评分标准:每道题目都有相应的分数,学生需要在规定的时间内完成尽可能多的题目。
最终成绩根据学生完成的题目的数量和质量进行评定。
澳洲数学竞赛amc知识点-回复[澳洲数学竞赛amc知识点]澳洲数学竞赛AMC,全称为澳洲数学竞赛Australian Mathematics Competition,是澳大利亚数学教育委员会主办的一项国际性数学竞赛活动。
AMC旨在通过多样化的数学问题来激发学生对数学的兴趣,提高数学思维能力和解题能力。
本文将一步一步回答关于AMC的知识点,了解其内容和参赛经验。
第一步:了解AMC的历史和组织者AMC由澳大利亚数学教育委员会组织,一开始是为本国学生设计的,后来吸引了许多国际学生的参与,因此成为了一项国际性的数学竞赛活动。
AMC始于1978年,迄今已经有40多年的历史。
第二步:了解AMC的题型和考试形式AMC分为三个级别:初级、中级和高级,每个级别都有相应的年级范围。
初级适合小学五、六年级,中级适合初中生,高级适合高中生。
AMC共有30道选择题,时间为1小时30分钟。
每道题有5个选项,只有一个正确答案。
AMC的题目类型涵盖了各个数学领域,包括代数、几何、概率与统计等。
题目形式多样化,有填空题、选择题和解答题等。
AMC除了考察数学知识,也注重逻辑推理能力和综合运用能力。
第三步:准备AMC的方法和技巧为了在AMC中取得好成绩,参赛者需要充分准备。
以下是一些准备AMC 的方法和技巧:1. 基础知识的掌握:AMC在初中和高中的基础数学知识上有一定要求,因此学生需要掌握好这些基础知识,包括代数、几何、概率与统计等。
可以通过参加相关辅导班或使用相关教材进行系统复习。
2. 做真题和模拟考试:做过往的AMC真题可以帮助学生熟悉题目的类型和难度。
同时,参加模拟考试可以提高解题速度和临场发挥能力。
3. 学会解题的方法和技巧:AMC的题目类型多样,学生需要熟悉各种解题方法和技巧。
例如,代数题可以通过方程组、代数运算等方法解答,几何题可以通过画图、类比等方法解答。
通过多做题和总结经验,学生可以逐渐提高解题能力。
4. 组队参加辅导班或学习小组:与其他有志于AMC竞赛的同学组队参加辅导班或自行组织学习小组。
A u s t r A l i A n M At h e M At i c s c o M p e t i t i o na n a c t i v i t y o f t h e a u s t r a l i a n m a t h e m a t i c s t r u s tt h u r sd ay4a u g u s t2011senior Division Competition papera u st r a l i a n s c h o o l y e a r s11a n d12t i m e a l l o w e d:75m i n u t e sinstruCtions anD informationGeneraL1. Do not open the booklet until told to do so by your teacher.2. NO calculators, slide rules, log tables, maths stencils, mobile phones or other calculating aids arepermitted. Scribbling paper, graph paper, ruler and compasses are permitted, but are not essential.3. Diagrams are NOT drawn to scale. They are intended only as aids.4. There are 25 multiple-choice questions, each with 5 possible answers given and 5 questions thatrequire a whole number answer between 0 and 999. The questions generally get harder as you work through the paper. There is no penalty for an incorrect response.5. This is a competition not a test; do not expect to answer all questions. You are only competingagainst your own year in your own State or Region so different years doing the same paper are not compared.6. Read the instructions on the answer sheet carefully. Ensure your name, school name and schoolyear are entered. It is your responsibility to correctly code your answer sheet.7. When your teacher gives the signal, begin working on the problems.tHe ansWer sHeet1. Use only lead pencil.2. Record your answers on the reverse of the answer sheet (not on the question paper) by FULLYcolouring the circle matching your answer.3. Your answer sheet will be scanned. The optical scanner will attempt to read all markings evenif they are in the wrong places, so please be careful not to doodle or write anything extra on the answer sheet. If you want to change an answer or remove any marks, use a plastic eraser and be sure to remove all marks and smudges.inteGritY of tHe CompetitionThe AMT reserves the right to re-examine students before deciding whether to grant official status to their score.©amt P ublishing2011amtt limited acn083 950 341Senior DivisionQuestions 1to 10,3marks each1.The expression 3x (x −4)−2(5−3x )equals (A)3x 2−3x −14(B)3x 2−6x −10(C)3x 2−18x +10(D)3x 2−18x −10(E)9x 2−22x2.A coach notices that 2out of 5players in his club are studying at university.If there are 12university students in his club,how many players are there in total?(A)20(B)24(C)30(D)36(E)603.The value of 14÷0.4is (A)3.5(B)35(C)5.6(D)350(E)0.144.In the diagram,ABCD is a square.What is the value of x ?