2020年高一新生入学分班考数学测试卷浙江专用
- 格式:docx
- 大小:217.34 KB
- 文档页数:5
2020年秋季高一开学分班考试(衔接教材部分)(一)一、单选题(共8小题,满分40分,每小题5分) 1、下列式子计算正确的是( ) A .m 3•m 2=m 6 B .(﹣m )﹣2=C .m 2+m 2=2m 2D .(m +n )2=m 2+n 2【答案】C【解析】A 、m 3•m 2=m 5,故A 错误; B 、(﹣m )﹣2=B 错误;C 、按照合并同类项的运算法则,该运算正确.D 、(m +n )2=m 2+2mn +n 2,故D 错误. 2、若代数式1x−5有意义,则实数x 的取值范围是( )A . x =0B . x =5C . x ≠0D . x ≠5 【答案】D【解析】分数要求分母不为零。
5,05≠≠-x x3、已知关于x 的方程x 2+x ﹣a=0的一个根为2,则另一个根是( ) A .﹣3 B .﹣2 C .3 D .6【答案】A .【解析】设方程的另一个根为t , 根据题意得2+t=﹣1,解得t=﹣3, 即方程的另一个根是﹣3.故选A .4、关于二次函数,下列说法正确的是( ) A .图像与轴的交点坐标为B .图像的对称轴在轴的右侧C .当时,的值随值的增大而减小D .的最小值为-3 【答案】D【解析】∵y=2x 2+4x -1=2(x+1)2-3, ∴当x=0时,y=-1,故选项A 错误,该函数的对称轴是直线x=-1,故选项B 错误,2241y x x =+-y ()0,1y 0x <y x y当x<-1时,y随x的增大而减小,故选项C错误,当x=-1时,y取得最小值,此时y=-3,故选项D正确,故选D.5、若,则()A.1B.2C.3D.4【答案】C【解析】将不等式因式分解得,即或,无解或,所以√(2x−1)2+2|x−2|=2x−1+4−2x=3.故选C.6、已知ABC∆的三边a、b、c满足bcbaca-=-22,判断ABC∆的形状( )A.等边三角形B.等腰直角三角形C. 等腰三角形D.直角三角形【答案】C【解析】等腰三角形提示:因式分解得:(a-b)(a+b-c)=0,因为a、b、c为三角形得三边,所以a+b-c为非零数,所以a=b,故选C.7、若关于x的一元二次方程ax2+2x-1=0无解,则a的取值范围是()A.(-1, +∞)B.(-∞,-1)C.[-1,+∞)D.(-1,0)∪(0,+∞).【答案】B【解析】当{Δ=4+4a<0a≠0时,一元二次方程无解,解得a<-1,且a≠0,所以a的取值范围是a<-1.8、不等式的解集是( )A.{x|1<x≤5}B.{x|1<x<5}C.{x|1≤x<5 }D.{x|1≤x≤5 }【答案】A【解析】原不等式化为−x+5x−1≥0,x−5x−1≤0,解得1<x≤5.9、不等式2560x x+->的解集是()A.{}23x x x-或B.{}23x x-<<321xx+≥-C .{}61x x x -或 D .{}61x x -<<【答案】C【解析】因为2560x x +->,所以(1)(6)01x x x -+>∴>或6x <-,故选C 。
浙江省杭州二中2024-2025学年高一上学期7月分班考试数学试卷一、选择题(每小题5分,共50分)1.计算等于()C. D.2.设2t a b =+,21s a b =++,则s 与t 的大小关系是()A.t s > B.t s ≥ C.t s < D.t s≤3.如图,在梯形ABCD 中,AD ∥BC ,3AD =,7BC =,点M ,N 分别是对角线BD ,AC 的中点,则MN =( )A.2B.5C.72 D.324.某几何体的三视图如图所示,则其体积是()A.(45π+B.36πC.63πD.2169π+5.已知两直线1120a x b y ++=和2220a x b y ++=的交点是()3,4,则过两点()()1122,,A a b B a b 、的直线方程是()A.340x y +=B.430x y +=C.3420x y ++=D.4320x y ++=6.设x ,y ,0z >,14a x y =+,14b y z =+,14c z x =+,则a ,b ,c 三个数( )A.都小于4B.至少有一个不大于4C.都大于4D.至少有一个不小于47.将正整数排成下表则在表中数字2020出现在( )A.第44行第85列B.第45行第85列C.第44行第84列D.第45行第84列8.若存在正实数y ,使得154xy y x x y=−+,则实数x 的最大值为( ) A.15 B.54C.1D.4 9.如图,正方形ABCD 中,6AB =,点E 在边CD 上,且3CD DE =.将ADE 沿AE 对折至AFE ,延长EF 交边BC 于点G ,连结AG CF 、.下列结论:(1)ABG AFG ≅ ;(2)BG GC =;(3)AG ∥CF ;(4)3FGC S = .其中正确结论的个数是( )A.4B.3C.2D.1 10.()()()()()()()()333333332131412020121314120201−−−−++++ 的值最接近( ) A.12 B.23 C.34 D.45二、填空题(每小题5分,共25分)11.tan45cos60−= __________.12.方程()()22120x a x a +−+−=的一个根比1大,一个根比1小,则实数a 的取值范围是__________. 13.函数15()22y x =+<<的最大值是__________.14.在等腰ABC 中,A B =,点D 在线段AC 上,且2CD DA =,若2tan 5ABD ∠=,则tan A =__________.15.设a ,b 为正实数,现有下列命题:①若221a b −=,则1a b −<;②若111b a −=,则1a b −<;1−,则1a b −<;④若331a b −=,则1a b −<. 其中的真命题有__________.(写出所有真命题的编号)三、解答题(每小题10分,共40分)16.解方程:4326736760x x x x +−−+=17.对于函数()f x ,若()f x x =,则称x 为()f x 的“不动点”;若()()ff x x =,则称x 为()f x 的“稳定点”.(1)求证;若x 为()f x 的“不动点”,则x 为()f x 的“稳定点”;(2)若()()21,f x ax a x =−∈∈R R ,若函数存在“不动点”和“稳定点”,且函数的“不动点”和“稳定点”的集合分别记为A 和B ,即(){}()(){},A x f x x B xf f x x ====∣∣,且A B =,求实数a 的取值范围. 18.如图,圆1O 和圆2O 相交于点A B 、,半径1O B 、半径2O B 所在直线分别与圆2O 、圆1O 相交于点E F 、,过点B 作EF 的平行线分别与圆1O 、圆2O 相交于点M N 、.证明:MN AE AF =+.19.现有重量为1,2,4,8,16的砝码各一个,有一个天平,在每一步,我们选取任意一个砝码,将其放入砝码的左边或者右边,直至所有砝码全放到天平两边,但在放的过程中,发现天平的指针不会偏向分度盘的右边,问这样的放法共有多少种?参考答案一、选择题1.【答案】C2.【答案】D3.【答案】A4.【答案】C5.【答案】C6.【答案】D7.【答案】D【解析】因为每行的最后一个数分别为1,4,9,16,…,所以由此归纳出第n 行的最后一个数为2n .因为2441936=,2452025=,所以2017出现在第45行上.又由2020193684−=,故2017出现在第84列,故选D8.【答案】A 【解析】转化154xy y x x y =−+为()224510xy x y x +−+=,以y 为自变量的方程有正根,根据根与系数关系确定实数x 的范围即可.9.【答案】B【解析】(1)AB AD AF == ,AG AG =,90B AFG ∠∠== ,()Rt Rt ABG AFG HL ∴≅ ;故(1)正确(2)123EF DE CD ===,设BG FG x ==,则6CG x =−. 在Rt ECG 中,根据勾股定理,得()()222642x x −+=+,解得3x =,363BG GC ∴==−=.故(2)正确(3)CG BG = ,BG GF =,CG GF ∴=,FGC ∴ 是等腰三角形,GFC GCF ∠∠=. 又Rt Rt ABG AFG ≅ ;AGB AGF ∠∠∴=,2AGB AGF AGB ∠∠∠+=18022FGC GFC GCF GFC GCF ∠∠∠∠∠=−=+==AGB AGF GFC GCF ∠∠∠∠∴===,AG ∴∥CF ;故(3)正确.(4)2EF = ,3GF =,故331185525FGC GCE GCE GF S S S GC EC GE ===×⋅= .故(4)错误.∴正确的个数有3个.故选:B .10.【答案】B【解析】由立方和、立方差公式得:()()32111n n n n −−++,()()()()()()322111111121n n n n n n n ++=+++−++=+++ . 所以()()()()()2332111111221n n n n n n n n n n −++−−==++++++. ()()()()()()()()()3333333333333333213141202011213120191202012131412020121314120201−−−−−−−=×××××−++++++++ ()()3311220181123202012020194520219201920202021××=×××××−=××−×× ()()222201920202020122202020201220202020132019202020213202020213202020201×++++++=×=×=×××××+ 222220202020121213202020203202020203++ =×=×+≈ ++ 故选:B . 二、填空题 11.【答案】1212.【答案】21a −<< 13.【答案】14.【答案】215.【答案】①④三、解答题 16.(221167360x x x x++−−= ,1t x x =−,32t =,83−;2x =,12−,3−) 17.(1)解:若A =∅,则A B ⊆显然成立;若A ≠∅,设t A ∈,则()f t t =,()()()f f t f t t ==,t B ∴∈,故A B ⊆.(2)A ≠∅ ,21ax x ∴−=有实根,14a ∴≥− 又A B ⊆,所以()2211a ax x −−=,即3422210a x a x x a −−+−=的左边有因式21ax x −−,从而有()()222110ax x a x ax a −−+−+= A B = ,2210a x ax a ∴+−+=要么没有实根,要么实根是方程210ax x −−=的根.若2210a x ax a +−+=没有实根,则34a <;若2210a x ax a +−+=有实根且实根是方程210ax x −−=的根,则由方程210ax x −−=,得22a x ax a =+,代入2210a x ax a +−+=,有210ax +=.由此解得12x a=−,再代入得111042a a +−=,由此34a = 故a 的取值范围是13,44 −. 18.【解析】试题分析:根据平角得R A S 、、三点共线,根据同弦所对角相等得F R S E 、、、四点共圆.根据四点共圆性质得MRB FRA ∠∠=,即得MB FA =,同理可得NB AE =,根据等量性质得MN AE AF =+. 试题解析:解:延长12BO BO 、分别与圆1O 、圆2O 相交于点R S 、,连结RM RF RB SA SE SN AB 、、、、、、.则90BAR BAS ∠∠== ,所以R A S 、、三点共线 又90RFS SER ∠∠== ,于是F R S E 、、、四点共圆. 故MRF MBF EFB ERS ∠∠∠∠===,从而MRB FRA ∠∠=,因此MB FA =,同理NB AE =.所以MN AE AF =+.证法二:连接1FO ,2EO ,那么我们易得等腰12O BF O EB ∼ .故我们有21BF BO BO BE ⋅=⋅,那么由相交弦定理的逆定理,我们有1O ,2O ,E ,F 四点共圆.从而我们有2221190O BN O FE O O E O BA ∠∠∠∠===− , 故我们有22AO E BO N ∠∠=.从而AE BN =,同理AF BM =,即证明了MN AE AF =+.19.答案:是9*7*5*3*1945=,这算个组合计数题.分类讨论是比较困难的.最好的方法是分步原理,但不是很好想,但我觉得也有学生可能可以猜到这个答案.做法如下:将所有的位置分为:1左,1右;2左,2右;3左,3右;4左,4右;5左,5右.k左表示第k次放在天平左边,k右同理.那么我们先来看1这个砝码,你会发现对它的要求是不放在1右都可以.从而右9种选择.再看2这个砝码,若1这个砝码是第k次放,那么2这个砝码不能是第k次放,去掉一个位置,然后不能在去掉1这个砝码后放在右边,故还要去掉一个位置,故有7种可能……类似的考虑4,8,16……关键想法是考虑总共有10个位置,要将5个砝码放到这10个位置满足一定条件,然后砝码的顺序很重要.必须先考虑1.事实上也可以想象成归纳.。
2020年浙江省杭州二中高一入学分班考试数学试卷一、选择题(本大题满分40分,每小题4分,1至8题四个选项中仅有一项正确;9至10题为多选择题,全对给4分,选项不全且无错误选项的给2分,有错误选项的则给0分)1.(4分)集合{1,2,3}的真子集共有()A.5 个B.6 个C.7 个D.8 个2.(4分)命题“∃x≥1,使x2>1.”的否定形式是()A.“∃x<1,使x2>1.”B.“∃x<1,使x2≤1.”C.“∀x≥1,使x2>1.”D.“∀x≥1,使x2≤1.”3.(4分)下列函数中在其定义域内是单调函数的是()A.f(x)=x2B.f(x)=√x C.f(x)=1x D.f(x)=x﹣24.(4分)已知f(x)=|x﹣4|﹣|x+2|,若f(a+1)<f(2a),则a的取值范围是()A.[﹣1,1]B.[﹣1,3]C.(1,3)D.(﹣3,1)5.(4分)已知a=log23,b=log34,c=log45,则有()A.a>b>c B.a<b<c C.b>c>a D.b>a>c6.(4分)函数y=x•22﹣|x|在区间[﹣2,2]上的图象可能是()A.B.C.D.7.(4分)已知不等式ax2+bx+c>0的解集是(﹣3,2),则不等式cx2+bx+a>0的解集是()A.(﹣2,3)B.(﹣∞,﹣2)∪(3,+∞)C.(−13,12)D.(−∞,−13)∪(12,+∞)8.(4分)已知关于x的方程x2+ax+b=0(a,b∈R)在[0,1]上有实数根,且﹣4≤2a+b≤﹣2,则a+2b的最大值为()A .﹣1B .0C .12D .19.(4分)设集合S ,T ,S ,T 中至少有2个元素,且S ,T 满足:①对于任意的x ,y ∈S ,若x ≠y ,则x +y ∈T ;②对于任意的x ,y ∈T ,若x <y ,则y ﹣x ∈S .若S 有3个元素,则T 可能有( ) A .2个元素B .3个元素C .4个元素D .5个元素10.(4分)已知函数f(x)={|log 2x|,x >0−log 2|x +1|,x ≤0.若f (x 1)=f (x 2)=f (x 3)=f (x 4)且x 1>x 2>x 3>x 4,则下列结论正确的有( ) A .x 1+x 2+x 3+x 4<0 B .x 1+x 2+x 3+x 4>0 C .x 1x 2x 3x 4≥1D .0<x 1x 2x 3x 4<1二、选择题(本大题满分16分,每小题4分,13题每空2分.) 11.(4分)若2a =5b =10,则4﹣a = ,1a+1b= .12.(4分)已知函数f(x)=2x−m 2x +m是奇函数,则f (m )= .13.(4分)设正实数a ,b 满足:a +b =1,则4a+ab的最小值为 .14.(4分)若对任意的x ∈[1,5],不等式2≤x +ax+b ≤5恒成立,则a ﹣b 的最大值是 . 三、解答题(本大题共有4个小题,共44分)15.(10分)已知集合A =(﹣∞,1]∪(3,+∞),B =[m ,m +2]. (Ⅰ)若m =2,求(∁R A )∩B ;(Ⅱ)若“x ∈A ”是“x ∈B ”的必要不充分条件,求m 的取值范围.16.(10分)人类已经进入大数据时代.目前,数据量已经从TB (1TB =1024GB )级别跃升到PB (1PB =1024TB ),EB (1EB =1024TB )乃至ZB (17B =1024EB )级别.国际数据公司(IDC )的研究结果表明,全球产生的数据量为:年份 2008 2009 2010 2011 … x (单位:年) 0 1 2 3 … 数据量(单位:ZB )0.490.81.21.82…为了较好地描述2008年起全球产生的数据量与时间x (单位:年)的关系,根据上述数据信息,选择函数f(x)=kx+b和g(x)=ma x(a>0且a≠1)进行拟合研究.(Ⅰ)国际数据公司(IDC)预测2020年全球数据量将达到80.0ZB,你认为依据哪一个函数拟合更为合理;(Ⅱ)设我国2020的数据量为cZB,根据拟合函数,请你估计我国的数据量达到100cZB 约需要多少年?参考数据:1.5310≈70.29,1.5311≈107.55,1.5312≈164.55,1.5312≈251.76.17.(12分)已知a∈R,函数f(x)={x−7,x≥ax2−4x,x<a.(Ⅰ)若函数y=f(x)恰有2个零点,求实数a的取值范围;(Ⅱ)若f(f(x))≥f(x),求实数x的取值范围.18.(12分)已知函数f(x)=log a x(a>0且a≠1).(Ⅰ)若f(a+4)≤f(3a),求实数a的取值范围;(Ⅱ)设a=2,函数g(x)=﹣f2(x)+(3﹣2m)f(x)+m+2(0<m≤1).(i)若x∈[1,2m],证明:g(x)≤10 3;(ii)若x∈[12,2],求|g(x)|的最大值h(m).2020年浙江省杭州二中高一入学分班考试数学试卷参考答案与试题解析一、选择题(本大题满分40分,每小题4分,1至8题四个选项中仅有一项正确;9至10题为多选择题,全对给4分,选项不全且无错误选项的给2分,有错误选项的则给0分) 1.(4分)集合{1,2,3}的真子集共有( ) A .5 个B .6 个C .7 个D .8 个【解答】解:集合{1,2,3}的真子集共有: 23﹣1=7个. 故选:C .2.(4分)命题“∃x ≥1,使x 2>1.”的否定形式是( ) A .“∃x <1,使x 2>1.” B .“∃x <1,使x 2≤1.” C .“∀x ≥1,使x 2>1.”D .“∀x ≥1,使x 2≤1.”【解答】解:特称命题的否定是全称命题,所以命题“∃x ≥1,使x 2>1”的否定形式为:∀x ≥1,均有x 2≤1. 故选:D .3.(4分)下列函数中在其定义域内是单调函数的是( ) A .f (x )=x 2B .f(x)=√xC .f(x)=1xD .f (x )=x ﹣2【解答】解:f (x )=x 2是偶函数,所以在其定义域内不是单调函数,所以A 不正确; f (x )=√x ,在其定义域内是单调增函数,所以B 正确; f (x )=1x ,在其定义域内不是单调函数,所以C 不正确; f (x )=x ﹣2,在其定义域内不是单调函数,所以D 不正确;故选:B .4.(4分)已知f (x )=|x ﹣4|﹣|x +2|,若f (a +1)<f (2a ),则a 的取值范围是( ) A .[﹣1,1]B .[﹣1,3]C .(1,3)D .(﹣3,1)【解答】解:f (x )=|x ﹣4|﹣|x +2|={6,x ≤−2−2x +2,−2<x <4−6,x ≥4的图象,如下图:由图,可知f (a +1)<f (2a )等价于{2a ≤−2a +1>−2 或 {−2<2a <42a <a +1,解得﹣3<a ≤﹣1或﹣1<a <1,∴﹣3<a <1, ∴a 的取值范围为(﹣3,1). 故选:D .5.(4分)已知a =log 23,b =log 34,c =log 45,则有( ) A .a >b >cB .a <b <cC .b >c >aD .b >a >c【解答】解:设n ∈N ,且n >2,log n (n +1)>0,log n ﹣1n >0,log n (n+1)log n−1n=log n (n +1)⋅log n (n −1)<[log n (n 2−1)2]2<(log n n 22)=1,∴log n (n +1)<log n ﹣1n ,∴log 45<log 34<log 23,即a >b >c . 故选:A .6.(4分)函数y =x •22﹣|x |在区间[﹣2,2]上的图象可能是( )A .B .C .D .【解答】解:函数y =x •22﹣|x |,定义域为[﹣2,2]关于原点对称, 且f (﹣x )=(﹣x )•22﹣|x |=﹣f (x ),则f (x )为奇函数,图象关于原点对称, 排除CD ;由f (1)=2以及f (2)=2, 函数不单调, 排除B . 故选:A .7.(4分)已知不等式ax 2+bx +c >0的解集是(﹣3,2),则不等式cx 2+bx +a >0的解集是( ) A .(﹣2,3) B .(﹣∞,﹣2)∪(3,+∞)C .(−13,12)D .(−∞,−13)∪(12,+∞)【解答】解:不等式ax 2+bx +c >0的解集为(﹣3,2), 所以对应方程ax 2+bx +c =0的解是﹣3和2,且a <0; 由根与系数的关系知,{−3+2=−ba −3×2=c a ;解得b =a ,c =﹣6a ,所以不等式cx 2+bx +a >0可化为﹣6ax 2+ax +a >0, 即6x 2﹣x ﹣1>0, 即(3x +1)(2x ﹣1)>0, 解得x <−13或x >12;所以所求不等式的解集是(﹣∞,−13)∪(12,+∞).故选:D .8.(4分)已知关于x 的方程x 2+ax +b =0(a ,b ∈R )在[0,1]上有实数根,且﹣4≤2a +b ≤﹣2,则a +2b 的最大值为( ) A .﹣1B .0C .12D .1【解答】解:关于x 的方程x 2+ax +b =0(a ,b ∈R )在[0,1]上有实数根, 即函数f (x )=﹣x 2与g (x )=ax +b 在x ∈[0,1]上的图象有交点,作出函数f (x )与g (x )的大致图象,如图所示; 因为﹣4≤2a +b ≤﹣2,所以﹣4≤g (2)≤﹣2; 又a +2b =2(12a +b )=2g (12);所以a +2b 的最大值可以转化为求g (12)的最大值,由数形结合可知,当y =g (x )的图象经过点A (2,﹣4)且和y =f (x )的图象在x ∈[0,1]上相交于点B (1,﹣1)时,g (12)取得最大值,此时直线方程为y+1−4+1=x−12−1,化简为y =﹣3x +2;所以y =g (12)=﹣3×12+2=12, 计算a +2b =2g (12)=1.故选:D .9.(4分)设集合S ,T ,S ,T 中至少有2个元素,且S ,T 满足:①对于任意的x ,y ∈S ,若x ≠y ,则x +y ∈T ;②对于任意的x ,y ∈T ,若x <y ,则y ﹣x ∈S .若S 有3个元素,则T 可能有( ) A .2个元素B .3个元素C .4个元素D .5个元素【解答】解:若S 有3个元素,不妨设S ={a ,b ,c },其中a <b <c , 由①可知,则必有x 1=a +b ,x 2=a +c ,x 3=b +c ∈T ,由②可知,x 2﹣x 1=c ﹣b ∈S ,x 3﹣x 2=b ﹣a ∈T ,x 3﹣x 1=c ﹣a ∈S , 显然有c ﹣a >b ﹣a >0,c ﹣a >c ﹣b >0,(1)若c ﹣a =c ,则a =0,此时T 中有元素b ,c ,则c ﹣b =b ,c =2b 符合,此时T 中有3个元素,(2)若c ﹣a =b ,则有c ﹣b =b ﹣a =a ,即c =3a ,b =2a , 此时T ={3a ,4a ,5a }中有3个元素, 综上所述,T 中有3个元素. 故选:B .10.(4分)已知函数f(x)={|log 2x|,x >0−log 2|x +1|,x ≤0.若f (x 1)=f (x 2)=f (x 3)=f (x 4)且x 1>x 2>x 3>x 4,则下列结论正确的有( ) A .x 1+x 2+x 3+x 4<0 B .x 1+x 2+x 3+x 4>0 C .x 1x 2x 3x 4≥1D .0<x 1x 2x 3x 4<1【解答】解:作出函数f(x)={|log 2x|,x >0−log 2|x +1|,x ≤0的图象如图:由图可得x 1>1>x 2>0>x 3>x 4,由|log 2x 1|=|log 2x 2|,得log 2x 1=﹣log 2x 2,即log 2(x 1x 2)=0,则x 1x 2=1, x 3+x 4=﹣2,x 1+x 2>2√x 1x 2=2, 故x 1+x 2+x 3+x 4>2﹣2=0;又2=﹣x 3+(﹣x 4)>2√(−x 3)(−x 4)=2√x 3x 4,得0<x 3x 4<1. 故选:BD .二、选择题(本大题满分16分,每小题4分,13题每空2分.) 11.(4分)若2a =5b =10,则4﹣a =1100,1a+1b= 1 .【解答】解:∵2a =5b =10,∴a =log 210,b =log 510, ∴4﹣a =14a =1(2a )2=1100; 1a+1b=1log 210+1log 510=lg 2+lg 5=lg 10=1.故答案为:1100,1.12.(4分)已知函数f(x)=2x −m2x +m 是奇函数,则f (m )= 13.【解答】解:由于函数f(x)=2x−m2x +m是奇函数,所以f (﹣x )+f (x )=0,整理得f(−x)+f(x)=2−x−m 2−x +m +2x−m2x +m =0,解得m =1,所以f(x)=2x−12x +1,则f (1)=13.故答案为:13.13.(4分)设正实数a ,b 满足:a +b =1,则4a+ab的最小值为 8 .【解答】解:正实数a ,b 满足a +b =1, 则4a +a b=4a+1−b b=4a+1b−1=4a+4b a +a+bb−1=4+4b a +a b ≥4+2√4b a ⋅ab =8,当且仅当4b a=ab且a +b =1即b =13,a =23时取等号,故答案为:814.(4分)若对任意的x ∈[1,5],不等式2≤x +ax+b ≤5恒成立,则a ﹣b 的最大值是 4+4√3 .【解答】解:设f (x )=x +a x+b ,1≤x ≤5,当a ≤0时,f (x )在[1,5]递增,可得f (x )的最小值为1+a +b ,最大值为5+a 5+b , 由题意可得{1+a +b ≥25+a 5+b ≤5,即为{b ≥1−a b ≤−a 5,可得1﹣a ≤−a 5,解得a ≥54,这与a ≤0矛盾, 故a >0.当√a >5即a >25时,f (x )在[1,5]递减,可得f (x )的最大值为f (1)=1+a +b ,最小值为5+a5+b ,由题意可得{1+a +b ≤55+a 5+b ≥2即为{b ≤4−a b ≥−3−a 5,可得﹣3−a 5≤4﹣a ,解得a ≤354这与a >25矛盾;当√a <1,即0<a <1时,f (x )在[1,5]递增,可得f (x )的最小值为1+a +b ,最大值为5+a5+b , 由题意可得{1+a +b ≥25+a 5+b ≤5,即为{b ≥1−a b ≤−a 5,可得1﹣a ≤−a 5,解得a ≥54,这与0<a <1矛盾;当1≤a ≤5时,f (1)≤f (5),可得f (x )的最小值为f (√a )=2√a +b ,最大值为5+a5+b , 由题意可得{2√a +b ≥25+a 5+b ≤5,即为{b ≥2−2√a b ≤−a 5,可得2﹣2√a ≤−a 5,解得5−√15≤√a ≤5+√15,则40﹣10√15≤a ≤5,而65a ≤a ﹣b ≤a +2√a −2≤3+2√5;当5<a ≤25时,f (1)>f (5),可得f (x )的最小值为f (√a )=2√a +b ,最大值为1+a +b , 由题意可得{2√a +b ≥21+a +b ≤5,即为{b ≥2−2√a b ≤4−a ,可得2﹣2√a ≤4﹣a ,解得0≤√a ≤1+√3,即0≤a ≤4+2√3,故5<a ≤4+2√3,而2a ﹣4≤a ﹣b ≤a +2√a −2≤4+4√3. 综上可得a ﹣b 的最大值为4+4√3, 故答案为:4+4√3.三、解答题(本大题共有4个小题,共44分)15.(10分)已知集合A =(﹣∞,1]∪(3,+∞),B =[m ,m +2]. (Ⅰ)若m =2,求(∁R A )∩B ;(Ⅱ)若“x ∈A ”是“x ∈B ”的必要不充分条件,求m 的取值范围. 【解答】解:(1)由A =(﹣∞,1]∪(3,+∞)可知∁R A =(1,3], 由m =2可知B =[2,4], 故(∁R A )∩B =[2,3];(2)由“x ∈A ”是“x ∈B ”的必要不充分条件,可知B ⫋A , ∴m +2≤1或m >3,即m ≤﹣1或m >3, ∴m 的取值范围为(﹣∞,﹣1]∪(3,+∞).16.(10分)人类已经进入大数据时代.目前,数据量已经从TB (1TB =1024GB )级别跃升到PB (1PB =1024TB ),EB (1EB =1024TB )乃至ZB (17B =1024EB )级别.国际数据公司(IDC )的研究结果表明,全球产生的数据量为:年份2008 2009 2010 2011 …x (单位:年) 0 1 2 3 … 数据量(单位:ZB )0.490.81.21.82…为了较好地描述2008年起全球产生的数据量与时间x (单位:年)的关系,根据上述数据信息,选择函数f (x )=kx +b 和g (x )=ma x (a >0且a ≠1)进行拟合研究. (Ⅰ)国际数据公司(IDC )预测2020年全球数据量将达到80.0ZB ,你认为依据哪一个函数拟合更为合理;(Ⅱ)设我国2020的数据量为cZB ,根据拟合函数,请你估计我国的数据量达到100cZB 约需要多少年?参考数据:1.5310≈70.29,1.5311≈107.55,1.5312≈164.55,1.5312≈251.76.【解答】解:(Ⅰ)设2008,2009,2010,2011,…,2020年分别对应第1年,第2年,第3年,第4年,…,第13年,设数据量为y ,由已知列表如下:x 1 2 3 4 … 13 y0.490.81.21.82…80.0画出散点图如下:由散点图可知,5个点在一条曲线上,应选择函数g (x )=ma x .(Ⅱ)将数据(1,0.49),(13,80)代入g (x )=ma x 中得:{0.49=ma 80=ma 13,解得:{m ≈0.32a ≈1.53,∴g (x )=0.32×1.53x ,由题意有c=0.32×1.5313,则100c=0.32×1.53x,∴x≈24,∴我国的数据量达到100cZB约需要24年.17.(12分)已知a∈R,函数f(x)={x−7,x≥ax2−4x,x<a.(Ⅰ)若函数y=f(x)恰有2个零点,求实数a的取值范围;(Ⅱ)若f(f(x))≥f(x),求实数x的取值范围.【解答】解:(Ⅰ)由x﹣7=0得x=7,由x2﹣4x=0得x=0或x=4,若函数f(x)恰有两个零点,则两个零点分别为0,4时,可得a>7;若两个零点分别为0,7时,可得0<a≤4;若两个零点分别为4,7时,零点0必然出现,不符合题意;故实数a的取值范围为(0,4]∪(7,+∞).(Ⅱ)设μ=f(x),当μ≥a时,f(μ)=μ﹣7>μ,必无解;当μ<a时,μ2﹣4μ≥μ,解得μ≥5或μ≤0,情况一:当a<0时,可得μ<a,即f(x)<a,①x≥a时,x﹣7<a,则a≤x<7﹣a,②x<a时,x2﹣4x<a,因为x2﹣4x>a2﹣4a>0>a,无解,因此实数x的取值范围是[a,7+a);情况二:当0≤a≤4时,可得μ≤0,即f(x)≤0,①当x≥a时,x﹣7≤0,则a≤x≤7,②x<a时,x2﹣4x≤0,则0≤x≤a,因此实数x的取值范围是[0,7];情况三:当4<a<5时,可得μ≤0,即f(x)≤0,①x≥a时,x﹣7≤0,则a≤x≤7,②x<a时,x2﹣4x≤0,则0≤x≤4,因此实数x的取值范围为[0,4]∪[a,7];情况四:当a>5时,可得5≤μ<a或μ≤0,即5≤f(x)<a或f(x)≤0,①x≥a时,5≤x﹣7<a或x﹣7≤0,则12≤x<7+a或x≤7,②x<a时,5≤x2﹣4x<a或x2﹣4x≤0或5≤x<2+√a+4或2−√a+4<x≤−1或0≤x≤4,因为a −(√a +4+2)=2a−2+√a+4=2a−2+√a+40,故2+√a +4<a ,因此(i )5<a ≤7时,实数x 的取值范围是(2−√a +4,−1]∪[0,4]∪[5,2+√a +4)∪[a ,7]∪[12,7+a);(ii )当7<a <12时,实数x 的取值范围是(2−√a +4,−1]∪[0,4]∪[5,2+√a +4)∪[12,7+a);(iii )当a ≥12时,实数x 的取值范围是(2−√a +4,−1]∪[0,4]∪[5,2+√a +4)∪[a ,7+a);18.(12分)已知函数f (x )=log a x (a >0且a ≠1). (Ⅰ)若f (a +4)≤f (3a ),求实数a 的取值范围;(Ⅱ)设a =2,函数g (x )=﹣f 2(x )+(3﹣2m )f (x )+m +2(0<m ≤1). (i )若x ∈[1,2m ],证明:g(x)≤103; (ii )若x ∈[12,2],求|g (x )|的最大值h (m ). 【解答】解:(Ⅰ)当0<a <1时,f (x )递减, f (a +4)≤f (3a )等价于{0<a <1a +4≥3a,解得:0<a <1,当a >1时,f (x )递增,f (a +4)≤f (3a )等价于{a >1a +4≤3a ,解得:a ≥2,综上:0<a <1或a ≥2;解:(Ⅱ)∵a =2,∴f (x )=log 2x 是增函数,证明:(i )若x ∈[1,2m ],则f (x )∈[0,m ],令t =f (x ),则0≤t ≤m , 故g (x )=h (t )=−[t −3−2m 2]2+m 2﹣2m +174,0≤t ≤m , 当0≤3−2m 2≤m 即34≤m ≤1时,y max =m 2﹣2m +174=(m ﹣1)2+134<103, 当3−2m 2>m 即0<m <34时,当t =m 时,y max =﹣3m 2+4m +2=﹣3(m −23)2+103≤103,故g (x )≤103;(ii )若x ∈[12,2],则f (x )∈[﹣1,1],令t =f (x ),则t ∈[﹣1,1],故g (x )=φ(t )=−[t −3−2m 2]2+m 2﹣2m +174,t ∈[﹣1,1], ∵0<m ≤1,∴12≤3−2m 2<32,当12≤3−2m 2≤1即12≤m ≤1时,φ(﹣1)=3m ﹣2∈[−12,1],|φ(﹣1)|∈[0,1],φ(1)=4﹣m >0, φ(3−2m 2)=m 2﹣2m +174∈[134,72],此时|g (x )|=|φ(t )|的最大值为m 2﹣2m +174, 当3−2m 2>1即0<m <12时,φ(t )在[﹣1,1]上递增,φ(t )min =φ(﹣1)=3m ﹣2∈(﹣2,−12),|φ(t )min |=|φ(﹣1)|∈(12,2), φ(t )max =φ(1)=4﹣m ∈(72,4),此时|g (x )|=|φ(t )|的最大值为:4﹣m , 综上,h (m )={4−m ,0<m <12m 2−2m +174,12≤m <1.。
杭二中高一新生实验班选拔考试数学试卷注意:(1)本试卷分三部分,17小题,满分150分,考试时间60分钟. (2)请将解答写在答题卷相应题次上,做在试题卷上无效. 一、选择题.(5分×6=30分)1.如果a ,b ,c 是正数,且满足9a b c ++=,111109a b b c c a ++=+++,那么a b c b c c a a b +++++的值为( ) A.6B.7C.9D.102.小倩和小玲每人都有若干面值为整数元的人民币.小倩对小玲说:“你若给我2元,我的钱数将是你的n 倍”;小玲对小倩说:“你若给我n 元,我的钱数将是你的2倍”,其中n 为正整数,则n 的可能值的个数是( ) A.1B.2C.3D.43.若质数a ,b 满足2940a b −−=,则数据a ,b ,2,3的中位数是( ) A.4B.7C.4或7D.4.5或6.54. ()62121110121110102x x a x a x a x a x a −−=+++⋅⋅⋅++,则12108642a a a a a a +++++=( ) A.-32B.0C.32D.645.若四个互不相等的正实数a ,b ,c ,d 满足()()20122012201220122012ac ad −−=,()()20122012201220122012bc bd −−=,则()()20122012ab cd −的值为( )A.-2012B.-2011C.2012D.2011二、填空题(6分×8=48分)6.设下列三个一元二次方程:24430x ax a +−+=;()211?0x a x a +−++=;22230x ax a +−+=,至少有一个方程有实根,则实数a 的取值范围是___________.7.如图所示,把大正方形纸片剪成五个部分,在分别距离大正方形的四个顶点5厘米处沿450方向剪开,中间的部分正好是小正方形,那么小正方形的面积是__________平方厘米.8.点A 为y 轴正半轴上一点,A ,B 两点关于x 轴对称,过点A 任作直线交抛物线2y x =于P ,Q 两点.若点A 的坐标为()0,1,且60PBQ ∠=°,则所有满足条件的直线PQ 的函数解析式为:___________.9.111005−>成立的正整数n 的值的个数等于___________.10.如图,四边形ABCD 中,AB BC CD ==,78ABC ∠=°,162BCD ∠=°.设AD ,BC 延长线交于E ,则AEB ∠=____________.11. D 是ABC △的边AB 上的一点,使得3AB AD =,P 是ABC △外接圆上一点,PB 使得ADP ACB ∠=∠,则PBPD的值___________.三、解答题.(12分×6=72分)12.已和x ,y ,z 均为非负数,且满足142x y z y z =+−=−−. (1)用x 表示y ,z ;(2)求222u x y z =−+的最小值.13、由于受到手机更新换代的影响,某手机店经销的Iphone 手机二6月售价比一月每台降价500元.如果卖出相同数量的Iphone6手机,那么一月销售额为9万元,二月销售额只有8万元. (1)一月Iphone6手机每台售价为多少元?(2)为了提高利润,该店计划三月购进Iphone6s 手机销售,已知Iphone6每台进价为3500元,Iphone6s 每台进价为4000元,预计用不多于7.6万元且不少于7.4万元的资金购进这两种手机共20台,请问有几种进货方案?(3)该店计划4月对Iphone6的尾货进行销售,决定在二月售价基础上每售出一台Iphone6手机再返还顾客现金a 元,而Iphone6s 按销售价4400元销售,如要使(2)中所有方案获利相同,a 应取何值?14.如图,在ABC △中,AC BC =,90ACB ∠=°,D 、E 是边AB 上的两点,3AD =,4BE =,45DCE ∠=°,则ABC △的面积是多少?15.若直线l :3y x =+交x 轴于点A ,交y 轴于点B .坐标原点O 关于直线l 的对称点O ′在反比例函数ky x=的图象上.(1)求反比例函数ky x=的解析式; (2)将直线l 绕点A 逆时针旋转角()045θθ<<°°,得到直线l ′,l ′交y 轴于点P ,过k 点P 作x 轴的平行线,与上述反比例函数k y x =的图象交于点Q ,当四边形APQO ′的面积为9θ的值. 16.已和关于x 的方程()()221331180m x m x −−−+=有两个正整数根(n 是整数). ABC △的三边a 、b 、c 满足:c =,2280m a m a +−=,2280m b m b +−=. 求:(1)m 的值; (2)ABC △的面积.17.如图ABC △为等腰三角形,AP 是底边BC 上的高,点D 是线段PC 上的一点,BE 和CF 分别是ABD △和ACD △的外接圆的直径,连结EF ,求证:tan EFPAD BC∠=.附加题(同分优先):18.如图,已知AB 为半圆O 的直径,点P 为直径AB 上的任意一点.以点A 为圆心,AP 为半径作A ,A 与半圆O 相交于点C ;以点B 为圆心,BP 为半径作B ,B 与半圆O 相交于点D ,且线段CD 的中点为M .求证:MP 分别与A 和B 相切.参考答案一、选择题1-5BDCAA二、填空题6. 12a ≥或32a ≤− 7.508.如图,分别过点P ,Q 作y 轴的垂线,垂足分别为C ,D . 设点A 的坐标为()0,t ,则点B 的坐标为()0,t −.设直线PQ 的函数解析式为y kx t =+,并设P ,Q 的坐标分别为(),P P x y ,(),Q Q x y .由2,23y kx t y x =+=得2203x kx t −−=, 于是32P Q x x t =−,即23P Q t x x =−.于是()()22222222333322223333p p p Q p p Q p p Q Q Q Q p Q Q Q px t x x x x x x y t x BC BD y t x x t x x x x x x +−−+=====−++−−.又因为P Q x PCQD x =−,所以BC PC BD QD=. 因为90BCP BDQ ∠=∠=°,所以BCP BDQ ∽△△, 故ABP ABQ ∠=∠.(2)设PC a =,DQ b =,不妨设0a b ≥>, 由(1)可知30ABP ABQ ∠=∠=°,BC =,BD =,所以2AC =−,2AD =.因为PC DQ ∥,所以ACP ADQ ∽△△.于是PC AC DQ AD =,即a b =所以a b +.由(1)中32p Q x x t =−,即32ab −=−,所以32ab =,a b +,于是可求得2a b==将b =代入223y x =,得到点Q的坐标12. 再将点Q 的坐标代入1y kx =+,求得k =. 所以直线PQ的函数解析式为1y x +.9.1008015 10.21°11.解:连接AP ,∵APB ∠与ACB ∠是 AB 所对的圆周角,∴APB ACB ∠=∠, ∵ADP ACB ∠=∠,∴APB ACB ADP ∠=∠=∠, ∵DAP DAP ∠=∠,∴APB ADP ∽△△,∴APAD PD AB AP PB ==,∴()233AP AD AB AD AD AD =⋅=⋅=,∴PB AP PDAD==.三、解答题.12.(1)32y x =−,23z x =−+ (2)当32x =时,min 12u =− 13.(1)一月Iphone4每台售价为4500元 (2)有5种进货方案(3)当100a =时(2)中所有方案获利相同 14. 36ABC S =△15.(1)9y x=− (2)15θ=°16.(1)2m =(2)1ABC S =△ 17.证明:如图,连接ED ,FD .∵BE 和CF 都是直径,∴ED BC ⊥,FD BC ⊥, ∴D ,E ,F 三点共线,连接AE ,AF ,则AEF ABC ACB AFD ∠=∠=∠=∠, ∴ABC AEF ∽△△. 作AH EF ⊥,重足为H .又∵AP BC ⊥,DF BC ⊥,∴四边形APDH 是矩形,∴AH PD =, ∵ABC AEF ∽△△,∴EF AHBC AP=, ∴EF PD BC AP=,∴tan PD EFPAD AP BC ∠==.18.证明:如图,连接AC ,AD ,BC ,BD ,并且分别过点C ,D 作CE AB ⊥,DF AB ⊥, 垂足分别为E ,F∴CE DF ∥,90AEC ∠=°,90BFD ∠=°. ∵AB 是O 的直径,∴90ACB ADB ∠=∠=°, 又∵CAB ∠是ACB △和AEC △的公共角. ∴ACB AEC ∽△△. ∴::AC AB AE AC =即22·PA AC AE AB ==,同理22·PB BD BF AB ==. 两式相减可得()22PA PB AB AE BF −=−,∴()()()22PA PB PA PB PA PB AB PA PB −=+−=−,∴AE BF PA PB −=−,即PA AE PB BF −=−, ∴PE PF =,∴点P 是线段EF 的中点, ∵M 是CD 的中点,∴MP 是直角梯形CDEF 的中位线, ∴MP AB ⊥,∴MP 分别与A 和B 相切.。