(A)142(B)128(C)48(D)104(E)52................................................................................................................ (52)◦x◦ABCD5.Which of the following is the largest?(A)210(B)210(C)102(D)201(E)2106.If m and n are positive whole numbers and mn =100,then m +n cannot be equalto (A)25(B)29(C)50(D)52(E)1017.P QRS is a square.T is a point on RS such that QT =2RT .The value of x is (A)100(B)110(C)120(D)150(E)160.......................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................P QRS T x ◦8.In my neighbourhood,90%of the properties are houses and 10%are shops.Today,10%of the houses are for sale and 30%of the shops are for sale.What percentage of the properties for sale are houses?(A)9%(B)80%(C)3313%(D)75%(E)25%9.The value of 12+14+182+4+8is(A)16(B)4(C)1(D)14(E)11610.Anne’s morning exercise consists of walking a distance of 1km at a rate of 5km/h,jogging a distance of 3km at 10km/h and fast walking for a distance of 2km at 6km/h.How long does it take her to complete her morning exercise?(A)30min(B)35min(C)40min(D)45min(E)50minQuestions 11to 20,4marks each11.The diagram shows a square of sidelength 12units divided into six triangles of equal area.What is the distance,in units,of T from the side P Q ?(A)4(B)3(C)2(D)1(E)√5......................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................PS QRT12.Each of the first six prime numbers is written on a separate card.The cards areshu ffled and two cards are selected.The probability that the sum of the numbers selected is prime is(A)15(B)14(C)13(D)12(E)1613.Two tourists are walking 12km apart along a flat track at a constant speed of4km/h.When each tourist reaches the slope of a mountain,she begins to climb with a constant speed of 3km/h.✲✛12km✡✡✣✑✑✸✑✑✰k m What is the kilometres,the two tourists during the climb?(A)16(B)12(C)10(D)9(E)814.Lines parallel to the sides of a rectangle 56cm by 98cm and joining its oppositeedges are drawn so that they cut this rectangle into squares.The smallest number of such lines is(A)3(B)9(C)11(D)20(E)7515.What is the sum of the digits of the positive integer n for which n 2+2011is thesquare of an integer?(A)6(B)7(C)8(D)9(E)1016.Of the sta ffin an o ffice,15rode a pushbike to work on Monday,12rode on Tuesdayand 9rode on Wednesday.If 22sta ffrode a pushbike to work at least once during these three days,what is the maximum number of sta ffwho could have ridden a pushbike to work on all three days?(A)4(B)5(C)6(D)7(E)812 kmk m17.How many integer values of n make n 2−6n +8a positive prime number?(A)1(B)2(C)3(D)4(E)an infinite number18.If x 2−9x +5=0,then x 4−18x 3+81x 2+42equals(A)5(B)25(C)42(D)67(E)8119.The centre of a sphere of radius 1is one of the vertices of a cube of side 1.What is the volume of the combined solid?(A)7π6+1(B)7π6+56(C)7π6+43(D)7π8+1(E)π+120.In a best of five sets tennis match (where the first player to win three sets wins thematch),Chris has a probability of 23of winning each set.What is the probabilityof him winning this particular match?(A)23(B)190243(C)89(D)1927(E)6481Questions 21to 25,5marks each21.How many 3-digit numbers can be written as the sum of three (not necessarilydi fferent)2-digit numbers?