浙江省宁波市部分学校2023-2024学年高一上学期入学分班测试数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题A .21y x =-+C .2112y x =-+3.如图,点O 是边长为23的等边到△OB 1C 1,B 1C 1交BC 于点D A .2B .25A .25B .5.已知,在ABC 中,AB 两弧交于点D ;(2)作射线列结论中错误..的是()A .BAD CAD∠=∠C .AD 垂直平分BC 6.如图,是抛物线21y ax =与x 轴的一个交点()4,0B 结论:①20a b +=;②抛物线与x 轴的另一个交点是③方程23ax bx c ++=有两个相等的实数根;④当时14x <<,有2y y <⑤若22112ax bx ax +=+则命题正确的个数为(A .5个B .7.在ABC 中,90ACB ∠=点E 在ABC 外部,EH ⊥5AG CG =,3BH =,则CG A .1B .28.某假日,小磊和其他六名同学轻装徒步去郊游,途中,他用渴,每人至少要分得一瓶饮料,商店只有冰红茶和矿泉水,冰红茶元一瓶,如果18元刚好用完,则选择购买的方案有(A .1种B .2种二、多选题9.在直角坐标系中,若三点(1,A 22y ax bx =+-(0a >且a ,b 均为常数)的图象上,则下列结论正确的是(A .抛物线的对称轴是直线x B .抛物线与x 轴的交点坐标是C .当94t >-时,关于x 的一元二次方程D .若(P m ,)n 和(4Q m +,h 三、单选题10.如图,正六边形ABCDEF ,P 点在线段BF 上运动,记图中的面积为1S ,2S ,3S ,4S ,5S ,6S ,已知正六边形边长为2,下列式子的值不随P 点变化而变化的是()A .26S S +B .45S S +C .56S S +D .135S S S ++A .当A '为CD 中点时,B .当::3:A A D DE E =''C .当A '(点A '不与C 变化D .连接AA ',则A A '=六、填空题15.如图,在菱形ABCD中,动点,连接AE,BF点G,是.16.如图,等边△ABC中,AB=2,点CD,取CD的中点E,连接BE,则线段七、解答题17.阅读短文,解决问题(1)求证:四边形AEFD 是ABC 的“亲密菱形”;(2)当6AB =,12AC =,45BAC ∠= 时,求菱形AEFD 的面积18.如图,在矩形ABCD 中,点E ,F 分别在边AB ,BC 上,且直线EF 折叠,点B 恰好落在AD 边上的点P 处,连接BP 交EF (1)求∠ABP 的度数;(2)求PBF PEBS S 的值;(3)若CD 边上有且只有2个点G ,使△GPD 与△GFC 相似,请直接写出19.心理学家通过实验发现:初中学生听讲的注意力随时间变化,讲课开始时,学生注意力逐渐增强,中间有一段平稳状态,随后开始分散.学生注意力指标数钟)变化的函数图象如下.当010t ≤≤时,图像是抛物线的一部分,当2040t ≤≤时,图像是线段.(1)问题提出:若点Q ①CQB △是______三角形;②若CQB △是等边三角形,则(2)深入探究:在(1)的条件下,当(3)拓展延伸:若AB =(1)如图①,当点B 落在射线EF 上时,EM 与BA 的延长线相交于点(2)如图②,把ABC 绕点C 逆时针旋转α度(0360α︒≤<︒),AM DM请仅就图②给出你的证明.(3)若23m =,在ABC 绕点C 旋转过程中,直接写出线段AD 的最大值和最小值.22.如图,四边形ABCD 是矩形,点E 是BC 延长线一点,连接DE垂足为F ,点G 在BE 上,点H 在AB 上,且GH DE ∥.(1)若3BC =,2CE =,求DF ;(2)若GE AD BG =+,求证:GH EF =.。
2020年秋季高一新生入学分班考试数学试题(浙江专用)02一、单选题1.下列运算正确的是()A.(a3)2=a5B.32 ()aaa-=--C.4x3⋅(﹣2x2)=﹣6x5D.3242 2a ba a b=--【答案】D【解析】根据整式的运算法则即可求出答案.【详解】(A)原式=a6,故A错误,(B)原式=(﹣a)2=a2,故B错误.(C)原式=﹣8x5,故C错误.故选:D.【点睛】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型. 2.已知0<x<1,10<y<20,且y随x的增大而增大,则y与x的关系式不可以是()A.y=10x+10 B.y=﹣10(x﹣1)2+20C.y=10x2+10 D.y=﹣10x+20【答案】D【解析】根据二次函数和一次函数的性质,A、B、C选项都符合当0<x<1,10<y<20,且y随x的增大而增大,即可进行判断.【详解】A. y=10x+10,当0<x<1,10<y<20时,y随x的增大而增大,所以A选项正确;B. y=﹣10(x﹣1)2+20,当0<x<1,10<y<20时,y随x的增大而增大,所以B选项正确;C. y=10x2+10,当0<x<1,10<y<20时,y随x的增大而增大,所以C选项正确;D. y=﹣10x+20,当0<x<1,10<y<20时,y随x的增大而减小,所以D选项错误.故选:D.【点睛】本题考查了二次函数的性质、一次函数的性质,解决本题的关键是掌握二次函数和一次函数的性质.3.按如图所示的运算程序,能使输出m的值为8的是()A.x=﹣7,y=﹣2 B.x=5,y=3 C.x=3,y=﹣1 D.x=﹣4,y=3【答案】C【解析】将各项中的x与y代入运算程序中计算即可.【详解】A、当x=﹣7,y=﹣2时,xy>0,m=x2+y2=51,不合题意,B、当x=5,y=3时,xy>0,m=x2+y2=34,不合题意;C、当x=3,y=﹣1时,xy<0,m=x2﹣y2=8,符合题意;D、当x=﹣4,y=3时,xy<0,m=x2﹣y2=7,不合题意;故选:C.【点睛】此题考查了代数式求值,以及有理数的混合运算,熟练掌握运算法则是解本题的关键. 4.如图,两个转盘分别自由转动一次,当停止转动时,两个转盘的指针都指向3的概率为()A.12B.14C.18D.116【答案】D【解析】首先根据题意列出表格,然后由表格即可求得所有等可能的结果与都指向3的情况数,继而求得答案. 【详解】 解:列表如下:∵共有16种等可能的结果,两个转盘的指针都指向3的只有1种结果, ∴两个转盘的指针都指向3的概率为116, 故选:D . 【点睛】此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.5.如果关于x 的一元二次方程ax 2+bx +c =0有两个实数根,且其中一个根为另一个根的两倍,则称这样的方程为“2倍根方程”,以下说法不正确的是( ) A .方程x 2﹣3x +2=0是2倍根方程B .若关于x 的方程(x ﹣2)(mx +n )=0是2倍根方程,则m +n =0C .若m +n =0且m ≠0,则关于x 的方程()()20x mx n -+=是2倍根方程D .若2m +n =0且m ≠0,则关于x 的方程()20x mn x mn +﹣﹣= 是2倍根方程 【答案】B【解析】通过解一元二次方程可对A 进行判断;先解方程得到x 1=2,x 2=﹣nm,然后通过分类讨论得到m 和n 的关系,则可对B 进行判断;先解方程,则利用m +n =0可判断两根的关系,则可对C 进行判断;先解方程,则利用2m +n =0可判断两根的关系,则可对D 进行判断. 【详解】A、解方程x2﹣3x+2=0得x1=1,x2=2,所以A选项的说法正确,不符合题意;B、解方程得x1=2,x2=﹣nm,当nm-=2×2,则4m+n=0;当﹣nm=12×2,则m+n=0,所以B选项的说法错误,符合题意;C、解方程得x1=2,x2=﹣nm,而m+n=0,则x2=1,所以C选项的说法正确,不符合题意;D、解方程得x1=﹣m,x2=n,而2m+n=0,即n=﹣2m,所以x2=2x1,所以D选项的说法正确,不符合题意.故选:B.【点睛】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=ba-,x1x2=ca.也考查了一元二次方程的解和解一元二次方程.6.如图,在Rt△ABC中,∠ACB=90°,AC=BC,按以下步骤作图:①以点A为圆心,适当的长为半径作弧,分别交AC,AB于M,N两点;②分别以点M,N为圆心,大于12MN的长为半径作弧,两弧相交于点P;③作射线AP,交BC于点E.则tan∠BAE=()A2﹣1 B.22C2+1 D.12【答案】A【解析】利用基本作图得AP平分∠BAC,作EH⊥AB于H,如图,根据角平分线的性质得EC=EH,再利用等腰直角三角形的性质得∠B=45°,AB2BC,BH=EH=22BE,设EH=BH=EC=x,则BE2,BC2+1)x,AB=(2)x,所以AH=AB﹣BH2+1)x,然后根据正切的定义求解.【详解】由作法得AP平分∠BAC,作EH⊥AB于H,如图,∵AE 为角平分线,EC ⊥AC ,EH ⊥AB , ∴EC =EH ,∵∠ACB =90°,AC =BC , ∴∠B =45°,AB =2BC , ∴△BEH 为等腰直角三角形, ∴BH =EH =2BE , 设EH =x ,则BH =EC =x ,BE =2x , ∴BC =(2+1)x , ∴AB =2BC =(2+2)x , ∴AH =AB ﹣BH =(2+1)x ,在Rt △AEH 中,tan ∠HAE =EHAH =(21)x+=2﹣1.故选:A . 【点睛】本题考查了作图﹣基本作图:熟练掌握5种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了等腰直角三角形的性质.7.如图,在ABC 中,E ,G 分别是AB ,AC 上的点,AEG C ∠=∠,BAC ∠的平分线AD 交EG 于点F ,交BC 于点D ,若32AF DF =,则下列结论正确的是( )A .35AE BE = B .35EF CD = C .23EF FG = D .23EG BC =【答案】B【解析】先证明AEGACB ,利用相似比得到35AF E BC AD G ==,再证明AEF ACD △△,利用相似比得到35AF E CD AD F ==,从而得到正确答案. 【详解】∵EAG CAB ∠=∠,AEG C ∠=∠, ∴AEG ACB ,∴33235AF AD EG BC ===+, ∵AD 是BAC ∠的平分线, ∴BAD CAD ∠=∠, ∵AEG C ∠=∠, ∴AEF ACD △△,∴35AF E CD AD F ==. 故选:B. 【点睛】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形,灵活运用相似三角形的性质表示线段之间的关系.8.已知点M (2,3)是一次函数y =kx +1的图象和反比例函数y =mx的图象的交点,当一次函数的值大于反比例函数的值时,x 的取值范围是( ) A .x <﹣3或0<x <2 B .x >2 C .﹣3<x <0或x >2 D .x <﹣3【答案】C【解析】把点M 的坐标代入两函数的解析式,求出k 和m ,再求出两函数组成的方程组的解,再根据两函数的图象和性质得出即可. 【详解】∵点M (2,3)是一次函数y =kx +1的图象和反比例函数y =mx的图象的交点, ∴代入得:3=2k +1,3=2m ,解得:k=1,m=6,即y=x+1,y =6x,解方程组16y xyx=+⎧⎪⎨=⎪⎩得:1132xy=-⎧⎨=-⎩,2223xy=⎧⎨=⎩,即两函数的另一个交点坐标是(﹣3,2),∴当一次函数的值大于反比例函数的值时,x的取值范围是﹣3<x<0或x>2,故选:C.【点睛】本题考查了一次函数与反比例函数的交点问题,一次函数和反比例函数的图象,用待定系数法求出函数的解析式,解方程组等知识点,能求出两函数的解析式是解此题的关键. 9.如图,ABC中,AC BC=,点P为AB上的动点(不与A,B重合),过P作PE AC⊥于E,PF BC⊥于F,设AP的长度为x,PE与PF的长度和为y,则能表示y与x之间的函数关系的图象大致是()A.B.C.D.【答案】D【解析】连接PC,利用1122ABC ACP BCPS S S AC PE PF BC=+=⨯+⨯,即可求解.【详解】解:连接PC,设AC BC a==(a为常数),则()11112222ABC ACP BCPSSSAC PE PF BC a PE PF ay =+=⨯+⨯=+=, ∵ABC 的面积为常数,故y 的值为常数,与x 的值无关.故选:D. 【点睛】本题考查了动点问题的函数图象,是中档题.解答该题的关键是将ABC 的面积分解为PAC 和PBC 的面积和.10.已知二次函数y =x 2,当a ≤x ≤b 时m ≤y ≤n ,则下列说法正确的是( ) A .当n ﹣m =1时,b ﹣a 有最小值 B .当n ﹣m =1时,b ﹣a 有最大值 C .当b ﹣a =1时,n ﹣m 无最小值 D .当b ﹣a =1时,n ﹣m 有最大值【答案】B【解析】根据抛物线的性质,对每个选项进行逐一分析,即可得出结论. 【详解】 当n ﹣m =1时,当a ,b 在y 轴同侧时,a ,b 都越大时,a ﹣b 越接近于0,但不能取0,即b ﹣a 没有最小值,当a ,b 异号时,当a =﹣1,b =1时,b ﹣a =2最大,当b ﹣a =1时,当a ,b 在y 轴同侧时,a ,b 离y 轴越远,n ﹣m 越大,但取不到最大, 当a ,b 在y 轴两侧时,当a =﹣ 12,b =12 时,n ﹣m 取到最小,最小值为14, 因此,只有选项B 正确, 故选:B . 【点睛】此题主要考查了二次函数的性质,矩形的判定和性质,锐角三角函数,确定出∠MNH 的范围是解本题的关键.二、填空题1132)3)的结果等于_________. 【答案】﹣1【解析】直接利用平方差公式计算进而得出答案.【详解】(3﹣2)(3+2)=(3)2﹣4=3﹣4=﹣1.故答案为:﹣1.【点睛】此题主要考查了二次根式的混合运算,正确运用乘法公式是解题关键.12.1829年法国盲人路易•布莱尔发明了点字,用6个点(凸或不凸)构成的点阵中凸点的个数和位置表示不同的符号,形成了现代盲文.所有6点阵共可表示_________个不同的符号(没有任何凸点的不计数).【答案】63【解析】根据题意可得每个点有凸或不凸两种状态,一共有6个不同的点,所以从1个点开始分析,进而得到答案.【详解】解:因为每个点有凸或不凸两种状态,所以1个点可以表示2个不同的符号;2个点可以表示4=22个不同的符号;3个点可以表示8=23个不同的符号;…6个点可以表示26个不同的符号;因为没有任何凸点的不计数,所以所有6点阵共可表示64﹣1=63个不同的符号.故答案为:63.【点睛】本题考查了规律型:图形的变化类,解决本题的关键是根据图形的变化寻找规律.13.如果不等式组10xx a->⎧⎨-<⎩无解,则a的取值范围是_________.【答案】a≤1【解析】根据不等式组解集的定义可知,不等式x﹣1>0的解集与不等式x﹣a<0的解集无公共部分,从而可得一个关于a 的不等式,求出此不等式的解集,即可得出a 的取值范围. 【详解】解不等式x ﹣1>0,得x >1, 解不等式x ﹣a <0,x <a . ∵不等式组10x x a ->⎧⎨-<⎩无解,∴a ≤1. 故答案为:a ≤1. 【点睛】本题中由两个一元一次不等式组成的不等式组无解,根据“大大小小无解集”,可知x ﹣1>0的解集不小于不等式x ﹣a <0的解集,尤其要注意不要漏掉a =1. 14.在△ABC 中,cos B =3,BC =43,AC =4,则AB =_________. 【答案】4或8【解析】根据余弦定义求得BD ,再根据勾股定理计算出CD 长,再根据勾股定理求得AD ,即可求得答案. 【详解】如图,作CD ⊥AB 于D ,∵cosB =32,BC =3,AC =4, ∴cosB =BD BC =32, ∴BD =6,∴CD 22BC BD -22(43)6-3, ∴AD 22AC CD -224(23)-2,∴AB =6﹣2=4或AB =6+2=8,故答案为:4或8.【点睛】此题主要考查了解直角三角形,着重考查了锐角三角函数,关键是掌握余弦:锐角A的邻边b与斜边c的比叫做∠A的余弦,记作cosA.15.如图,已知正方形ABCD的边长为2,延长BC至E点,使CE=BC,连结AE交CD于点F,连结BF并延长与线段DE交于点G,则FG的长是_________.【答案】5【解析】用全等三角形的判定AAS得出△ADF≌△ECF,进而得出FG是△DCP的中位线,得出DG=GP=PE=13DE=223,再利用勾股定理得出BG的长,进而得出FG 即可.【详解】如图,过点C作CP∥BG,交DE于点P.∵BC=CE=2,∴CP是△BEG的中位线,∴P为EG的中点.又∵AD=CE=2,AD∥CE,在△ADF和△ECF中,AFD EFCADC FCEAD CE∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADF≌△ECF(AAS),∴CF=DF,又CP∥FG,∴FG是△DCP的中位线,∴G为DP的中点.∵CD=CE=2,∴DE=22,因此DG=GP=PE=13DE=223.连接BD,易知∠BDC=∠EDC=45°,所以∠BDE=90°.又∵BD=22,∴BG=22845 89BD DG+=+=.∴FG=115 24CP BG==,故答案为:5 3.【点睛】此题主要考查了正方形的性质以及全等三角形的判定和勾股定理应用等知识,根据已知得出正确辅助线是解题关键.16.如图,△ABC中,∠BAC=60°,∠ABC=45°,AB=6,D是线段BC上的一个动点,以AD为直径作⊙O分别交AB、AC于E、F,连结EF,则线段EF长度的最小值为_________.36【解析】由垂线段的性质可知,当AD为△ABC的边BC上的高时,直径AD最短,此时线段EF=2EH=2OE⋅sin∠EOH=2OE⋅sin60°,当半径OE最短时,EF最短,连接OE,OF,过O点作OH⊥EF,垂足为H,在Rt△ADB中,解直角三角形求直径AD,由圆周角定理可知∠EOH=12∠EOF=∠BAC=60°,在Rt△EOH中,解直角三角形求EH,由垂径定理可知EF=2EH,即可求出答案.【详解】由垂线段的性质可知,当AD为△ABC的边BC上的高时,直径AD最短,如图,连接OE,OF,过O点作OH⊥EF,垂足为H,∵在Rt△ADB中,∠ABC=45°,AB=6,∴AD=BD=2,即此时圆的直径为2,由圆周角定理可知∠EOH=∠FOH=∠BAC=60°,∴在Rt△EOH中,EH=OE⋅sin∠EOH 322×3364,由垂径定理可知EF=2EH 36,36.【点睛】本题考查了垂径定理,圆周角定理,解直角三角形的综合运用.关键是根据运动变化,找出满足条件的最小圆,再解直角三角形.三、解答题17.阅读理解:把几个数用大括号围起来,中间用逗号断开,如:{3,4},{﹣3,6,8,18},我们称之为集合,其中大括号内的数称其为集合的元素.如果一个集合满足:只要其中有一个元素a,使得﹣2a+4也是这个集合的元素,这样的集合我们称为条件集合,例如:集合{3,﹣2},因为﹣2×3+4=﹣2,﹣2恰好是这个集合的元素,所以{3,﹣2}是条件集合;例如:集合{﹣2,9,8},因为﹣2×(﹣2)+4=8,8恰好是这个集合的元素,所以{﹣2,9,8}是条件集合.(1)集合{﹣4,12} 条件集合;集合1522,,233⎧⎫-⎨⎬⎩⎭条件集合(填“是”或“不是”).(2)若集合{8,10,n}是条件集合,求n的所有可能值.【答案】(1)是,是;(2)﹣12,﹣16,﹣2,﹣3,4 3 .【解析】(1)依据一个集合满足:只要其中有一个元素a,使得﹣2a+4也是这个集合的元素,这样的集合我们称为条件集合,即可得到结论;(2)分情况讨论:若n=﹣2×8+4,则n=﹣12;若n=﹣2×10+4,则n=﹣16;若﹣2n+4=8,则n=﹣2;若﹣2n+4=10,则n=﹣3.【详解】(1)∵﹣4×(﹣2)+4=12,∴集合{﹣4,12}是条件集合;∵53-×(﹣2)+4=223,∴集合1522,,233⎧⎫-⎨⎬⎩⎭是条件集合.故答案为:是;是;(2)∵集合{8,10,n}是条件集合,∴若n=﹣2×8+4,则n=﹣12;若n=﹣2×10+4,则n=﹣16;若﹣2n+4=8,则n=﹣2;若﹣2n+4=10,则n=﹣3;﹣2n+4=n,则n=43;∴可得n的可能值有﹣12,﹣16,﹣2,﹣3,4 3 .【点睛】本题主要考查了有理数的运算,解决问题的关键是依据条件集合的定义进行计算.如果一个集合满足:只要其中有一个元素a,使得﹣2a+4也是这个集合的元素,这样的集合我们称为条件集合.18.解方程与不等式组:(1)解方程:32855 xx x-=--;(2)解不等式组:361313x xx x-⎧⎪⎨+>-⎪⎩.【答案】(1)x=1;(2)﹣6<x≤3.【解析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【详解】(1)去分母得:5(x﹣3)=﹣2﹣8x,解得:x=1,经检验x=1是分式方程的解;(2)361313x xx x-⎧⎪⎨+>-⎪⎩,由36x x-≤得:x≤3,由1313x x+>-得:x>﹣6,则不等式组的解集为﹣6<x≤3.【点睛】此题考查了解分式方程,以及解一元一次不等式组,熟练掌握各自的解法是解本题的关键.19.疫情期间,用无人机观察某段笔直街道,无人机在竖直高度为400m的C处,观测到该段街道的一端A处俯角为30°,另一端B处的俯角为45°,求该段街道AB的长.(点A,B,D在同一条直线上,结果保留根号).【答案】(3400)米.【解析】在Rt△ADC中,利用三角函数得出AD,在Rt△BDC中,利用三角函数得出BD,进而解答即可.【详解】解:在Rt△ADC中,∠A=30°,∠ADC=90°,∵tan ∠A =CD AD , ∴AD =34003tan 30CD ︒==(米), 在Rt △BDC 中,∠BCD =45°,∠BDC =90°,∴BD =CD =400(米),∴AB =AD ﹣BD =4003﹣400(米),答:该段街道AB 的长为(4003﹣400)米.【点睛】此题考查的知识点是解直角三角形的应用,解题的关键是把实际问题转化为解直角三角形问题,先得到等腰直角三角形,再根据三角函数求解.20.如图,一次函数y 1=kx +b 的图象交坐标轴于A ,B 两点,交反比例函数y 2=m x的图象于C ,D 两点,A (﹣2,0),C (1,3).(1)分别求出一次函数和反比例函数的表达式;(2)求△COD 的面积;(3)观察图象,直接写出y 1≥y 2时x 的取值范围.【答案】(1)y =x +2,y =3x;(2)4;(3)﹣3≤x <0或x ≥1. 【解析】(1)用待定系数发法,即可求解; (2)△COD 的面积=S △OBC +S △OBD =12×OB ×(x C ﹣x D )=12×2×4=4; (3)观察图象即可求解.【详解】解:(1)将点A 、B 的坐标代入一次函数表达式得:203k b k b -+=⎧⎨+=⎩,解得12k b =⎧⎨=⎩, 故一次函数表达式为:y =x +2①,将点C 的坐标代入反比例函数表达式并解得:m =3,故反比例函数表达式为:y=3x②;(2)联立①②并解得:x=1或﹣3,故点C、D的坐标分别为(1,3)、(﹣3,﹣1);∵点B(0,2),∴△COD的面积=S△OBC+S△OBD=12×OB×(x C﹣x D)=12×2×4=4;(3)由图象可知,当y1≥y2时x的取值范围为﹣3≤x<0或x≥1.【点睛】本题考查了反比例函数与一次函数的交点,当有两个函数的时候,着重使用一次函数,体现了方程思想,综合性较强.21.如图,⊙O的直径MN⊥弦AB于C,点P是AB上的一点,且PB=PM,延长MP 交⊙O于D,连结AD.(1)求证:AD∥BM;(2)若MB=6,⊙O的直径为10,求sin∠ADP的值.【答案】(1)证明见解析;(2)3 5 .【解析】(1)欲证明AD∥BM,只要证明∠D=∠PMB即可.(2)连接OB,设OC=x,BC=y,利用勾股定理构建方程组求解即可. 【详解】(1)证明:∵PB=PM,∴∠PMB=∠PBM,∵∠PBM=∠D,∴∠PMB=∠D,∴AD∥BM.(2)解:连接OB,设OC=x,BC=y,∵MN⊥AB,∴∠BCO=∠BCM=90°,则有222225(5)36 x yx y⎧+=⎨-+=⎩,解得x=75,∴MC=5﹣75=185,由(1)可知,∠ADP=∠ABM,∴sin∠ADP=sin∠ABM=CMBM=185=35.【点睛】本题考查圆周角定理,勾股定理,解直角三角形,平行线的判定等知识,解题的关键是学会利用参数构建方程组解决问题.22.已知关于x的二次函数y=ax2﹣4ax+a+1(a>0)(1)若二次函数的图象与x轴有交点,求a的取值范围;(2)若P(m,n)和Q(5,b)是抛物线上两点,且n>b,求实数m的取值范围;(3)当m≤x≤m+2时,求y的最小值(用含a、m的代数式表示).【答案】(1)a≥13;(2)m<﹣1或m>5;(3)当m<0时,y的最小值为:am2﹣3a+1.;当0≤m≤2时,y的最小值为:﹣3a+1.;当m>2时,y的最小值为:am2﹣4am+a+1. 【解析】(1)△≥0,且a>0,即可求解;(2)抛物线的对称轴为直线x=﹣42aa-=2,当n=b时,根据函数的对称性,则m=﹣1,即可求解;(3)分m<0、0≤m≤2、m>2三种情况,分别求解即可. 【详解】解:(1)△=(﹣4a)2﹣4a(a+1)≥0,且a>0,解得:a≥13;(2)抛物线的对称轴为直线x=﹣42aa-=2,当n=b时,根据函数的对称性,则m=﹣1,故实数m的取值范围为:m<﹣1或m>5;(3)①当m+2<2时,即m<0时,函数在x=m+2时,取得最小值,y min=a(m+2)2﹣4a(m+2)+a+1=am2﹣3a+1;②当m≤2≤m+2时,即0≤m≤2,函数在顶点处取得最小值,即y min=4a﹣4a×2+a+1=﹣3a+1;③当m>2时,函数在x=m时,取得最小值,y min=am2﹣4am+a+1;综上,当m<0时,y的最小值为:am2﹣3a+1.;当0≤m≤2时,y的最小值为:﹣3a+1.;当m>2时,y的最小值为:am2﹣4am+a+1.【点睛】本题考查了抛物线与x轴的交点、抛物线与一元二次方程的关系及抛物线与不等式的关系等知识点,熟练掌握二次函数的性质是解题的关键.23.如图,在矩形ABCD中,AB=8,点E是边CD的中点,AE和BC的延长线交于点F,点G是边BC上的一点,且满足BG=13BC=a,连接AG,DG.且DG与AE交于点O.(1)若a=1,求△AOG的面积.(2)当△AOG是直角三角形时,求所有满足要求的a值.(3)记S△DOE=x,S△AOG=y.①求y关于x的函数关系式;②当∠AGO=∠DEA时,求tan∠DAE的值.【答案】(1)152;(2433或2;(3)①y=5x;②13.【解析】(1)根据题意求出△ADG的面积,证明△ADE∽△FCE,求出GF=5,证明△ADO∽△FGO,根据相似三角形的性质计算即可;(2)作MN∥AB,根据△ADO∽△FGO,得到OM=3,ON=5,分∠AOG=90°、∠AGO=90°两种情况,根据相似三角形的性质解答即可;(3)①根据三角形的面积公式得到S△AOD=3S△DOE,S△AOG=53S△AOD,得到答案;②根据相似三角形的面积比等于相似比的平方得到(OAOD)2=5,根据勾股定理列式求出a,根据正切的定义计算,得到答案. 【详解】(1)∵a=1,∴BG=1,BC=3,∴GC=2,∴△ADG的面积=12×8×3=12,∵四边形ABCD是矩形,∴AD∥BC,∴△ADE∽△FCE,∴ADCF=DEEC=1,即AD=CF,∴GF=5,∴AD∥BC,∴△ADO∽△FGO,∴ODOG=ADGF=35,∴△AOG的面积=58×12=152;(2)如图1,过点O作MN∥AB交AD于M,交BC于N,∵AD∥BC,∴△ADO∽△FGO,∴OMON=ADFG=35,∴OM=3,ON=5,∵MN∥CD,∴△GNO∽△GCD,∴GNGC=OMCD=58,∴GN=54a,AM=BN=94a,当∠AOG=90°时,△AOM∽△OGN,∴OMGN=AMON,即34a=945a,解得,a当∠AGO=90°时,△ABG∽△GCD,∴ABGC=BNCD,即82a=8a,解得,a=,综上所述,△AOG是直角三角形时,a或(3)①∵OAOF=ADGF=35,AE=EF,∴OA=3OE,∴S△AOD=3S△DOE,∵ODOG=ADGF=35,∴S△AOG=53S△AOD,∴S△AOG=5S△DOE,∴y=5x;②∵∠AGO=∠DEA,∠AOG=∠DOE,∴△AOD∽△DOE,∴(OAOD)2=5,∴OA2=5OD2,即(94a)2+32=5[(34a)2+32],解得,a=4,∴tan∠DAE=39=13.【点睛】本题考查的是矩形的性质、相似三角形的判定和性质、锐角三角函数的定义,掌握相似三角形的判定定理和性质定理是解题的关键.。
2023.6.29新高一分班考(创新班选拔)(答案在最后)1.已知12a b a b-=-+,则a b 的值为_____________.【答案】13【解析】【分析】变形给定等式即可得解.【详解】由12a b a b -=-+,得0b ≠,2()a b a b -=--,整理得3a b =,所以13a b =.故答案为:132.已知一圆锥的主视图和俯视图如图所示,则该圆锥的侧面积和侧面展开图的圆心角分别为_____________.【答案】15π;6π5【解析】【分析】根据题意,得到圆锥的底面圆的半径和母线,设侧面展开图的扇形所在圆的圆心角为α,结合弧长公式,列出方程,即可求解.【详解】根据给定的圆锥的三视图,可得圆锥的底面圆的半径为3r =,高为4,则母线长为5l =,可圆锥的侧面积为ππ3515πS rl ==⨯⨯=,底面圆的周长为2π2π36πr =⨯=,设侧面展开图的扇形所在圆的圆心角为α,则6πl α=,可得56πα=,解得6π5α=.故答案为:15π;6π5.3.如图中,O 的半径为20,则阴影部分的面积为_____________.【答案】200【解析】【分析】由图可知弓形AB 的面积等于扇形OAB 的面积减去AOB 的面积,所以阴影部分的面积等于以102为半径的半圆的面积减去弓形的面积,求解即可.【详解】由已知20OA OB ==,所以2AB =,所以2AP BP ==,120202002AOB S =⨯⨯= ,扇形OAB 的面积为21π20100π4⨯⨯=,所以阴影部分的面积为(()21π102100π2002002⨯--=.故答案为:200.4.已知二次函数2y ax bx c =++恒非负,0b a >>,0c ≠,则a b c b a++-的最小值为_____________.【答案】3【解析】【分析】根据题意,由二次函数恒非负可得,,a b c 的不等关系,然后将原式化简,结合基本不等式代入计算,即可求解.【详解】由于二次函数2y ax bx c =++恒非负,所以20Δ40a b ac >⎧⎨=-≤⎩,所以24ac b ≥,且0b a >>,则24b c a ≥,则()()22344b a b a b a a b c a b a b a a b a ++⎡⎤+-++⎣⎦≥=---()()4334b a aa b a -⋅≥=-,当且仅当23,4b a b a c a=-=时,即4c b a ==时,等号成立,所以a b c b a++-的最小值为3.故答案为:35.如图,在ABC 中,45A ∠=,BC =,点D E 、分别在边AC AB 、上,且1DE =,B C D E 、、、四点共圆,则该圆的半径为_____________.【答案】2【解析】【分析】根据等腰直角三角形的性质得到AD DF =,AF=,根据AED ACB ∽得到AB AD =,根据HFB EFD V V ∽得到HB ED=,然后利用勾股定理求HC 即可得到该圆的半径.【详解】过点B 作HB BC ⊥交圆于点H ,连接HD 交AB 于点F ,连接HC ,因为HB BC ⊥,所以HC 为直径,所以90HDC ∠=︒,因为45A ∠=︒,所以AD DF =,AF =,因为180AED DEF DEF ACB ∠+∠=∠+∠=︒,所以AED ACB ∠=∠,所以AED ACB ∽,所以CB AB ED AD==,在HFB 和EFD △中,HFB EFD ∠=∠,HBF EDF ∠=∠(同弧所对的圆周角相等),所以HFB EFD V V ∽,所以HB FB AB AF AB ED FD AD AD --====HB =,所以HC =,所以该圆的半径为2.故答案为:262.6.如图,在矩形ABCD 中,6AD =,4AB =,G 为CD 中点,将四边形ABFE 沿FE 折叠为A B FE '',,,D A B ''共线,,,A A G '共线,则BF 的长为_____________.【答案】43【解析】【分析】过A '作A I AD '⊥,过点B 作BH AG ⊥,设,A I x A E AE y =='=',利用勾股定理得到53x y =,则转化为经典的“3,4,5”直角三角形,最后再利用射影定理即可.【详解】过A '作A I AD '⊥,垂足为I ,过点B 作BH AG ⊥,与AD 交于点.H 于是ABH DAG ∠=∠,由~~AIA ADG BAH ' 可得,3,AB AI AD AH A I DG=='=于是43AH =,设,A I x A E AE y =='=',于是3,3AI x EI x y ==-,在A EI ' 中使用勾股定理()2223x x y y +-=,解得53x y =,记3,4,5,9A I x t EI t EA t AI t =='===,在直角EDA '△中,由射影定理,2A I IE ID ='⋅,于是294A I t ID EI ='=,因为9964t AD t =+=,所以8,15t =于是853AE t ==,因为BH AG ⊥,EF AG ⊥,则//BH EF ,因为//HE BF ,所以四边形BHEF 为平行四边形,因此844333BF AE AH =-=-=.故答案为:43.7.已知ABCD 为正方形,其内分别有长宽为1和3的矩形、边长为1的正方形,矩形R 的面积的所有取值之和为m n(,m n 为正整数且互质),则m n +=_____________.【答案】67【解析】【分析】先将每个矩形的顶点标上字母,然后求出必要的几何量,再设出右上角的直角三角形的两条直角边长,并列方程求解,最后通过解出的边长求出所有可能的面积,即可得到结果.【详解】如图,将三个矩形的顶点按图中所示标出字母,并分别过,,G H K 三点按图中所示像大正方形的边作垂线,垂足分别为,,P Q R .设KLA ϕ∠=,由几何关系可知:KLA KJB AIJ BML CNM NGP IHQ ϕ∠=∠=∠=∠=∠=∠=∠=,90RKL RKJ AJI BLM CMN PNG HIQ ϕ∠=∠=∠=∠=∠=∠=∠=︒-.从而cos sin 3cos sin BC BM MC LM MN ϕϕϕϕ=+=+=+,sin cos cos sin AB BL LR RJ JA LM KL KJ IJ ϕϕϕϕ=+++=+++3sin cos cos sin 2cos 4sin ϕϕϕϕϕϕ=+++=+.所以3cos sin 2cos 4sin ϕϕϕϕ+=+,得1tan 3ϕ=,从而10sin 10ϕ=,310cos 10ϕ=.故3cos sin 31010AB BC ϕϕ==+=⋅+=,且cos cos 10QH IH ϕϕ===,cos cos 10AI IJ ϕϕ===,sin sin 10IQ IH ϕϕ===,cos cos 10NC NM ϕϕ===.故1010ID AD AI AB AI =-=-=-=,10105QD ID IQ =-=-=,3107101010DN DC NC AB NC =-=-==.由于90HQE FPG ∠=︒=∠,9090QEH DEF DFE GFP PGF ∠=︒-∠=∠=︒-∠=∠,HE FG =,故QHE 全等于PFG △,所以PG QE =,31010PF QH ==.设DE x =,DF y =,则5PG QE QD DE x ==-=-.由于QHE 相似于DEF ,故QH DE QE DF =310105x y =,化简得到()36y x x =-.同时,有DF FP PN NC=+++tan cos 10y PG ϕϕ=+++1103510y x ⎛⎫=++-+ ⎪ ⎪⎝⎭135y x =-+,即35y x =+.所以有()36y x x =-,35y x =+,将第一式代入第二式得()65x x x +=-,解得10x =或5x =.再由35y x =+即知1031010x y ⎧=⎪⎪⎨⎪=⎪⎩或541015x y ⎧=⎪⎪⎨⎪=⎪⎩.而矩形R的面积R S EH EF =⋅===.分别代入即知,矩形R 的面积95R S =或53R S =.所以95525315m n =+=,故5215m n =⎧⎨=⎩,这就得到521567m n +=+=.故答案为:67.【点睛】关键点点睛:本题的关键点在于,利用直角三角形制造的互余关系下的相似三角形,可以得到相似比关系,从而求得相应线段的长度.8.已知9个正整数的中位数和平均数均为9,众数为1,则其中最大数的最小值为_____________.【答案】16【解析】【分析】根据题意,由条件可得前5个数是1,1,7,8,9,当后4个数是连续的4个正整数时,最大的数最小,即可得到结果.【详解】因为中位数是9,所以将这9个正整数从小到大排列,第5个数是9,因为众数为1,所以1至少有2个,要使这列数的最大数最小,则其他8个数要尽量大,所以前5个数是1,1,7,8,9,所以后4个数的和为()991178955⨯-++++=,当后4个数是连续的4个正整数时,最大的数最小,设最后一个数为x ,则()()()12355x x x x +-+-+-=,解得15.25x =,因为x *∈N ,则16x =.故答案为:169.抛物线222y x kx k =+-向右平移2个单位,向上平移1个单位,恰好过坐标原点,则k 的值为_____________.【答案】5-或1【解析】【分析】直接利用抛物线平移规律:上加下减,左加右减进而得出平移后的解析式,代入原点即可求解.【详解】将抛物线222y x kx k =+-向右平移2个单位,向上平移1个单位,得到的解析式为:()()222221y x k x k =-+--+,所以()222445y x k x k k =+---+,因为抛物线过坐标原点,所以2450k k --+=,解得5k =-或1k =.故答案为:5-或1.10.将一长方形折叠后恰好如图所示,则梯形ABDC 的面积为_____________.【答案】725##14.4【解析】【分析】根据折叠和平行得到三角形ACP 和三角形PBD 为等腰三角形,即可得到,CP PD 的长度,根据勾股定理和等面积得到梯形的高,然后求面积即可.【详解】如图,过点P 作PF AB ⊥于点F ,由题意得EAC CAP ∠=∠,因为四边形ABDC 为梯形,所以AB CD ,所以PCA EAC CAP ∠=∠=∠,所以三角形ACP 为等腰三角形,3CP AP ==,同理可得,4PD PB ==,因为222PA PB AB +=,所以PA PB ⊥,根据等面积的思路得到PF AB PA PB ⋅=⋅,所以341255PF ⨯==,所以()1234572525ABDC S ++⨯==.故答案为:725.11.如图,已知ABC 为等腰三角形,AB AC =,AB 为O 的直径,BC 交O 于点D ,//CE AB ,BE 交AC AD 、于点F G 、,5EF =,4FG =,则BG 的长为_____________.【答案】6【解析】【分析】连接GC ,根据已知条件证明EGC V 相似于CGF △,得2EG CG CG EG FG CG FG=⇒=⋅,即可求BG 的长.【详解】如图所示,连接GC ,因为ABC 为等腰三角形,AB AC =,且以AB 为直径的圆交BC 于D ,所以AD BC ⊥,即D 为BC 的中点,所以GCD GBD ∠=∠,BG CG =,又因为ACD ABD ∠=∠,所以ACG ABG ∠∠=,因为//CE AB ,所以CEG ABG ∠=∠,即CEG ACG FCG ∠=∠=∠,所以EGC V 相似于CGF △,即2EG CG CG EG FG CG FG=⇒=⋅,又因为5,4EF FG ==,所以2()36CG EG FG EF FG FG =⋅=+⋅=,所以6BG CG ==.故答案为:6.12.已知在Rt ABC △中,90B ∠= ,6AB =,8BC =,点D E 、分别在边AB BC 、上,F 为DE 的中点,则AF FC +的最小值为_____________.【答案】10【解析】【分析】在Rt ABC △中,由勾股定理求得AC ,再根据三角形三边关系及三点共线求得AF FC +的最小值.【详解】在Rt ABC △中,10AC ==,当、、A F C 三点不共线时,在AFC △中,AF FC AC +>;当、、A F C 三点共线时,AF FC AC +=,此时D 与A 重合,E 与C 重合,F 为AC 的中点.所以AF FC +的最小值为10AC =.故答案为:10.13.如图,正方形OABC 的顶点A C 、分别在y x 、轴上,点B 坐标为()6,6,将四边形AEDO 翻折至FEDO ',点O '在边BC 上,FO '与AB 相交于点G ,35AEDO EBCDS S =四边形四边形,反比例函数(0)ky k x=>过点G 且与BC 相交于点H ,则O H '的长为_____________.【答案】1【解析】【分析】如图,由对称图形的特征可得OM O M '=,根据题意和梯形的面积公式、中点公式可得9(,3)4M ,进而可得3O C O B ''==,求出CD ,利用相似三角形的性质求得4BG =,即(2,6)G ,由12y x=求得2CH =,即可求解.【详解】如图,取DE 的中点M ,连接,OM O M ',则OM O M '=,连接OO ',交DE 于N ,则DE OO '⊥,设(06),(06)AE a a OD b b =<<=<<,则,6O D b CD b '==-,因为35AEDO EBCDS S =四边形四边形,所以3273682AEDO S =⨯=四边形,即1276()22a b ⨯⨯+=,解得92a b +=,所以9(,3)(,3)24a b M +=,则154OM =,设(6,)(06)O c c '<<,则154O M '=,解得3c =,即(6,3)O '为CB 的中点,故3O C O B ''==.又//OM DO ',所以//,//O M OD OM O D '',所以四边形OMO D '为平行四边形,则154OD b O M '===,所以94CD =.