(A)194(B)198(C)204(D)287(E)29622.A rectangular sheet of paper is folded along a single line so that one corner lieson top of another.In the resulting figure,60%of the area is two sheets thick and 40%is one sheet thick.What is the ratio of the length of the longer side of the rectangle to the length of the shorter side?(A)3:2(B)5:3(C)√2:1(D)2:1(E)√3:223.An irrational spider lives at one corner of a closed box which is a cube of edge 1metre.The spider is not prepared to travel more than √2metres from its home (measured by the shortest route across the surface of the box).Which of the following is closest to the proportion (measured as a percentage)of the surface of the box that the spider never visits?(A)20%(B)25%(C)30%(D)35%(E)50%24.Functions f ,g and h are defined byf (x )=x +2g (0)=f (1)g (x )=f (g (x −1))for x ≥1h (0)=g (1)h (x )=g (h (x −1))for x ≥1.Find h (4).(A)61(B)117(C)123(D)125(E)31325.A cone has base diameter 1unit and slant height 3units.From a point A halfwayup the side of the cone,a string is passed twice around it to come to a point B on the circumference of the base,directly below A .The string is then pulled until taut.............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................ABHow far is it from A to B along this taut string?(A)38(√29+√53)(B)3√72(C)3√32(D)94(E)3√1088For questions 26to 30,shade the answer as an integer from 0to 999inthe space provided on the answer sheet.Question 26is 6marks,question 27is 7marks,question 28is 8marks,question 29is 9marks and question 30is 10marks.26.Paul is one year older than his wife and they have two children whose ages are alsoone year apart.Paul notices that on his birthday in 2011,the product of his age and his wife’s age plus the sum of his children’s ages is 2011.What would have been the result if he had done this calculation thirteen years before?27.The diagram shows the net of a cube.On each face there is an integer:1,w ,2011,x ,y and z .................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... (x)yz2011w1If each of the numbers w ,x ,y and z equals the average of the numbers written on the four faces of the cube adjacent to it,find the value of x .28.Two beetles sit at the vertices A and H of a cube ABCDEF GH with edge length40√110units.The beetles start moving simultaneously along AC and HF with the speed of the first beetle twice that of the other one.....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................ADCBEF GH✈s✈s ..................................................................................................................................................................................................................................................................................................................................What will be the shortest distance between the beetles?29.A family of six has six Christmas crackers to pull.Each person will pull twocrackers,each with a di fferent person.In how many di fferent ways can this be done?30.A40×40white square is divided into1×1squares by lines parallel to its sides.Some of these1×1squares are coloured red so that each of the1×1squares, regardless of whether it is coloured red or not,shares a side with at most one red square(not counting itself).What is the largest possible number of red squares?Senior 2011 Answers Question Answer 1B2C3B4A5B6C7C8D9E10E11B12A13D14B15A16D17B18D19A20E21B22C23C24D25B269972780528440297030420。