由O BG DCO '' ,得O B BG DC CO '=',即3934BG=,解得4BG =,所以62AG BG =-=,得(2,6)G ,而点G 在函数ky x=图象上,故12k =,则12y x=,所以(6,2)H ,即2CH =,所以1O H O C CH ''=-=.故答案为:1【点睛】关键点点睛:解决本题的关键是利用面积之比和中点坐标公式求出点M 的坐标,进而求得O '的坐标,结合相似三角形的性质可得2CH =即为所求.14.已知二次函数2y x bx c=++(1)若1b =-,且二次函数图象过点()1,2-,求二次函数的解析式及顶点坐标;(2)若该二次函数顶点为(),m k ,且过点(,)k m ,求m k -;(3)若该二次函数过点111213(,),(,),(2,)(0)A x y B x t y C x t y t --≠,且21M y y =-,32N y y =-,试比较M N 、的大小.【答案】(1)22y x x =-+;17(,)24(2)0或1(3)M N <【解析】【分析】(1)根据题意,列出方程组,求得1,2b c =-=,得到函数的解析式,以及顶点坐标;(2)根据题意,可设抛物线的解析式为2()y x m k =-+,代入点(,)k m ,得到关于m k -的方程,即可求解;(3)根据题意,结合函数的解析式,求得2111y x bx c =++,2221112y x x t t bx bt c =-++-+和223111442y x x t t bx bt c =-++-+,求得,M N 的表达式,利用作差比较法,即可求解.【小问1详解】由题意知:1b =-,且二次函数图象过点()1,2-,可得112b bc =-⎧⎨++=⎩,解得1,2b c =-=,所以该函数的解析式为22y x x =-+,且函数图象的顶点坐标为17(,)24.【小问2详解】因为函数2y x bx c =++中,二次项系数为1,因为该函数图象的顶点坐标为(),m k ,可设抛物线的解析式为2()y x m k =-+,又因为2()y x m k =-+的图象进过另一点(,)k m ,可得2()m k m k =-+,即2()m k k m -=-,解得0m k -=或1m k -=.【小问3详解】因为函数2y x bx c =++的图象经过点111213(,),(,),(2,)A x y B x t y C x t y --三个不同点,所以2111y x bx c =++,222211111()()2y x t b x t c x x t t bx bt c =-+-+=-++-+,222311111(2)(2)442y x t b x t c x x t t bx bt c =-+-+=-++-+,所以2222111211112()2x x t t bx bt c x bx c y t M y x t bt -++-+-++=-+=-=-,322222*********(2)x x t t bx bt c x x t t bx bt c N y y =--++-+--++-+=2123x t t bt =-+-,因为0t ≠,可得2221123(2)20x t t bt x t t b M t t N -+---+-==>-,所以M N <.15.如图,一次函数()0y ax a =>与反比例函数()0ky k x=>相交于,A B 两点,点A 在第一象限,点C 是反比例函数ky x=第一象限上异于点A 的一点,AC 与x 轴交于点N ,BC 与x 轴交于点D .(1)若2a =,点C 坐标为()4,1,求证:CD CN =;(2)若,a k 为任意正实数,CD 是否等于CN ?(3)已知ABC S = ,60ACB ∠=︒,点D 坐标为(),求k .【答案】(1)证明见解析(2)是,理由见解析(3)【解析】【分析】(1)先将两个函数图象联立,解出A 和B 的坐标,然后通过解方程组的方法求出直线AC 和BC 的解析式,并得到N 和D 的坐标,最后根据坐标验证CD CN =即可;(2)设C 的坐标为,k t t ⎛⎫⎪⎝⎭,然后采取与(1)完全相同的方法即可证明CD CN =;(3)根据(2)求出的各点坐标,可从每个已知条件分别得到关于,,t a k 的一个方程,然后对方程进行代数变形,将k 用已知的表达式表示,即可求出k .【小问1详解】由()4,1C 可知414k =⨯=,再由2a =,联立24y x y x =⎧⎪⎨=⎪⎩,解得A,(B -.设直线AC 的解析式为y px q =+,则代入这两个点的坐标可得14p q q =+⎧⎪⎨=+⎪⎩,解得21p q ⎧=-⎪⎨⎪=+⎩.所以直线AC的解析式为12y x =-++,令0y =,得4x =+,所以()4N +.类似可以求出直线BC的解析式为12y x =-+,令0y =,得4x =()4D -.由()4D,()4N +,()4,1C ,可知CD ==CN ==.所以CD CN =.【小问2详解】设(),0k C t t t ⎛⎫> ⎪⎝⎭,联立y ax k y x =⎧⎪⎨=⎪⎩,解得A,B ⎛ ⎝.设直线AC 的解析式为y px q =+,则代入这两个点的坐标可得k tp q t q⎧=+⎪⎪=+,解得p t k q t ⎧=-⎪⎪⎨⎪=⎪⎩.所以直线AC的解析式为k y x t t =-+,令0y =,得x t =+,所以N t ⎛⎫ ⎪ ⎪⎝⎭.类似可以求出直线BC的解析式为k y x t t =+,令0y =,得x t =-D t ⎛⎫- ⎪ ⎪⎝⎭.由D t ⎛⎫ ⎪ ⎪⎝⎭,N t ⎛⎫+ ⎪ ⎪⎝⎭,,k C t t ⎛⎫⎪⎝⎭,可知CD ==,CN ==.所以CD CN =.【小问3详解】由于CD CN =,故CDN CND ∠=∠.而60CDN CND ACB ∠+∠=∠=︒,故30CDN CND ∠=∠=︒.之前已经求得A,B ⎛ ⎝,,k C t t ⎛⎫⎪⎝⎭,N t ⎛⎫+ ⎪ ⎪⎝⎭,D t ⎛⎫ ⎪ ⎪⎝⎭.现在由已知有()D,故t -=.同时我们有tan 30tan 3C C Dk y t CDN x x t=︒=∠==-.而11sin sin 60224ABC S AC BC ACB AC BC AC BC ==⋅⋅∠=⋅⋅︒=⋅ ,故32AC BC ⋅=.所以][2222222102432k k AC BC t t t t ⎡⎤⎛⎛⎛⎛⎢⎥==⋅=+⋅++ ⎢⎥⎝⎝⎝⎝⎣⎦][222222ak ak t t t t t t ⎡⎤⎛⎫⎛⎫⎢⎥=-+-⋅+++ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦2222222211ak t t t t t t ⎛⎫⎛⎛⎛⎫⎛⎛⎛⎫⎪=+-+=+-+ ⎪ ⎪⎪ ⎪⎝⎭⎝⎝⎝⎭⎝⎝⎝⎭.故我们最终得到:t -=,33t =,222211024t t t ⎛⎫⎛⎫⎛⎛⎪+-+= ⎪ ⎪ ⎪⎝⎭⎝⎝⎝⎭.从而(2222222226410241133t t t t t ⎛⎫⎛⎫⎛⎫⎛⎛⎛⎛⎛ ⎪ ⎪=+-+=++=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎝⎝⎭⎝⎝⎝⎭⎝⎭,得248t ⎛+= ⎝,即t +=.所以有((222211443k t t t t t ⎛⎫⎛⎛⎛⎛⎫ ⎪=⋅=+--⋅=-⋅= ⎪⎪⎝⎭⎝⎝⎝⎝⎭综上,k的值为16.(1)如图,已知在ABC 中,60BAC ∠= ,I 为内心,,D E 分别在边,AB AC 上,且DE 过I ,AI DE ⊥,16BD =,9CE =,求BC的长;(2)如图,已知在等腰Rt ABC △中,D 是边BC 上一点,BDk CD=,E 是AD 上一点,135BEC ∠= ,CE 延长线交AB 于点F ,求BFAF的值.【答案】(1)37;(2【解析】【分析】(1)过点I 分别作,,AB BC CA 的垂线,记垂足为,,H F G .设DH x =,用两种方法表示出三角形ABC 的面积从而建立方程即可求解;(2)作出ABC 的外接圆,记CF 与外接圆交于点,G BE 与AC 交于点H ,与外接圆交于点P .结合相似三角形的性质以及赛瓦定理即可得解.【详解】(1)过点I 分别作,,AB BC CA 的垂线,记垂足为,,H F G .由题设,易知ADE V 为等边三角形,则有IHD IGE ≅ ,设DH x =,则有3,3HI x HA x ==,则16,BF BH x ==+9,416,49CF CG x AB x AC x ==+=+=+,因为ABC 在AB 上的高()3492h x =+,由等面积法,于是()()()13141649416492253222ABC S x x x x x x =⋅+⋅+=⋅+++++ ,解得6x =,于是22537BC x =+=.(2)作出ABC 的外接圆,记CF 与外接圆交于点,G BE 与AC 交于点H ,与外接圆交于点P .因为45,45AGC ABC APB ACB ∠∠∠∠==== ,结合135BEC PEG ∠=∠=︒,显然APEG 为平行四边形,于是//,//AG BP AP GC ,所以PAC ACG ∠=∠,GAB ABP ∠=∠,结合同圆中圆周角相等,对应弧、弦相等,则AG PC =,AP GB =,由上,GAB GCB ∠=∠,GBA EBC ∠=∠,进而有BAG BCE ~ ,由题意,易知BC 为直径,且GP AC =,则90BPC ∠=︒,45AGC PCG ∠=∠=︒,同理有90BGC ∠=︒,45GBC PCG ∠=∠=︒,所以22CE PC ==,22BG BE =,由~AHP CHE 且~AFG BFE,所以222CH CE AFHA AP BGBF ===.由赛瓦定理有1BD CH AF DC HA FB ⋅⋅=,即21AF AF k BF FB ⋅⋅=,因此BFAF=17.如图,点A B C 、、在O 上,AB AC =.(1)求证:BAO CAO ∠∠=;(2)作BD AC ⊥,延长AO 交BD 于点E ,求证:BE CD =;(3)在(2)的条件下:①已知3cos 5BAC ∠=,后面条件不全,征集中,联系人QQ:2853279698。
2020年秋季高一开学分班考试(三)一、单选题(共8小题,满分40分,每小题5分)1、已知集合{|0}A x x a =-,若2A ∈,则a 的取值范围为( ) A .(,2]-∞- B .(,2]-∞C .[2,)+∞D .[2,)-+∞【答案】C【解析】因为集合{|0}A x x a =-,所以{}|A x x a =, 又因为2A ∈,则2a ,即[2,)a ∈+∞,故选:C .2、函数()12f x x =-的定义域为( ) A .[)0,2B .()2,+∞C .()1,22,2⎡⎫⋃+∞⎪⎢⎣⎭D .()(),22,-∞+∞【答案】C【解析】由21020x x -≥⎧⎨-≠⎩,解得x ≥12且x ≠2.∴函数()12f x x =-的定义域为()1,22,2⎡⎫⋃+∞⎪⎢⎣⎭.故选:C . 3、下列命题正确的是( ) A .若>a b ,则11a b< B .若>a b ,则22a b > C .若>a b ,c d <,则>a c b d -- D .若>a b ,>c d ,则>ac bd【答案】C【解析】A.若>a b ,则11a b<,取1,1a b ==- 不成立 B.若>a b ,则22a b >,取0,1a b ==- 不成立 C. 若>a b ,c d <,则>a c b d --,正确D. 若>a b ,>c d ,则>ac bd ,取1,1,1,2a b c d ==-==- 不成立,故答案选C4、已知函数2,01,()2,12,1,2,2x x f x x x ⎧⎪≤≤⎪=<<⎨⎪⎪≥⎩,则3[()]2f f f ⎧⎫⎨⎬⎩⎭的值为( )A .1B .2C .3-D .12【答案】A【解析】由题意得,3()=22f ,1(2)=2f ,1()=2=1122f ⨯, 所以3[()]=[(2)]=()=1212f f f f f f ⎧⎫⎨⎬⎩⎭,故选:A. 5、已知2x >,函数42y x x =+-的最小值是( ) A .5 B .4C .8D .6【答案】D【解析】因为该函数的单调性较难求,所以可以考虑用不等式来求最小值,,因为,由重要不等式可知,所以,本题正确选项为D.6、下列函数既是偶函数,又在(),0-∞上单调递减的是( ) A .2x y = B .23y x -=C .1y x x=- D .()2ln 1y x =+【答案】A【解析】对于A 选项,2xy =为偶函数,且当0x <时,122xx y -==为减函数,符合题意. 对于B 选项,23y x -=为偶函数,根据幂函数单调性可知23y x -=在(),0-∞上递增,不符合题意. 对于C 选项,1y x x=-为奇函数,不符合题意. 对于D 选项,()2ln 1y x =+为偶函数,根据复合函数单调性同增异减可知,()2ln 1y x =+在区间(),0-∞上单调递减,符合题意.故选:A 7、若正数,x y 满足220x xy +-=,则3x y +的最小值是( )A .4B.C .2D.【答案】A【解析】因为正数,x y 满足220x xy +-=,所以2=-y x x,所以2324+=+≥=x y x x ,当且仅当22x x =,即1x =时,等号成立. 故选:A8、函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(1)1f =-,则满足1(2)1f x -≤-≤的x 取值范围是( ) A .[2,2]- B .[1,1]-C .[0,4]D .[1,3]【答案】D 【解析】()f x 为奇函数,()()f x f x ∴-=-.(1)1f =-,(1)(1)1f f ∴-=-=.故由1(2)1f x -≤-≤,得(1)(2)(1)f f x f ≤-≤-.又()f x 在(,)-∞+∞单调递减,121x ∴-≤-≤,13x ∴≤≤.故选:D二、多选题(共4小题,满分200分,每小题5分) 9、下列各式既符合分数指数幂的定义,值又相等的是( ) A .13(1)-和26(1)-B .20-和12C .122和414D .324-和312-⎛⎫ ⎪⎝⎭ E.343和4313- 【答案】CE【解析】A 不符合题意,13(1)-和26(1)-均符合分数指数幂的定义,但13(1)1-==-,26(1)1-==;B 不符合题意,0的负分数指数幂没有意义; C符合题意,114242==;D 不符合题意,324-和312-⎛⎫ ⎪⎝⎭均符合分数指数幂的定义,但233211484-==,331282-⎛⎫== ⎪⎝⎭; E 符合题意,4343133-=.故选:CE.10、对任意实数a ,b ,c ,给出下列命题,其中真命题是( ) A .“a b =”是“ac bc =”的充要条件 B .“a b >”是“22a b >”的充分条件C .“5a <”是“3a <”的必要条件D .“5a +是无理数”是“a 是无理数”的充要条件【答案】CD【解析】对于A ,因为“a b =”时ac bc =成立,ac bc =,0c时,a b =不一定成立,所以“a b =”是“ac bc =”的充分不必要条件,故A 错,对于B ,1a =-,2b =-,a b >时,22a b <;2a =-,1b =,22a b >时,a b <,所以“a b >”是“22a b >”的既不充分也不必要条件,故B 错,对于C ,因为“3a <”时一定有“5a <”成立,所以“5a <”是“3a <”的必要条件,C 正确;对于D“5a +是无理数”是“a 是无理数”的充要条件,D 正确.故选:CD11、下面命题正确的是( ) A .“1a >”是“11a<”的充分不必要条件 B .命题“若1x <,则21x <”的否定是“ 存在1x <,则21x ≥”.C .设,x y R ∈,则“2x ≥且2y ≥”是“224x y +≥”的必要而不充分条件D .设,a b ∈R ,则“0a ≠”是“0ab ≠”的必要不充分条件 【答案】ABD【解析】选项A:根据反比例函数的性质可知:由1a >,能推出11a <,但是由11a<,不能推出1a >,例如当0a <时,符合11a<,但是不符合1a >,所以本选项是正确的; 选项B: 根据命题的否定的定义可知:命题“若1x <,则21x <”的 否 定 是“ 存 在1x <,则21x ≥”.所以本选项是正确的;选项C:根据不等式的性质可知:由2x ≥且2y ≥能推出224x y +≥,本选项是不正确的;选项D: 因为b 可以等于零,所以由0a ≠不能推出0ab ≠,再判断由0ab ≠能不能推出0a ≠,最后判断本选项是否正确.故选:ABD12、已知函数()()2lg 1f x x ax a =+--,给出下述论述,其中正确的是( )A .当0a =时,()f x 的定义域为()(),11,-∞-+∞B .()f x 一定有最小值;C .当0a =时,()f x 的值域为R ;D .若()f x 在区间[)2,+∞上单调递增,则实数a 的取值范围是{}4|a a ≥- 【答案】AC【解析】对A ,当0a =时,解210x ->有()(),11,x ∈-∞-+∞,故A 正确 对B ,当0a =时,()()2lg 1f x x =-,此时()(),11,x ∈-∞-+∞,()210,x -∈+∞,此时()()2lg 1f x x =-值域为R ,故B 错误.对C ,同B ,故C 正确.对D , 若()f x 在区间[)2,+∞上单调递增,此时21y x ax a =+--对称轴22ax =-≤. 解得4a ≥-.但当4a =-时()()2lg 43f x x x =-+在2x =处无定义,故D 错误.故选AC三、填空题(共4小题,满分20分,每小题5分,一题两空,第一空2分)13、正实数,x y 满足:21x y +=,则21x y+的最小值为_____.【答案】9【解析】()21212225559y x x y x y x y x y +=++=++⎛⎫≥+≥+ ⎝⎭=⎪, 当且仅当13x y ==时取等号.故答案为:9. 14、若幂函数图像过点(8,4),则此函数的解析式是y =________. 【答案】23x【解析】设幂函数的解析式为y x α=,由于函数图象过点(8,4),故有48α=,解得23α=, 所以该函数的解析式是23y x =,故答案为:23x .15、函数()2436x x f x x ++=-的值域为__________.【答案】(),161667,⎡-∞-++∞⎣【解析】设21663636,6,()16t t x t x t g t t t t++-==+==++,当0t >时,()16g t ≥,当且仅当6t x ==时等号成立;同理当0t <时,()16g t ≤-,当且仅当6t x =-=-时等号成立;所以函数的值域为(),161667,⎡-∞-++∞⎣.故答案为: (),161667,⎡-∞-++∞⎣. 16、已知函数()()1123121x a x a x f x x -⎧-+<=⎨≥⎩的值域为R ,则实数a 的取值范围是_____. 【答案】10,2⎡⎫⎪⎢⎣⎭【解析】当1x ≥时,()12x f x -=,此时值域为[)1,+∞ 若值域为R ,则当1x <时.()()123f x a x a =-+为单调递增函数,且最大值需大于等于1,即1201231a a a ->⎧⎨-+≥⎩,解得102a ≤<,故答案为:10,2⎡⎫⎪⎢⎣⎭四、解答题(共6小题,满分70分,第17题10分,其它12分)17、已知集合A ={x|2a≤x≤a +3},B ={x|x 2+x -6≤0}.若A ∪B =B ,求实数a 的取值范围. 【解析】 B ={x|x 2+x -6≤0} ={x|(x +3)(x -2)≤0} ={x|-3≤x≤2} =[-3,2].因为A ∪B =B ,所以A ⊆B. ①当A =∅时,2a>a +3, 解得a>3;②当A≠∅,即a≤3时, 因为A =[2a ,a +3],所以⎩⎪⎨⎪⎧2a≥-3,a +3≤2,解得-32≤a≤-1,综上,实数a 的取值范围为⎣⎡⎦⎤-32,-1∪(3,+∞). 18、已知{}22|320,0A x x ax a a =-+>>,{}2|60B x x x =--≥,若x A ∈是x B ∈的必要不充分条件,求实数a 的取值范围.【解析】解出{}|23B x x x =≤-≥或,{}|20A x x a x a a =<>>或, 因为x A ∈是x B ∈的必要不充分条件,所以B 是A 的真子集.所以2323020a a a a >-⎧⎪<⇒<<⎨⎪>⎩故答案为:302a <<19、化简下列各式:【解析】 (1) 原式=lg 1100×10=-2×10=-20.(2) 原式=lg25lg2×lg4lg3×lg9lg5=2lg5lg2×2lg2lg3×2lg3lg5=8.(3) 原式=lg 427-lg4+lg75=lg(427×14×75)=12.20、判断下列函数的奇偶性: (1) f(x)=xlg(x +x 2+1); (2) f(x)=(1-x) 1+x1-x; (3) f(x)=⎩⎪⎨⎪⎧-x 2+2x +1,x >0,x 2+2x -1, x <0;(4) f(x)=4-x 2|x +3|-3.【解析】 (1) 因为x +x 2+1>0恒成立, 所以函数f(x)的定义域为R ,关于原点对称,所以f(x)-f(-x)=x[lg(x +x 2+1)+lg(-x +x 2+1)]=0, 所以f(x)=f(-x),所以f(x)为偶函数. (2) 由题意得,⎩⎪⎨⎪⎧1+x 1-x ≥0,1-x≠0,解得-1≤x<1, 所以定义域不关于原点对称, 所以f(x)为非奇非偶函数.(3) f(x)定义域为(-∞,0)∪(0,+∞)关于原点对称. 不妨设x>0,所以f(x)+f(-x)=-x 2+2x +1+x 2-2x -1=0, 所以f(x)=-f(-x),所以f(x)为奇函数.(4) 由题意得,⎩⎪⎨⎪⎧4-x 2≥0,|x +3|≠3,解得x ∈[-2,0)∪(0,2]关于原点对称,所以f(x)+f(-x)=4-x 2x -4-x 2x =0,所以f(x)=-f(-x), 所以f(x)为奇函数. 21、已知函数()log ax bf x x b-=+ ()0,0,0a a b >≠≠. (1)求函数()f x 的定义域;(2)判断函数()f x 的奇偶性,并说明理由; 【解析】(1)由x bx b->+0,化为:()()0x b x b -+>. 当0b >时,解得x b >或x b <-;0b <时,解得x b >-或x b <. ∴函数()f x 的定义域为:0b >时,()),(,x b b ∈-∞-+∞,0b <时,()),(,x b b ∈-∞-+∞.(2)∵定义域关于原点对称,()()log aa xb x bf x log f x x b x b----==-=--++,∴函数()f x 为奇函数.22、已知奇函数()2121x xa f x ⋅-=+的定义域为[]2,3ab --. (1)求实数a ,b 的值;(2)若[]2,3x a b ∈--,方程()()20f x f x m +-=⎡⎤⎣⎦有解,求m 的取值范围.【解析】(1)因为奇函数定义域关于原点对称,所以230a b --+=.又根据定义在0x =有定义,所以()00210021a f ⋅-==+,解得1a =,1b =. (2)[]3,3x ∈-,令()2121x x f x t -==+,7799t ⎛⎫-≤≤ ⎪⎝⎭则方程()()20f x f x m +-=⎡⎤⎣⎦有解等价于20t t m +-= 7799t ⎛⎫-≤≤ ⎪⎝⎭有解 也等价于2y t t =+ 7799t ⎛⎫-≤≤ ⎪⎝⎭与y m =有交点.画出图形根据图形判断:由图可知:1112481m -≤≤时有交点,即方程()()20f x f x m +-=⎡⎤⎣⎦有解.。
2020年秋季高一开学分班考试(四)一、单选题(共8小题,满分40分,每小题5分)1、设集合A ={3,5,6,8},集合4 ={45,7,8},则等于()A. {5,8}B. {3…6}C. {4,7}D. {3,568}【答案】A【解析】集合A ={3,5,6,8},集合8 ={4,5,7,8},又集合A与集合4中的公共元素为5,8 ,二. Ac3 = {5,8},故选A.2、已知命题〃:V X£R,X2—X+I>O,则一y,()A. ±wR, x2 -x + l<0B. VxwR,x2 -x + l<0C. HrwR, x2-x + l>0D. YxeR,x2 -x + l>0【答案】A【解析】由题意,根据全称命题与特称命题的关系,可得命题〃:V XE RV—X +I,。
,则「P:3xwR, x2 -x+l<0 » 故选A.3、如果/(戈)=以2-(2—〃)1+1在区间(7,1上为减函数,则。
的取值()A. (0,1]B. [0,1)C. [0,1]D. (0,1)【答案】C【解析】由题意,当4=0时,可得,(x) = -2x + l,在尺上是单调递减,满足题意,当“<0时,显然不成立:当。
>0时,要使/(X)在(一8,;上为减函数,则三;之:,解得:综上:可得0<a<\,故选:C.4、关于x的不等式产十这一3<0,解集为(一3』),则不等式以2+工一3<0的解集为()1 3A.(1,2)B.(-12)C.(――1)D.(一二1)2 2【答案】D【解析】由题/ = -3/ = 1是方程/+统一3 = 0的两根,可得-3+1 = -〃,即。
=2,z 3所以不等式为2/+工_3<0,即(2x + 3)(x—l)〈0、所以—故选:D5、(2020・重庆巴蜀中学高一期末)若八J7+l) =X+ J7,则/(X)的解析式为()A. f(x) = x2-xB. f (x) = x2 - x(x > 0)C. f(x) = x2-x[x>\)D. f(x) = A2 + X【答案】c【解析】/( 4+1)=x+y/x,设4+l=f,色1,则x= (L 1) 2,:J (f) = (/- 1)4-1=F - r,役1,・••函数f(X)的解析式为=X2-A-(X>1).故选:C.6、若。
2020年秋季高一新生入学分班考试数学试题(浙江专用)06 一、单选题1.与根式﹣)A B.﹣x C D【答案】D【解析】将原式进行化简后即可确定正确的选项.【详解】∴x<0,∴﹣0,∴﹣x•x-,故选:D.【点睛】考查了二次根式的性质与化简和二次根式有意义的条件,解题的关键是了解原式有意义是x的取值范围,难度不大.2.若方程组23133530.9a ba b-=⎧⎨+=⎩的解是8.31.2ab=⎧⎨=⎩,则方程组2(2)3(1)133(2)5(1)30.9x yx y++-=⎧⎨+--=⎩的解是()A.8.31.2xy=⎧⎨=⎩B.6.32.2xy=⎧⎨=⎩C.10.32.2xy=⎧⎨=⎩D.10.30.2xy=⎧⎨=⎩【答案】B【解析】设x+2=a,1﹣y=﹣b,把要求解的方程组转化为23133530.9a ba b-=⎧⎨+=⎩,再求x、y的值.【详解】解:设x+2=a,1﹣y=﹣b.则方程组2(2)3(1)13 3(2)5(1)30.9x yx y++-=⎧⎨+--=⎩可变形为2313 3530.9 a ba b-=⎧⎨+=⎩.∵方程组23133530.9a ba b-=⎧⎨+=⎩的解是8.31.2ab=⎧⎨=⎩.∴x+2=8.3,1﹣y=﹣1.2.∴6.32.2 xy=⎧⎨=⎩.故选:B.【点睛】本题考查了二元一次方程组的解法和二元一次方程的解.把要求解的方程组转化为已知方程组,是解决本题的关键.3.将一枚六个面编号分别为1、2、3、4、5、6的质地均匀的正方体骰子先后投掷两次,记第一次掷出的点数为a,第二次掷出的点数为c,则使关于x的一元二次方程ax2﹣6x+c =0有实数解的概率为()A.815B.1730C.49D.1736【答案】D【解析】列表展示所有36种等可能的结果数,再根据判别式的意义得到△≥0,从而得到使得一元二次方程ax2﹣6x+c=0有相等实数解的结果数,然后根据概率公式求解.【详解】列表得:∴一共有36种情况,∵b=﹣6,当b2﹣4ac≥0时,有实根,即36﹣4ac≥0有实根,∴ac≤9,∴方程有实数根的有17种情况, ∴方程有实数根的概率=1736, 故选:D .【点睛】本题考查列表法与树状图法求概率,一元二次方程实根的情况,是一个综合题,解题的关键是对于一元二次方程的解的情况的分析,解题时有一定难度.4.如图所示,某数学活动小组选定测量小河对岸大树BC 的高度,他们在斜坡上D 处测得大树顶端B 的仰角是27°,朝大树方向下坡走6米到达坡底A 处,在A 处测得大树顶端B 的仰角是48°,若斜坡AF 的坡度i =1:3,则大树的高度为( )(结果保留整数,参考数据:sin27°≈0.45,cos27°≈0.89,tan27°≈0.5,sin48°≈0.74,cos48°≈0.67,tan48°≈1.1,3≈1.7)A .8米B .9米C .10米D .11米 【答案】C 【解析】过点D 作DM ⊥BC 于点M ,DN ⊥AC 于点N ,由AF 的坡比i =13DA =6,可求得AN 与DN 的长,设大树的高度为x 米,由三角函数定义可得AC =1.1x ,在BDM 中,tan ∠BDM =BM DM =tan27°≈0.5,则BM =0.5DM ,得出方程x ﹣3=0.5×(3)1.1x ,解方程即可求得答案. 【详解】过点D 作DM ⊥BC 于点M ,DN ⊥AC 于点N ,则四边形DMCN 是矩形,∵DA =6,斜坡AF 的坡比i =1333=tan ∠DAN , ∴∠DAN =30°,DN =12AD =3,AN 3=3, 设大树的高度为x 米,∵在斜坡上A处测得大树顶端B的仰角是48°,∴tan48°=BCAC≈1.1,∴AC=1.1x,∴DM=CN=AN+AC=331.1x+,在BDM中,tan∠BDM=BMDM=tan27°≈0.5,∴BM=0.5DM,∴x ﹣3=0.5×(331.1x+),解得x≈10.即树高BC约10米.故选:C.【点睛】本题考查的是解直角三角形的应用﹣仰角俯角问题、坡度坡角问题;能借助仰角构造直角三角形,利用三角函数解直角三角形是解题的关键.5.若关于x的不等式组11(1)213132422x a xx x⎧+<++⎪⎪⎨⎛⎫⎪--⎪⎪⎝⎭⎩至少有4个整数解,且关于y的分式方程3﹣1ayy-=51y-有整数解,则符合条件的所有整数a的和为()A.4 B.9 C.11 D..12【答案】A【解析】根据题意分别表示出不等式组与分式方程的解,确定出满足题意整数a的值,求出之和即可.【详解】不等式组整理得:12x ax<-⎧⎨-⎩,解得:﹣2≤x <a ﹣1,由不等式组至少有4个整数解,得到a ﹣1>1,即a >2,分式方程去分母得:3(y ﹣1)﹣ay =﹣5,去括号得:3y ﹣3﹣ay =﹣5,即(3﹣a )y =﹣2,解得:y =23a -, 由分式方程有整数解,得到a ﹣3=±1,a ﹣3=﹣2, 解得:a =2(不符合题意,舍去),a =4,a =1(不符合题意,舍去),故符合条件的所有整数a 的和为4.故选:A .【点睛】此题考查了分式方程的解,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.6.如果a ,b ,c 是正数,且满足a +b +c =9,111109a b b c c a ++=+++,那么a b c b c c a a b+++++的值为( ) A .6B .7C .9D .10【答案】B【解析】先根据题意得出a =9﹣b ﹣c ,b =9﹣a ﹣c ,c =9﹣a ﹣b ,再代入原式进行计算即可.【详解】∵a ,b ,c 是正数,且满足a +b +c =9,∴a =9﹣b ﹣c ,b =9﹣a ﹣c ,c =9﹣a ﹣b , ∴原式=99b c a c b c c a ----++++9a b a b--+ =99b c c a ++++9a b +﹣3 =9×109﹣3 =7,故选:B .【点睛】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键. 7.如图,在半径为2的⊙O 中,半径OC 垂直弦AB ,D 为⊙O 上的点,∠ADC =30°,则AB 的长是( )A .3B .3C .23D .4【答案】C 【解析】设半径OC ⊥AB 于点E ,连接OA ,利用圆周角定理求出∠BO C ,解直角三角形求出BE 即可解决问题.【详解】设半径OC ⊥AB 于点E ,连接OA ,∴AC BC =,∴∠D =12∠BOC =30°, ∴∠BO C =60°,∵AOB 是等腰三角形,OE AB ⊥,OB =2,∴AE =EB =OB •sin60°3,∴AB =2AE =3故选:C .【点睛】本题主要考查了勾股定理、垂径定理和圆周角定理等知识,解题的关键是熟练掌握基本知识.8.如图,点E 是AB 的中点,5AC =,2BD =,若A CED B ∠=∠=∠,则AB 的长是( )A .7B 10C .210D .10 【答案】C【解析】证明ACE BED ,可得AE AE BE BD=,由此即可解决问题. 【详解】 解:∵BEC BED CED A ACE ∠=∠+∠=∠+∠,A CED ∠=∠,∴ACE BED ∠=∠,∵A B ∠=∠,∴ACE BED , ∴AC AE BE BD=, ∵点E 是AB 的中点,∴AE EB =,∴210AE AC BD =⋅=,∵0AE >, ∴10AE = ∴2210AB AE ==故选:C .【点睛】本题考查相似三角形的判定和性质,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.9.已知二次函数y =x 2﹣2ax +a 2﹣2a ﹣4(a 为常数)的图象与x 轴有交点,且当x >3时,y 随x 的增大而增大,则a 的取值范围是( )A .a ≥﹣2B .a <3C .﹣2≤a <3D .﹣2≤a ≤3【答案】D【解析】根据图象与x 轴有交点,得出判别式∆≥0,解得a ≥﹣2;再求出抛物线的对称轴,结合抛物线开口向上,且当x >3时,y 随x 的增大而增大,可得a ≤3,从而得出答案.【详解】解:∵二次函数y=x2﹣2ax+a2﹣2a﹣4(a为常数)的图象与x轴有交点,∴∆=(﹣2a)2﹣4×1×(a2﹣2a﹣4)≥0解得:a≥﹣2;∵抛物线的对称轴为直线x=﹣22a-=a,抛物线开口向上,且当x>3时,y随x的增大而增大,∴a≤3,∴实数a的取值范围是﹣2≤a≤3.故选:D.【点睛】本题考查了抛物线与x轴的交点和二次函数的图象与性质,明确抛物线与x轴的交点个数与判别式的关系及二次函数的性质是解题的关键.10.已知,等边三角形ABC和正方形DEFG的边长相等,按如图所示的位置摆放(C 点与E点重合),点B、C、F共线,△ABC沿BF方向匀速运动,直到B点与F点重合.设运动时间为t,运动过程中两图形重叠部分的面积为S,则下面能大致反映s与t 之间关系的函数图象是()A.B.C.D.【答案】A【解析】分点A在D点的左侧、点A在DG上、点A在G点的右侧三种情况,分别求出函数的表达式即可求解.【详解】解:设等边三角形ABC和正方形DEFG的边长都为a,当点A在D点的左侧时,设AC交DE于点H,则CE=t,HE=ET tan ACB=t×3=3t,则S=S△CEH=12×CE×HE=12×t×3t=3t2,图象为开口向上的二次函数;当点A在DG上时,同理可得:S=3a2﹣3(a﹣t)2=3(﹣t2+2at),图象为开口向下的二次函数;点C在EF的中点右侧时,同理可得:S=S△BFH=12×BF×HF=12×(2a﹣t)×32a﹣t3(2a﹣t)2,图象为开口向上的二次函数.故选:A.【点睛】本题考查的是动点图象问题,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.二、填空题11.如图,圆锥母线长为6,圆锥的高与母线所夹的角为θ,且sinθ=13,该圆锥的侧面积是______【答案】12π【解析】根据正弦的定义求出圆锥的底面半径,根据扇形面积公式计算,求出圆锥的侧面积.【详解】解:∵圆锥母线长为6,sinθ=13, ∴圆锥的底面半径=6×13=2,∴圆锥的底面积=4π,∴圆锥的侧面展开图扇形的弧长为4π, ∴该圆锥的侧面积=12×4π×6=12π, 故答案为:12π.【点睛】本题考查的是圆锥的计算,掌握圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长是解题的关键.12.比较a =249,b =328,c =521这三个数的大小,按照从大到小的顺序排列为______.【答案】a >c >b .【解析】直接利用幂的乘方运算法则分别化简得出答案.【详解】∵a =249=(27)7,b =328=(34)7,c =521=(53)7,∴27=128,34=81,53=125,∴a >c >b .故答案为:a >c >b .【点睛】此题主要考查了幂的乘方运算,正确化简各数是解题关键.13.已知实数a ,b ,c 在数轴上的对应点如图所示,化简:2a |a ﹣b |+|c ﹣a 2()b a =_____.【答案】c ﹣2a【解析】直接利用二次根式的性质以及绝对值的性质分别化简得出答案. 【详解】解:由数轴可得:a <0,b <0,c >0,|a |>|b |, 故a ﹣b <0,c ﹣a >0,b ﹣a >0, 原式=﹣a +a ﹣b +c ﹣a +b ﹣a =c ﹣2a . 故答案为:2c a 【点睛】此题主要考查了二次根式的性质以及绝对值的性质,正确化简各数是解题关键. 14.若三角形三条边长分别为a ,b ,c ,且a 2b ﹣a 2c +b 2c ﹣b 3=0,则这个三角形一定是____.【答案】等腰三角形【解析】首先需要将a 2b ﹣a 2c +b 2c ﹣b 3因式分解,则可得到(b ﹣c )(a ﹣b )(a +b )=0,即可得到:b =c 或a =b ,即这个三角形一定是等腰三角形. 【详解】∵a 2b ﹣a 2c +b 2c ﹣b 3=a 2(b ﹣c )﹣b 2(b ﹣c ) =(b ﹣c )(a 2﹣b 2)=(b ﹣c )(a ﹣b )(a +b )=0, ∴b ﹣c =0或a ﹣b =0或a +b =0(舍去), ∴b =c 或a =b .∴这个三角形一定是等腰三角形. 故答案为:等腰三角形. 【点睛】此题考查了因式分解的应用.注意掌握因式分解的步骤,分解要彻底.15.如图,在△ABC 中,CA =CB =10,AB =12,以BC 为直径的圆⊙O 交AC 于点G ,交AB 于点D ,过点D 作⊙O 的切线,交CB 的延长线于点E ,交AC 于点F .则下列结论正确的是____.①DF ⊥AC ; ②DO =DB ; ③S △ABC =48; ④cos ∠E =2425.【答案】①③④【解析】连接OD、BG、CD,如图,利用切线的性质得到OD⊥DF,再利用圆周角定理和等腰三角形的性质证明OD∥AC,则可对①进行判断;利用OB=12BC=5,BD=6可对②进行判断;利用勾股定理计算出CD=8,则可计算出△ABC的面积,从而可对③进行判断;利用面积法计算出BG=485,则cos∠CBG=2425,然后证明∠E=∠CBG,从而可对④进行判断.【详解】解:连接OD、BG、CD,如图,∵DF为切线,∴OD⊥DF,∵BC为直径,∴∠BDC=90°,∵CA=CB,∴CD平分AB,即AD=BD=6,而OB=OC,∴OD为△ABC的中位线,∴OD∥AC,∴DF⊥AC,所以①正确;∵OB=12BC=5,BD=6,∴OD≠BD,所以②错误;在Rt△BCD中,CD=8,∴S△ABC=12CD•AB=12×8×12=48,所以③正确;∵BC为直径,∴∠BGC=90°,∴S△ABC=12BG•AC=48,∴BG=485,∴cos∠CBG=BGBC=48510=2425,∵BG⊥AC,EF⊥AC,∴BG∥EF,∴∠E=∠CBG,∴cos E=2425,所以④正确.故答案为:①③④.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了等腰三角形的性质、圆周角定理和解直角三角形.16.已知函数y=a(x+2)(x﹣2a),有下列说法:①若平移函数图象,使得平移后的图象经过原点,则只有唯一平移方法:向右平移2个单位;②当0<a<1时,抛物线的顶点在第四象限;③方程a(x+2)(x﹣2a)=﹣4必有实数根;④若a<0,则当x<﹣2时,y随x的增大而增大.其中说法正确的是____.(填写序号)【答案】②③【解析】把函数解析式化为一般式,再结合方程、函数图象等进行判断即可.【详解】解:当函数图象向上平移4个单位时,解析式为y=ax2+2(a﹣1)x,则其图象过原点,故①不正确;在y=ax2+2(a﹣1)x﹣4中,令x=0可得y=﹣4,当0<a<1时,其对称轴为x=﹣1aa->0,此时其顶点坐标在第四象限,故②正确;∵y =a (x +2)(x ﹣2a )=ax 2+2(a ﹣1)x ﹣4, ∴方程a (x +2)(x ﹣2a)=﹣4可化为ax 2+2(a ﹣1)x ﹣4=﹣4,即ax 2+2(a ﹣1)x =0,该方程有实数根,故③正确; 当a <0时,抛物线开口向下,且对称轴在y 轴的左侧, 但无法确定其在x =﹣2的左侧还是右侧,故④不正确; 综上可知正确的是②③, 故答案为:②③. 【点睛】本题主要考查二次函数的性质,掌握二次函数与方程、图象的平移等知识是解题的关键.三、解答题17.计算:(1|﹣(﹣1)2020﹣20;(2)(21639a a ++-)÷13a +.【答案】(1+1;(2)33a a +-.【解析】(1)直接利用零指数幂的性质以及绝对值的性质和二次根式的性质分别化简得出答案;(2)直接将括号里面通分运算,再利用分式的混合运算法则计算得出答案. 【详解】解:(1)原式=1﹣1+1;(2)原式=36(3)(3)a a a -++-•(a +3) =(3)(3)3a a a ++-•(a +3)=33a a +-. 【点睛】此题主要考查了分式的混合运算以及实数运算,正确掌握相关运算法则是解题关键. 18.某数学老师为了了解学生在数学学习中常见错误的纠正情况,收集整理了学生在作业和考试中的常见错误,编制了10道选择题,每题3分,对他所教的初三(1)班、(2)班进行了检测,如图表示从两班各随机抽取的10名学生的得分情况.(1)利用图中提供的信息,补全如表:班级平均数/分中位数/分众数/分方差/分2初三(1)班2424 5.4初三(2)班2421(2)哪个班的学生纠错的得分更稳定?若把24分以上(含24分)记为“优秀”,两班各40名学生,请估计两班各有多少名学生成绩优秀;(3)现从两个班抽取了数学成绩最好的甲、乙、丙、丁四位同学,并随机分成两组进行数学竞赛,求恰好选中甲、乙一组的概率.【答案】(1)答案见解析;(2)初三(1)班的学生纠错的得分更稳定.28名,24名;(3)16.【解析】(1)中位数、众数的定义、方差的定义进行解答即可;(2)方差越小越稳定.找到样本中24分和24分人数所占的比例,即可得出答案;(3)画出树状图,由树状图求得所有可能的结果与甲、乙分在同一组的情况,再利用概率公式即可求得答案.【详解】(1)初三(1)班有4名学生24分,最多,故众数为24分;把初三(2)班的成绩从小到大排列,则处于中间位置的数为24和24,故中位数为24分,初三(1)班的方差为:S 22=110[(21﹣24)2×3+(24﹣24)2×2+(27﹣24)2×2+(30﹣24)2×2+(15﹣24)2]=110×198=19.8; 补全如表: 比较 平均数/分 中位数/分 众数/分 方差/分2 初三(1)班 24 24 24 5.4 初三(2)班 24242119.8故答案为:24,24,19.8; (2)∵S 12<S 22,∴初三(1)班的学生纠错的得分更稳定.