THURSDAY 1 AUGUST 2013MIDDLE PRIMARY DIVISIONAUSTRALIAN S CHOOL YEARS 3 & 4TIME ALLOWED: 60 MINUTESINSTRUCTIONS AND INFORMATION GENERAL 1. Do not open the booklet until told to do so by your teacher. 2. You may use any teaching aids normally available in your classroom, such as MAB blocks, counters, currency, calculators, play money etc. You are allowed to work on scrap paper and teachers may explain the meaning of words in the paper. 3. Diagrams are NOT drawn to scale. They are intended only as aids. 4. There are 25 multiple-choice questions, each with 5 possible answers given and 5 questions that require a whole number answer between 0 and 999. The questions generally get harder as you work through the paper. There is no penalty for an incorrect response. 5. This is a competition not a test; do not expect to answer all questions. You are only competing against your own year in your own State or Region so different years doing the same paper are not compared. 6. Read the instructions on the answer sheet carefully. Ensure your name, school name and school year are entered. It is your responsibility to correctly code your answer sheet. 7. When your teacher gives the signal, begin working on the problems. THE ANSWER SHEET 1. Use only lead pencil.2. Record your answers on the reverse of the answer sheet (not on the question paper) by FULLY colouring the circle matching your answer.3. Your answer sheet will be scanned. The optical scanner will attempt to read all markings even if they are in the wrong places, so please be careful not to doodle or write anything extra on the answer sheet. If you want to change an answer or remove any marks, use a plastic eraser and be sure to remove all marks and smudges.INTEGRITY OF THE COMPETITIONThe AMT reserves the right to re-examine students before deciding whether to grant official status to their score.©AMT P ublishing 2013 AMTT liMiTed Acn 083 950 341A ustrAliAn M AtheMAtics c oMpetitionsponsored by the c oMMonweAlth b AnkAn AcTiviTy of The AusTrAliAn MATheMATics TrusT姓 名: 年 级:监考老师:意事项 一般规定1.未获监考老师许可之前不可翻开此测验题本。
袋鼠数学澳大利亚数学竞赛简介早在20世纪80年代,澳大利亚便在国内开展了各类青少年数学竞赛。
当时,这些竞赛并不受到太大的关注,只有一些校内的数学竞赛才会引起学生的兴趣。
但是,随着澳大利亚国家教育部的倡导,越来越多的学生意识到数学学习的重要性,数学竞赛的影响也越来越大。
其中,袋鼠数学竞赛是最受关注的数学竞赛之一。
袋鼠数学竞赛的历史可以追溯到二十世纪八十年代,当时的袋鼠数学竞赛还不叫这个名字。
从1991年至1997年,袋鼠数学竞赛被称为“联邦数学竞赛”。
1998年,它被改名为“Australian Mathematics Competition”,即澳大利亚数学竞赛。
这项竞赛的特点是注重数学推理、实际计算和对数学问题的分析。
竞赛分为五个等级,且对应于不同年段的参赛学生。
袋鼠数学竞赛的测试题目设置灵活,层次分明。
竞赛题目有选择题和填空题,共多达30道题目。
选择题型分为A\、B\、C三中不同难度的题目,难度程度由易到难。
填空题则是将对应的答案填入空中。
每个年级的题目难度都随着学生学习阶段而不断增加。
竞赛分为两个阶段:第一轮竞赛和第二轮竞赛。
第一轮竞赛是由学校组织的内校比赛,第二轮则是全国范围内的竞赛。
这样的设计可以在保持竞赛的公平、公正性的同时对参赛学生的数学水平做出精准的评测和等级划分。
竞赛中还有一些特别的附加问题,要求学生根据题目要求编写数学程序模拟,对复杂的数学问题以计算机代码的方式进行求解。
这样的设定可以提高学生的计算机编程能力和计算机应用能力,增强他们对于数学的理解和应用。
袋鼠数学竞赛的评分标准也很严谨。
每个参赛者根据答案的准确性和完备性获得一定的得分。
任何一位参赛者都可以参与竞赛的第一轮,而参加第二轮竞赛则需要在比赛中表现突出。
勇于参加数学竞赛的学生可以受益匪浅。
在数学竞赛中,学生可以通过做题和思考的方式提高数学水平。
通过对错题的反思和解题经验的累积,学生的数学思维逐渐变得灵活而精确。
而在竞赛经历中,学生也会感受到数学的乐趣和挑战,增加自信心和逆境向上的勇气。
袋鼠数学澳大利亚数学竞赛题目(原创实用版)目录1.澳大利亚数学竞赛简介2.袋鼠数学竞赛的背景和意义3.袋鼠数学竞赛的题目类型和特点4.澳大利亚数学竞赛对学生的影响和启示正文【澳大利亚数学竞赛简介】澳大利亚数学竞赛(Australian Mathematics Competition,简称 AMC)是澳大利亚规模最大、历史最悠久的数学竞赛之一,旨在激发学生对数学的兴趣,培养学生的数学思维和解决问题的能力。
该竞赛每年吸引着成千上万的学生参加,不仅在澳大利亚境内有很高的影响力,同时也受到世界各地学生的欢迎。
【袋鼠数学竞赛的背景和意义】袋鼠数学竞赛(BMIMO,Bridge Mathematics International Olympiad)是澳大利亚数学竞赛中的一项重要赛事,其背景源于澳大利亚数学竞赛的组织者希望建立一个桥梁,将澳大利亚的学生与世界各地的学生联系起来,共同学习和探讨数学问题。
袋鼠数学竞赛的意义在于,它不仅为学生提供了一个展示自己数学才能的平台,还能激发学生对数学的兴趣,提高学生的数学素养。