初三(1)班优秀学生为40×4310+=28人; 初三(2)班优秀学生为40×610=24人.(3)画树状图如图:共有12种等可能的结果,恰好选中甲、乙一组的有2种情况, ∴恰好选中甲、乙一组的概率为212=16. 【点睛】此题考查了列表法或树状图法、方差、众数和中位数.注意概率=所求情况数与总情况数之比19.设a 、b 、c 为三个不同的实数,使得方程210x ax ++=和20x bx c ++=有一个相同的实数根,并且使方程20x x a ++=和20x cx b ++=也有一个相同的实数根,试求a b c ++的值. 【答案】a +b +c =-3.【解析】设21110x ax ++=,2110x bx c ++=,得11c x a b-=-,同理,由2220x x a ++=,2220x cx b ++=,得2(1)1a bxc c -=≠-,再根据韦达定理即可求解. 【详解】解:设21110x ax ++=,2110x bx c ++=,两式相减,得1()10a b x c -+-=,解得11c x a b-=-, 同理,由2220x x a ++=,2220x cx b ++=,得2(1)1a bx c c -=≠-, 211x x =, ∴11x 是第一个方程的根, 1x 与11x 是方程21110x ax ++=的两根, 2x ∴是方程210x ax ++=和20x x a ++=的公共根,因此两式相减有2(1)(1)0a x --=, 当1a =时,这两个方程无实根, 故21x =,从而11x =, 于是2a =-,1b c +=-, 所以3a b c ++=-. 【点睛】本题考查了根与系数的关系及二元一次方程的解,关键是根据韦达定理解题,属于中档题.20.在正方形ABCD 中,P 为AB 的中点,BE PD ⊥的延长线于点E ,连接AE 、BE 、FA AE ⊥交DP 于点F ,连接BF ,FC .求证下列结论:(1)FB AB =;(2)CF EF ⊥,FC EF =.【答案】(1)证明见解析;(2)证明见解析.【解析】(1)根据已知和正方形的性质推出EAB DAF ∠=∠,EBA ADP ∠=∠,AB AD =,证ABE ADF ≅即可;取EF 的中点M ,连接AM ,推出AM MF EM DF ===,证AMB FMB ∠=∠,BM BM =,AM MF =,推出ABM FBM ≅,利用全等三角形的性质得出结论;(2)利用(1)中ABM FBM ≅可得BAM BFM ∠=∠,求出FDC EBF ∠=∠,推出BEF DFC ≅,利用全等三角形的性质即可得出结论. 【详解】 证明:(1)正方形ABCD ,BE PD ⊥,EA FA ⊥,AB AD CD BC ∴===,90BAD EAF BEF ∠=∠=︒=∠,APD EPB ∠=∠,∴∠=∠EAB DAF ,EBA ADP ∠=∠,AB AD =,在ABE △与ADF 中,EAB DAF AB ADEBA ADP ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()ABE ADF ASA ∴≅,AE AF ∴=,BE DF =,45AEF AFE ∴∠=∠=︒,取EF 的中点M ,连接AM ,AM EF ∴⊥,AM EM FM ==,//BE AM ∴,AP BP =, AM BE DF ∴==,45EMB EBM ∴∠=∠=︒,9045135AMB FMB ∴∠=︒+︒=︒=∠,在ABM 与FBM 中,AM FM AMB FMB BM BM =⎧⎪∠=∠⎨⎪=⎩, ()ABM FBM SAS ∴≅,AB BF ∴=;(2)ABM FBM ≅,BAM BFM ∴∠=∠,90BEF ∠=︒,AM EF ⊥,90BAM APM ∴∠+∠=︒,90EBF EFB ∠+∠=︒,APF EBF ∴∠=∠,//AB CD ,APD FDC ∴∠=∠, EBF FDC ∴∠=∠,在BEF 与DFC △中,BE DF EBF FDC BF CF =⎧⎪∠=∠⎨⎪=⎩, ()BEF DFC SAS ∴≅,CF EF ∴=,90DFC FEB ∠=∠=︒, CF EF ∴=且CF EF ⊥.【点睛】本题主要考查对正方形的性质,等腰直角三角形,直角三角形斜边上的中线性质,全等三角形的性质和判定,三角形的内角和定理等知识点的理解和掌握,综合运用这些性质进行推理是解此题的关键. 21.已知函数y =261x +,请根据已学知识探究该函数的图象和性质. (1)列表,写出表中a 、b 、c 的值:a = ,b = ,c = . x … ﹣3 ﹣2 ﹣1 0 1 2 3 … y …0.6a3b31.2c…(2)描点、连线,在下面的平面直角坐标系中画出该函数的图象,并写出该函数的一条性质: .(3)已知函数y =x +2的图象如图所示,结合你所画的函数图象,直接写出不等式261x +≥x +2的解集: .【答案】(1)1.2,6,0.6;(2)图象见解析,函数关于y 轴对称;(3)图象见解析,x ≤1. 【解析】(1)分别将x 的值代入函数y =261x +中,可得结论; (2)根据表中的数据,描点连线、画出函数的图象,并直接说性质; (3)由图象:函数y =261x +的图象在y =x +2的图象的上方对应的x 值取值范围可得. 【详解】解:(1)当x =﹣2时,a =641+=1.2, 当x =0时,b =6, 当x =3时,c =2631+=0.6, 故答案为:1.2,6,0.6; (2)如图所示:性质:函数关于y 轴对称;(答案不唯一:或函数有最大值是6); 故答案为:函数关于y 轴对称; (3)由图象得:不等式261x +≥x +2的解集是:x ≤1;故答案为:x ≤1.【点睛】本题考查了一次函数的图象与性质,一次函数与一元一次不等式,利用数形结合思想,正确画出函数的图象是解题的关键.22.如图,AB 是半O 的直径,点C 是半圆弧的中点,点D 是弧AC 的中点,连结BD 交AC 、OC 于点E 、F .(1)在图中与BOF 相似的三角形有 个;(2)求证:2BE AD =;(3)求DE BE的值. 【答案】(1)3;(2)证明见解析;(3)212. 【解析】(1)利用相似三角形的判定方法,结合圆周角定理得出即可;(2)利用全等三角形的判定与性质得出ACG BCE ≅,进而求出即可; (3)利用已知首先判断DHE BCE ,进而得出答案. 【详解】(1)因为圆周角ADB ∠、ACB ∠所对的弦是直径,所以90ADB ACB ∠=∠=, 由点D 是弧AC 的中点,可得:ABD CBD ∠=∠;又点C 是半圆弧的中点,所以90FOB COB ∠=∠=,因此由ADB FOB ∠=∠,DBA FBO ∠=∠得BAD BFO ;由ECB ACB FOB ∠=∠=∠,FBO ABD CBD CBE ∠=∠=∠=∠,所以BCE BOF ;又AED CEB ∠=∠,90ADB ACB ∠=∠=,所以DAE CBE FBO ∠=∠=∠, 又90ADE FOB ∠=∠=,所以ADE BOF ,即与BOF 相似的三角形有BAD ;EAD ;BEC △共3个.(2)证明:如图,延长AD 与BC 相交于G ,∵点C 是半圆弧的中点,点D 是弧AC 的中点,∴CBE GAC ∠=∠,在ACG 和BCE 中∵GAC CBE AC BC ACG BCE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴ACG BCE ≅∴BE AG =,而2AG AD =,∴2BE AD =.(3)解:如图,连接OD 交AC 于点H ,则OD AC ⊥,可得://DH BC ,故DHE BCE , 故DE DH BE BC =,设2BC x =,则2OD OB x ==, 故OH x =,()21DH x =-, 则212DE BE -=.【点睛】此题主要考查了相似三角形的判定与性质以及全等三角形的判定与性质,正确利用圆周角定理得出对应角相等是解题关键.23.在平面直角坐标系xOy 中,抛物线y =x 2﹣2x ﹣3与x 轴相交于A ,B (点A 在点B 的左边),与y 轴相交于C .(1)求直线BC 的表达式.(2)垂直于y 轴的直线l 与直线BC 交于点N (x 1,y 1),与抛物线相交于点P (x 2,y 2),Q (x 3,y 3).若x 1<x 2<x 3,结合函数图象,求x 1+x 2+x 3的取值范围.【答案】(1)y =x ﹣3;(2)1<x 1+x 2+x 3<2.【解析】(1)利用抛物线解析式求得点B 、C 的坐标,利用待定系数法求得直线BC 的表达式即可;(2)由抛物线解析式得到对称轴和顶点坐标,结合图形解答.【详解】(1)由y=x2﹣2x﹣3得到:y=(x﹣3)(x+1),C(0,﹣3).所以A(﹣1,0),B(3,0),设直线BC的表达式为:y=kx+b(k≠0),则330 bk b=-⎧⎨+=⎩,解得13 kb=⎧⎨=-⎩,所以直线BC的表达式为y=x﹣3;(2)由y=x2﹣2x﹣3得到:y=(x﹣1)2﹣4,所以抛物线y=x2﹣2x﹣3的对称轴是直线x=1,顶点坐标是(1,﹣4).∵y2=y3,∴x2+x3=2.令y=﹣4,y=x﹣3,x=﹣1.∵x1<x2<x3,∴﹣1<x1<0,即1<x1+x2+x3<2.【点睛】本题考查了抛物线与x轴的交点,待定系数法求一次函数的解析式,“数形结合”的数学思想是解题的关键.。
浙江重点高中高一分班考试数学试卷注意:(1)试卷共有三大题21小题,满分150分,考试时间100分钟.(2)请把解答写在答题卷的对应题次上,做在试题卷上无效.一、选择题(5×8=40分)1.如图, ABC 中,D 、E 是BC 边上点,BD :DE :EC =3:2:1,M 在AC 边上,CM :MA =1:2,BM 交AD 、AE 于H 、G ,则BH :HG :GM 等于( )A.3:2:1B.5:3:1C.25:12:5D.51:24:10【答案】D【解析】【分析】连接EM ,根据已知可得,~BHD BME CEM CDA △△△△,根据相似比从而不难得到答案. 【详解】连接EM ,::1:3CE CD CM CA ==,EM ∴平行于AD .,~BHD BME CEM CDA ∴ △△△△.:3:5,:1:3HD ME ME AD ∴==.335AH ME ∴=−,:12:5AH ME ∴=, ::12:5HG GM AH EM ∴==,::3:5BH BM BD BE ∴==,::51:24:10BH HG GM ∴=.故选:D2.已知ABC 是O 的内接正三角形,ABC 的面积等于a ,DEFG 是半圆O 的内接正方形,面积等于的b ,a b的值为( )A. 2B.C.D. 【答案】D【解析】【分析】根据圆内接正三角形的性质以及正方形的性质分别用圆的半径表示出两图形面积,即可得出答案.【详解】如图所示,连接OG ,CO ,过点O 作OM BC ⊥于点M ,设O 的半径为r ,ABC 是O 的内接正三角形,30OCM °∴∠=,1122OM CO r ∴==,CM =,ABC ∴ 的高的长度为32r ,且BC =,21322a r ∴=×=,设正方形DEFG 的边长为x , 则2xOF =,2222x r x∴=+, 解得:2245x r =,245b r ∴=,45a b ∴==. 故选:D.3. 抛物线2y ax =与直线1x =,2x =,1y =,2y =围成的正方形有公共点,则实数a 的取值范围是( ) A. 114a ≤≤ B. 122a ≤≤ C. 112a ≤≤ D. 124a ≤≤ 【答案】D【解析】【分析】建立平面直角坐标系,画出四条直线围成的正方形,进一步判定其开口方向,再代入点的坐标即可解答.【详解】由下图可知:(1,2),(2,1)A B ,再根据抛物线的性质,||a 越大开口越小,把A 点代入2y ax =得2a =,把B 点代入2y ax =得14a =, 则a 的范围介于两者之间,故 124a ≤≤. 故选:D.4. 若1x >,0y >,且满足y xy x =,3y x x y=,则x y +的值为( ). A. 1 B. 2 C. 92 D. 112【答案】C【解析】【分析】由已知可得24y x x =,解得12y =,再代回已知等式求出x ,可得x y +的值. 【详解】由y xy x =,3y x x y =,得3y y x xy x x y ⋅=⋅,即24y x x =,解得12y =,把12y =代入y xy x =,得1212x x =,即x =24x x =,由1x >得4x =, 则19422x y +=+=. 故选:C5. 设3333111112399S =++++ ,则4S 的整数部分等于( ) A. 4B. 5C. 6D. 7 【答案】A【解析】【分析】由()()()32111112111k k k k k k k <=− −+− ,由此可以得到3331111115111239922991004S <=+++…+<+−< × ,然后即可求出4S 的整数部分. 【详解】当2,3,99k = ,因()()()32111112111k k k k k k k <=− −+− ,所以331111151112322991004S <=+++…++−< × , 即445S <<,故4S 的整数部分等于4故选:A .6. 如图,正方形ABCD 的边1AB =, BD 和 AC 都是以1为半径的圆弧,则无阴影部分的两部分的面积之差是( )A. 12π− B. 14π− C. 13π− D. 16π− 【答案】A【解析】【分析】图中1,2,3,4图形的面积和为正方形的面积,1,2和两个3的面积和是两个扇形的面积,因此两个扇形的面积的和减去正方形的面积等于无阴影两部分的面积之差.求解即可.详解】如图所示,1234S S S S S =+++正方形,31222S S S S =++扇形,两式相减,得到3490π12π213602S S S S ××−=−=−正方形扇形-1= 故选:A. 7. 在等边ABC 所在平面内有一点P ,使得,,PBC PAC PAB 都是等腰三角形,则具有该性质的点有( )A. 1个B. 7个C. 10个D. 无数个【答案】C【解析】【分析】过B 点作ABC 的中垂线,可知在三角形内有一点P 满足PBC 、PAC △、PAB 都是等腰三角形,根据等腰三角形的性质可以做两个圆,圆B 和圆A ,从而可以得出一条中垂线上有四个点满足PBC 、PAC △、PAB 都是等腰三角形,而三角形内部的一点是重合的,所以可以得出共有10个点.【详解】作三边的中垂线,交点P 肯定是其中之一,以B 为圆心,BA 为半径画圆,交AC 的中垂线于1P 、2P 两点,作2P AB △、2P BC △、2P AC △,如图,【则2P AB △、2P BC △、2P AC △都是等腰三角形,同理1P 具有题目所说的性质的点, 以A 为圆心,BA 为半径画圆,交AC 的中垂线于点3P ,该点也必具有题目所说的性质. 依此类推,在ABC 的其余两条中垂线上也存在这样性质的点,所以这些点一共有:33110×+=个. 故选:C8. 某工厂第二季度的产值比第一季度的产值增长了%x ,第三季度的产值又比第二季度的产值增长了%x ,则第三季度的产值比第一季度增长了( )A. 2%xB. 12%x +C. ()1%%x x +⋅D. ()2%%x x +⋅【答案】D【解析】【分析】平均增长率问题,可直接用公式解题即可.【详解】假设第一季度产值为a ,则第二季度产值为(1%)a x +,第二季度产值为2(1%)a x +. 第三季度的产值比第一季度增长了2(1%)(2%)%a x a x x a+−=+⋅. 故选:D .二、填空题(5×8=40分)9.方程226x y =+=的解是__________. 【答案】11260x y == 或22228x y =− = 【解析】【分析】利用换元法,借助立方和公式展开,求解方程组可得答案.a b ,则33 2,26a b a b +=+=, 因为()()()()233223a b a b a ab b a b a b ab +=+−+=++−,【所以2(43)26ab −=,即3ab =−,与2a b +=联立可得31a b = =− 或13a b =− =; 当31a b = =−1==−,解得260x y = =; 当13a b =− =3=−=,解得22228x y =− = . 故答案为:11260x y = = 或22228x y =− = 10. 若对任意实数x 不等式ax b >都成立,那么a 、b 的取值范围为__________.【答案】0a =,0b <【解析】【分析】分情况讨论不等式恒成立的条件.【详解】当0x =时,0b <,R a ∈;当0x ≠时,若0a =,则0b <;若0a >,则b x a>,不能恒成立; 若a<0,则b x a<,不能恒成立; 即当0x ≠时,若0a =,0b <综上所述,若使不等式恒成立,则0a =,0b <.11. 设12x −≤≤,则1222x x x −−++的最大值与最小值之差为__________. 【答案】1【解析】【分析】根据自变量的范围先去绝对值再求出最大值及最小值即可.【详解】因为12x −≤≤,所以11122224222x x x x x x x −−++=−−++=−, 因为02x ≤≤,所以当0x =时,1222x x x −−++取最大值为4, 当2x =时,1222x x x −−++取最小值3, 所以1222x x x −−++的最大值与最小值之差为431−=. 故答案为:1.12. 两个反比例函数3y x =,6y x=在第一象限内的图象点1232007,,,,P P P P 在反比例函数6y x =上,它们的横坐标分别为1232007,,,,x x x x ,纵坐标分别是1、3、5 共2007个连续奇数,过1232007,,,,P P P P 分别作y 轴的平行线,与3y x =的图象交点依次为()()()'''111222200720072007,,,,,,Q x y Q x y Q x y ,则20072007P Q =__________. 【答案】40132##2006.5 【解析】【分析】由点2007P 的纵坐标结合6y x=得出其横坐标,进而由3y x =得出点2007Q 纵坐标,从而得出20072007P Q .【详解】由题可知()20072007,4013P x ,因为点2007P 在6y x =的图象上,所以200764013x =, 又()200720072007,Q x y 在3y x =的图象上,所以200740136240313y ==, 所以20072007P Q =40134013401322−=. 故答案为:40132. 13. 如图,圆锥的母线长是3,底面半径是1,A 是底面圆周上一点,从A 点出发绕侧面一周,再回到A 点的最短的路线长是__________.【答案】【解析】【分析】沿过A 点母线把圆锥侧面剪开摊平,得出圆锥侧面展开图,如图.线段1AA 的长就是所求最短距离.【详解】如图所示,在圆锥的侧面展开图中,1AA 的长就是所求最短距离.过点S 作1SB AA ⊥,则12AA AB =.因为 1AA 为圆锥底面圆的周长,即2π, 由弧长公式得12π3ASA ∠=,.所以1π22sin,3AA AB AS ==⋅=,故答案为:14. 有一张矩形纸片ABCD ,9AD =,12AB =,将纸片折叠使A 、C 两点重合,那么折痕长是__________. 【答案】454【解析】【分析】首先由勾股定理求出AC 的长,设AC 的中点为E ,折线FG 与AB 交于F ,然后求证AEF △∽ABC ,求出EF 的长.【详解】如图,由勾股定理易得15AC ===,设AC 的中点为E ,折线FG 与AB 交于F ,(折线垂直平分对角线AC ),7.5AE =. 由AEF △∽ABC ,得912EFBC AE AB ==,22.54EF ∴=∴折线长22.522.54522424EF ==×==, 故答案为:45415. 已知3、a 、4、b 、5这五个数据,其中a 、b 是方程2320x x −+=的两个根,则这五个数据的标准差是__________.【解析】【分析】先解方程得到a ,b 的值,计算出平均数和方差后,再计算方差的算术平方根,即为标准 差.【详解】2320x x −+=,解得1,2a b ==或2,1a b ==,这组数据为14253,,,,. 平均值()13142535x =++++=; 方差()()()()()2222221[3313432353]25S =−+−+−+−+−=;..16. 若抛物线2241y x px p =−++中不管p 取何值时都通过定点,则定点坐标为___________.【答案】()4,33【解析】【分析】若抛物线2241y x px p =−++中不管p 取何值时都通过定点,则含p 的项的系数为0,由此求出x 的值,再求y 的值,得出定点坐标.【详解】2241y x px p =−++可化为()2241y x p x =−−+, 当4x =时,33y =,且与p 的取值无关, 所以不管p 取何值时都通过定点()4,33. 故答案为:()4,33三、解答题17. 设m 是不小于1−的实数,使得关于x 的方程222(2)330x m x m m +−+−+=有两个不相等的实数根1x 、2x .(1)若22126x x +=,求m 的值. (2)求22121211mx mx x x +−−的最大值. 【答案】(1)m =(2)10. 【解析】【分析】(1)根据判别式可得11m −≤<,再利用韦达定理代入即可得答案;(2)将问题转化为关于m 的一元二次函数,再利用函数的性质求最值;【详解】∵方程有两个不相等的实数根,()22244(2)433440,1b ac m m m m m ∴∆=−=−−−+=−+>∴<结合题意知:11m −≤<(1)()()22222212121224(2)233210106x x x x x x m m m m m +=+−=−−−+=−+=11,m m m ∴=−≤<∴= (2)()()()()322222121212122121228821111m m m m m x x x x x x mx mx x x x x m m −+−+−+ +==−−−−− ()()2222(1)31352312(11)(1)22m m m m m m m m m m −−+ ==−+=−−−< − ∴当1m =−时,式子取最大值为10.