【袋鼠数学竞赛的题目类型和特点】袋鼠数学竞赛的题目类型多样,包括选择题、填空题、解答题等。
题目内容涵盖了算术、代数、几何、组合等多个数学领域。
袋鼠数学竞赛的题目特点在于,它们往往具有现实意义,与生活息息相关,同时又具有一定的挑战性,需要学生运用所学的数学知识和技巧进行解答。
【澳大利亚数学竞赛对学生的影响和启示】澳大利亚数学竞赛对学生的影响是深远的。
首先,参加数学竞赛能提高学生的数学能力,激发学生对数学的兴趣。
其次,通过解决具有挑战性的数学问题,学生可以培养自己的逻辑思维、分析问题和解决问题的能力。
最后,澳大利亚数学竞赛为学生提供了一个与其他学生交流的平台,使他们能够互相学习、共同进步。
总的来说,袋鼠数学竞赛作为澳大利亚数学竞赛的一个重要组成部分,对于培养学生的数学兴趣和能力具有重要的意义。
amc评分标准AMC评分标准AMC(Australian Mathematics Competition)是澳大利亚数学竞赛,是一个旨在提高学生数学学习能力和兴趣的全球性数学竞赛。
AMC评分标准是对参赛者答题进行评判和排名的依据。
所有的答案都由专业的评卷老师进行评分,根据一定的标准进行打分。
一、答案的正确性首先,AMC评分标准的第一个要素就是答案的正确性。
参赛者必须给出正确的答案才有可能得到满分。
在解题过程中,辅助计算和结果的正确对应关系都是重要因素之一。
二、全面思考其次,AMC评分标准重视解题过程中的全面思考。
这意味着根据解题过程的完整性和逻辑性来评价答案。
思考的深度和广度会直接影响得分。
对于常用概念和方法的正确运用,以及灵活运用不同解题思路的反映,都会在评分中得到加分。
三、清晰的呈现另外,AMC评分标准也要求答题者清晰地呈现解答过程。
无论是文字解答还是图表解答,都需要被评卷老师准确理解。
因此,参赛者需要用清晰的表达方式和结构组织来呈现解答过程。
答题者需要注意语法和拼写的正确性,以便准确地向评卷老师传达自己的观点。
四、严谨的论证AMC评分标准中也强调答案必须经过严谨的论证。
这意味着解题过程中需要使用正确的数学概念和方法,并提供充分的证明或解释。
通过使用符合数学逻辑的步骤和推理,评价者才能判断答题者的解决问题的能力和理解的深度。
五、高效的计算和细致的检查最后,AMC评分标准还关注高效的计算和细致的检查过程。
参赛者需要能够根据问题的要求使用适当的计算方法进行计算,同时在答案给出后进行仔细的检查,以避免疏漏和错误。
总结起来,AMC评分标准主要关注五个方面:答案的正确性、全面思考、清晰的呈现、严谨的论证和高效的计算和细致的检查。
这些标准能够保证评卷过程的公正性和准确性,给予每一位参赛者公平的竞赛机会。
参赛者在备战AMC竞赛时,除了充分掌握数学知识点外,还应该注意以下几点:1. 熟悉AMC竞赛的题型和评分标准,以便在答题过程中合理安排时间和给出准确的答案。
AUSTRALIAN MATHEMATICS COMPETITION
WARM-UP PAPER
JUNIOR 9
c
2009Australian Mathematics Trust Questions 1-4,3marks each
1.In the diagram x equals
t
t t t 100◦120◦x ◦
(A)100(B)110(C)120(D)130(E)140
2.0.5×0.03equals (A)0.15
(B)0.53(C)0.053(D)0.015(E)1.5
3.The sum of the greatest and the least of the numbers 0.32,0.302,0.7,0.688and 0.649is (A)1.008
(B)1.002
(C)1.388
(D)1.02
(E)0.969
4.The number 1991is a palindrome because it is unchanged if its digits are written in the reverse order.How many years are there from 1991until the next palindromic year?(A)9
(B)11
(C)121
(D)231
(E)1001
Junior 9Page 2
Questions 5-8,4marks each
5.If x >7,which of the following is smallest?(A)
x 7
(B)
7x
(C)
7x +1
(D)
x +17
(E)
7x −1
wn food is to be applied to a lawn at the rate of 2.5kg per 100m 2.
24m 40m
10m
20m
24m
The lawn has dimensions as shown in the diagram,and all angles are right angles.The amount of lawn food needed,in kilograms,is (A)18
(B)19
(C)20
(D)22
(E)24
7.The lengths,in centimetres,of the sides of a triangle are 2x ,3x and 4x .If the perimeter of this triangle is 45cm,then the difference,in centimetres,between the lengths of the longest and shortest sides is (A)5
(B)10
(C)15
(D)20
(E)25
8.One of the elephants in the zoo is on a special diet and eats every day a portion of carrots which is equal to what one of the rabbits eats in one year (365days).Together,in one day,the elephant and the rabbit eat 111kilograms of carrots.How many kilograms of carrots does the rabbit eat in one day?(A)
12
(B)
111165
(C)
37122
(D)
1961
(E)
2273
Junior 9Page 3
Questions 9-10,5marks each
9.Nine squares are arranged as shown.
B
D
I
H
G
E A C
F
If square A has area 1cm 2and square B has area 81cm 2then the area,in square centimetres,of square I is (A)196
(B)256
(C)289
(D)324
(E)361
10.The corners of a cube are cut offin such a way as to form triangles.
...........................................
...................................
........................
.
.................
..................
.........If all 24corners of the figure formed are joined by diagonals to each other,how
many of these diagonals pass through the interior of the figure?(A)84
(B)108
(C)120
(D)142
(E)240。