【点睛】本题考查一元二次方程中韦达定理、一元二次函数的性质,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.18. 如图,开口向下的抛物线2812y ax ax a =−+与x 轴交于A 、B 两点,抛物线上另有一点C 在第一象限,且使OCA OBC ∽△△,(1)求OC的长及BC AC的值;(2)设直线BC 与y 轴交于P 点,点C 是BP 的中点时,求直线BP 和抛物线的解析式.【答案】(1)(2)y x −+,2y x x −【解析】【分析】(1)首先求出抛物线与x 轴交点的坐标,再由三角形相似计算可得;(2)首先求出C 点坐标,利用待定系数法求出BP 的解析式,再将C 点坐标代入抛物线方程,求出a ,即可得解.【小问1详解】由题设知a<0,且方程28120ax ax a −+=有两实数根12x =,26x =,即()2,0A ,()6,0B ,所以2OA =,6OB =, OCA OBC ∽,OC OA AC OB OC BC∴==, 212OC OA OB ∴=⋅=,则OC =,所以BCOB AC OC ==;【小问2详解】因为C 是BP 的中点,所以C 点的横坐标为3,又OC =,解得C y =或C y =(舍去),(C ∴, 设直线BP 的解析式为y kx b =+,因其过点()6,0B,(C ,则有063k b k b =+ +,解得k b = =,所以y x −+;又点(C在抛物线上,92412a a a =−+,解得a =, ∴抛物线解析式为2y x x +−19. 某家电生产企业根据市场调查分析,决定调整产品生产方案,准备每周(按120个工时计算)生产空调器、彩电、冰箱共360台,且冰箱至少生产60台,已知生产这些家电产品每台所需工时和每台产值如下表 家电名称 空调 彩电 冰箱问每周应生产空调器、彩电、冰箱各多少台,才能使产值最高?最高产值是多少(以千元为单位)?【答案】空调30,彩电270,冰箱30,最高产值1050.【解析】【分析】设每周应生产空调、彩电、冰箱的数量分别为x 台、y 台、z 台,建立三元一次方程组,则总产值432A x y z =++.由于每周冰箱至少生产60台,即60z ≥,所以300x y +≤.又生产空调器、彩电、冰箱共360台,故有30x ≥台,即可求得,具体的x ,y ,z 的值.【详解】解:设每周应生产空调、彩电、冰箱的数量分别为x 台、y 台、z 台,则有()36011111209032341260x y z x y z x y z ++= ++==++ ≥ 总产值()()()4322272031080A x y z x y z x y x y x x ++++++++−−60,300z x y ≥∴+≤ ,而3360x y +=, 3603300,30x x x ∴+−≤∴≥ 1050A ∴≤ 即30,27060x y z ===,. 故每周生产空调30,彩电270,冰箱30,最高产值1050.20. 一个家庭有3个孩子,(1)求这个家庭有2个男孩和1个女孩的概率;(2)求这个家庭至少有一个男孩概率.【答案】(1)38; (2)78. 【解析】【分析】(1)用树状图列出所有结果,再根据古典概型计算所求;(2)根据(1)树状图列出的所有结果,再根据计算所求;【小问1详解】用B 和G 分别代表男孩和女孩,用“树状图”列出所有结果为:,的∴这个家庭有2个男孩和1个女孩的概率为38【小问2详解】由(1)可知,这个家庭至少有一个男孩的概率78. 21. 如图,已知O 和O 相交于A 、B 两点,过点A 作O 的切线交O 点C ,过点B 作两圆的割线分别交O 、O 于E 、F ,EF 与AC 相交于点P ,(1)求证:PA PE PC PF ⋅=⋅;(2)求证:22PE PF PC PB=; (3)当O 与O 为等圆时,且::3:4:5PC CE EP =时,求PEC 与FAP 的面积的比值.【答案】(1)证明见解析;(2)证明见解析; (3)49625. 【解析】【分析】(1)利用切线角与同弧所对角的性质得到CEB F ∠=∠,从而得到//AF CE ,由此得证; (2)结合(1)中结论,利用切割线定理即可得证;(3)利用三角形相似与勾股定理证得90C CAF ∠=∠=°,从而得到,x y 的比值,再利用面积比与相似比的关系即可得解.【小问1详解】连接AB ,CA 切O ′于A ,CAB F ∴∠=∠, 又CAB CEB ∠=∠,CEB F ∴∠=∠, //AF CE ∴,PE PC PF PA∴=, PA PE PC PF ∴⋅=⋅.【小问2详解】由(1)得2222,PE PC PE PC PF PA PF PA=∴=,则2222PE PF PC PA =, 再根据切割线定理,得2PA PB PF =⋅,22PE PF PC PB ∴=. 【小问3详解】连接AE ,由(1)知//AF CE PEC PFA , 而::3:4:5PC CE EP =,::3:4:5PA FA PF ∴=,不妨设3=PC x ,3PA y =,则4,5CE x EP x ==,4,5FA y PF y ==, 222222,EP PC CE PF PA FA ∴=+=+,90C CAF °∴∠=∠=, AE ∴为O 的直径,AF 为O ′的直径, 因为O 与O ′ 为等圆,4AE AF y ∴==,222AC CE AE += ,222(33)(4)(4)x y x y ∴++=,22251870x xy y +−=, 7(257)()0,25x x y x y y ∴−+=∴=,222249:625ECP FAP x PC PA S S y ∴=== .。
学军中学新高一分班考 数学卷一、选择题:本大题有8个小题,每小题3分,共24分.1. 下列四个命题:①平分弦的直径垂直于弦;②在同圆或等圆中,相等的弦所对的圆周角相等;③三角形有且只有一个外接圆;④垂直于弦的直径平分弦所对的两条弧.其中真命题的个数有( )A. 1个B. 2个C. 3个D. 4个2. 如图,在2014年的体育中考中,某校6名学生的体育成绩统计如图,则这组数据的众数、中位数、方差依次是( )A 28,28,1 B. 28,27.5,3 C. 28,28,3 D. 28,27.5,1 3. 已知方程组32342321x y a x y a −=−−=− 的解满足x y >,则a 的取值范围是( ) A. 1a > B. 1a < C. 5a > D. 5a < 4. 如图,在直角△BAD 中,延长斜边BD 到点C ,使BBBB =2BBDD ,连接AC ,5tan 3B =,则tan CAD ∠的值是( )AB. C. 13 D. 15 5. 如图,在Rt ABC △中,,,90AC BC ACB ∠=°,四边形,DEFG GHIJ 均为正方形,点E 在AC 上,点I 在BC 上,J 为边DG 的中点,则GH 的长为( )..A. 1921B. 1C. 6077D. 1002596. 如图,正方形OABC 的一个顶点O 是平面直角坐标系的原点,顶点A ,C 分别在y 轴和x 轴上,P 为边OC 上的一个动点,且BP PQ ⊥ ,BP PQ = ,当点P 从点C 运动到点O 时,可知点Q 始终在某函数图象上运动,则其函数图象是( )A. 线段B. 圆弧C. 抛物线的一部分D. 不同于以上的不规则曲线 7. 如图,以点()5,0M −为圆心,4为半径的圆与x 轴交于A ,B 两点,P 是☉M 上异于A ,B 的一动点,直线PA ,PB 分别交y 轴于点C ,D ,以CD 为直径的☉N 与x 轴交于点E ,F 则EF 的长为( )A. B. C. 6 D. 随P 点位置而变化 8. 已知二次函数图象的对称轴为1x =,且过点(3,0)A 与()0,1.5B ,则下列说法中正确的是( )① 当01x ≤≤时,函数有最大值2;② 当01x ≤≤时,函数有最小值2−; ③ P 是第一象限内抛物线上的一个动点,则PAB 面积的最大值为32; ④ 对于非零实数m ,当11x m >+时,y 都随着x 的增大而减小.A. ①②B. ①②③C. ①②④D. ②③④二、填空题:本大题有8个小题,每小题5分,共40分9. 已知a 是实数,且满足(30a −=,则代数式2241a a −+的值是_______________. 10. 已知函数3(1)()=+−y k x x k ,下列说法:①方程3(1)()3k x x k+−=−必有实数根;②若移动函数图象使其经过原点,则只能将图象向右移动1个单位;③当3k >时,抛物线顶点在第三象限;④若0k <,则当1x <−时,y 随着x 的增大而增大,其中正确的序号是_______________.11. 如图,COD 是AOB 绕点O 顺时针旋转40°后得到的图形,若点C 恰好落在AB 上,且∠AOD 的度数为90°,则∠B 的度数是_______.12. 如图,在5×5的正方形网格中,△ABC 为格点三角形(顶点都在格点上),则图中与△ABC 相似的最小的三角形与最大的三角形的面积比值为______.13. 如图,边长为2的等边ABC 的顶点A 、B 分别在MON ∠的两边上滑动,当45MON ∠=°时,点O 与点C 的最大距离是________.14. 如图,正方形ABCD 的边长为4,点O 是对角线AC ,BD 的交点,点E 为边CD 的中点,连接BE ,过点C 作CF ⊥BE ,垂足为F ,连结OF ,则OF 的长为______.15. 如图,矩形ABCD 为☉O的内接矩形,3AB BC =,点E 为弧BC 上一动点,把弓形沿AE 折叠,使点O 恰好落在弧AE 上,则图中阴影部分的面积为________.16. 已知A 是双曲线2y x=在第一象限上的一动点,连接AO 并延长交另一分支于点B ,以AB 为边作等边三角形ABC ,点C 在第四象限,已知点C 的位置始终在一函数图象上运动,则这函数解析式是________.三、解答题:本大题有5个小题,共56分.17. 如图,已知∠A ,请你仅用尺规,按下列要求作图和计算(保留作图痕迹,不写画法):(1)选取适当边长,在所给的∠A 图形上画一个含∠A 的直角三角形ABC ,并标上字母,其中点C 为直角顶点,点B 为另一锐角顶点;(2)以AC 为一边作等边△ACD ;(3)若设∠A =30°,BC 边长为a ,则BD 的长为__________________.18. 如图,PB 为O 的切线,B 为切点,过B 做OP 的垂线BA ,垂足为C ,交O 于点A ,连接P A 、AO ,并延长AO 交O 于点E ,与PB 的延长线交于点D.的(1)求证:P A 是O 切线;(2)若23OC AC =,且OC =4,求P A 的长和tan D 的值. 19. 已知:如图,菱形ABCD 中,对角线AC ,BD 相交于点O ,且AC =12cm ,BD =16cm.点P 从点B 出发,方向匀速运动,速度为1cm/s ;同时,直线EF 从点D 出发,沿DB 方向匀速运动,速度为1cm/s ,EF ⊥BD ,且与AD ,BD ,CD 分别交于点E ,Q ,F ;当直线EF 停止运动时,点P 也停止运动.连接PF ,设运动时间为t (s )(08t <<).解答下列问题:(1)当t 为何值时,四边形APFD 是平行四边形?(2)设四边形APFE 的面积为y (2cm ),求出y 与t 之间的函数关系式; (3)是否存在某一时刻t ,使S 四边形APFE :S 菱形ABCD =17:40?若存在,求出t 的值,若不存在,请说明理由.20. 为控制H7N9病毒传播,某地关闭活禽交易,冷冻鸡肉销量上升.某公司在春节期间采购冷冻鸡肉60箱销往城市和乡镇.已知冷冻鸡肉在城市销售平均每箱利润y 1(百元)与销售数量x (箱)的关系为()()115,0201017.5,206040x x y x x +<< = −+≤< ,在乡镇销售平均每箱的利润2y (百元)与销售数量t (箱)的关系为()()26,03018,306015t y t t << = −+≤<(1)t 与x 的关系是:将2y 转化为以x 为自变量的函数,则2y 等于?(2)设春节期间售完冷冻鸡肉获得总利润W (百元)当在城市销售量x (箱)的范围是020x <<时,求W 与x 的关系式;(总利润=在城市销售利润+在乡镇销售利润)的的(3)经测算,在20x 30<≤的范围内,可以获得最大总利润,并求出此时x 的值.21. 如图,平面直角坐标系xOy 中,点A 的坐标为()2,2−,点B 的坐标为(6,6),抛物线经过A 、O 、B 三点,连接OA 、OB 、AB ,线段AB 交y 轴于点E .(1)求点E 的坐标;求抛物线的函数解析式;(2)点F 为线段OB 上的一个动点(不与点O 、B 重合),直线EF 与抛物线交于M 、N 两点(点N 在y 轴右侧),连结ON 、BN ,当点F 在线段OB 上运动时,求△BON 的面积的最大值,并求出此时点N 的坐标;(3)连结AN ,当△BON 面积最大时,在坐标平面内求使得△BOP 与△OAN 相似(点B 、O 、P 分别与点O 、A 、N 对应)的点P 的坐标.。
2020年秋季高一新生入学分班考试数学试题(浙江专用)06 一、单选题1.与根式﹣)A B.﹣x C D【答案】D【解析】将原式进行化简后即可确定正确的选项.【详解】∴x<0,∴﹣0,∴﹣x•x-,故选:D.【点睛】考查了二次根式的性质与化简和二次根式有意义的条件,解题的关键是了解原式有意义是x的取值范围,难度不大.2.若方程组23133530.9a ba b-=⎧⎨+=⎩的解是8.31.2ab=⎧⎨=⎩,则方程组2(2)3(1)133(2)5(1)30.9x yx y++-=⎧⎨+--=⎩的解是()A.8.31.2xy=⎧⎨=⎩B.6.32.2xy=⎧⎨=⎩C.10.32.2xy=⎧⎨=⎩D.10.30.2xy=⎧⎨=⎩【答案】B【解析】设x+2=a,1﹣y=﹣b,把要求解的方程组转化为23133530.9a ba b-=⎧⎨+=⎩,再求x、y的值.【详解】解:设x+2=a,1﹣y=﹣b.则方程组2(2)3(1)13 3(2)5(1)30.9x yx y++-=⎧⎨+--=⎩可变形为2313 3530.9 a ba b-=⎧⎨+=⎩.∵方程组23133530.9a ba b-=⎧⎨+=⎩的解是8.31.2ab=⎧⎨=⎩.∴x+2=8.3,1﹣y=﹣1.2.∴6.32.2 xy=⎧⎨=⎩.故选:B.【点睛】本题考查了二元一次方程组的解法和二元一次方程的解.把要求解的方程组转化为已知方程组,是解决本题的关键.3.将一枚六个面编号分别为1、2、3、4、5、6的质地均匀的正方体骰子先后投掷两次,记第一次掷出的点数为a,第二次掷出的点数为c,则使关于x的一元二次方程ax2﹣6x+c =0有实数解的概率为()A.815B.1730C.49D.1736【答案】D【解析】列表展示所有36种等可能的结果数,再根据判别式的意义得到△≥0,从而得到使得一元二次方程ax2﹣6x+c=0有相等实数解的结果数,然后根据概率公式求解.【详解】列表得:∴一共有36种情况,∵b=﹣6,当b2﹣4ac≥0时,有实根,即36﹣4ac≥0有实根,∴ac≤9,∴方程有实数根的有17种情况, ∴方程有实数根的概率=1736, 故选:D .【点睛】本题考查列表法与树状图法求概率,一元二次方程实根的情况,是一个综合题,解题的关键是对于一元二次方程的解的情况的分析,解题时有一定难度.4.如图所示,某数学活动小组选定测量小河对岸大树BC 的高度,他们在斜坡上D 处测得大树顶端B 的仰角是27°,朝大树方向下坡走6米到达坡底A 处,在A 处测得大树顶端B 的仰角是48°,若斜坡AF 的坡度i =1:3,则大树的高度为( )(结果保留整数,参考数据:sin27°≈0.45,cos27°≈0.89,tan27°≈0.5,sin48°≈0.74,cos48°≈0.67,tan48°≈1.1,3≈1.7)A .8米B .9米C .10米D .11米 【答案】C 【解析】过点D 作DM ⊥BC 于点M ,DN ⊥AC 于点N ,由AF 的坡比i =13DA =6,可求得AN 与DN 的长,设大树的高度为x 米,由三角函数定义可得AC =1.1x ,在BDM 中,tan ∠BDM =BM DM =tan27°≈0.5,则BM =0.5DM ,得出方程x ﹣3=0.5×(3)1.1x ,解方程即可求得答案. 【详解】过点D 作DM ⊥BC 于点M ,DN ⊥AC 于点N ,则四边形DMCN 是矩形,∵DA =6,斜坡AF 的坡比i =1333=tan ∠DAN , ∴∠DAN =30°,DN =12AD =3,AN 3=3, 设大树的高度为x 米,∵在斜坡上A处测得大树顶端B的仰角是48°,∴tan48°=BCAC≈1.1,∴AC=1.1x,∴DM=CN=AN+AC=331.1x+,在BDM中,tan∠BDM=BMDM=tan27°≈0.5,∴BM=0.5DM,∴x ﹣3=0.5×(331.1x+),解得x≈10.即树高BC约10米.故选:C.【点睛】本题考查的是解直角三角形的应用﹣仰角俯角问题、坡度坡角问题;能借助仰角构造直角三角形,利用三角函数解直角三角形是解题的关键.5.若关于x的不等式组11(1)213132422x a xx x⎧+<++⎪⎪⎨⎛⎫⎪--⎪⎪⎝⎭⎩至少有4个整数解,且关于y的分式方程3﹣1ayy-=51y-有整数解,则符合条件的所有整数a的和为()A.4 B.9 C.11 D..12【答案】A【解析】根据题意分别表示出不等式组与分式方程的解,确定出满足题意整数a的值,求出之和即可.【详解】不等式组整理得:12x ax<-⎧⎨-⎩,解得:﹣2≤x <a ﹣1,由不等式组至少有4个整数解,得到a ﹣1>1,即a >2,分式方程去分母得:3(y ﹣1)﹣ay =﹣5,去括号得:3y ﹣3﹣ay =﹣5,即(3﹣a )y =﹣2,解得:y =23a -, 由分式方程有整数解,得到a ﹣3=±1,a ﹣3=﹣2, 解得:a =2(不符合题意,舍去),a =4,a =1(不符合题意,舍去),故符合条件的所有整数a 的和为4.故选:A .【点睛】此题考查了分式方程的解,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.6.如果a ,b ,c 是正数,且满足a +b +c =9,111109a b b c c a ++=+++,那么a b c b c c a a b+++++的值为( ) A .6B .7C .9D .10【答案】B【解析】先根据题意得出a =9﹣b ﹣c ,b =9﹣a ﹣c ,c =9﹣a ﹣b ,再代入原式进行计算即可.【详解】∵a ,b ,c 是正数,且满足a +b +c =9,∴a =9﹣b ﹣c ,b =9﹣a ﹣c ,c =9﹣a ﹣b , ∴原式=99b c a c b c c a ----++++9a b a b--+ =99b c c a ++++9a b +﹣3 =9×109﹣3 =7,故选:B .【点睛】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键. 7.如图,在半径为2的⊙O 中,半径OC 垂直弦AB ,D 为⊙O 上的点,∠ADC =30°,则AB 的长是( )A .3B .3C .23D .4【答案】C 【解析】设半径OC ⊥AB 于点E ,连接OA ,利用圆周角定理求出∠BO C ,解直角三角形求出BE 即可解决问题.【详解】设半径OC ⊥AB 于点E ,连接OA ,∴AC BC =,∴∠D =12∠BOC =30°, ∴∠BO C =60°,∵AOB 是等腰三角形,OE AB ⊥,OB =2,∴AE =EB =OB •sin60°3,∴AB =2AE =3故选:C .【点睛】本题主要考查了勾股定理、垂径定理和圆周角定理等知识,解题的关键是熟练掌握基本知识.8.如图,点E 是AB 的中点,5AC =,2BD =,若A CED B ∠=∠=∠,则AB 的长是( )A .7B 10C .210D .10 【答案】C【解析】证明ACE BED ,可得AE AE BE BD=,由此即可解决问题. 【详解】 解:∵BEC BED CED A ACE ∠=∠+∠=∠+∠,A CED ∠=∠,∴ACE BED ∠=∠,∵A B ∠=∠,∴ACE BED , ∴AC AE BE BD=, ∵点E 是AB 的中点,∴AE EB =,∴210AE AC BD =⋅=,∵0AE >, ∴10AE = ∴2210AB AE ==故选:C .【点睛】本题考查相似三角形的判定和性质,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.9.已知二次函数y =x 2﹣2ax +a 2﹣2a ﹣4(a 为常数)的图象与x 轴有交点,且当x >3时,y 随x 的增大而增大,则a 的取值范围是( )A .a ≥﹣2B .a <3C .﹣2≤a <3D .﹣2≤a ≤3【答案】D【解析】根据图象与x 轴有交点,得出判别式∆≥0,解得a ≥﹣2;再求出抛物线的对称轴,结合抛物线开口向上,且当x >3时,y 随x 的增大而增大,可得a ≤3,从而得出答案.【详解】解:∵二次函数y=x2﹣2ax+a2﹣2a﹣4(a为常数)的图象与x轴有交点,∴∆=(﹣2a)2﹣4×1×(a2﹣2a﹣4)≥0解得:a≥﹣2;∵抛物线的对称轴为直线x=﹣22a-=a,抛物线开口向上,且当x>3时,y随x的增大而增大,∴a≤3,∴实数a的取值范围是﹣2≤a≤3.故选:D.【点睛】本题考查了抛物线与x轴的交点和二次函数的图象与性质,明确抛物线与x轴的交点个数与判别式的关系及二次函数的性质是解题的关键.10.已知,等边三角形ABC和正方形DEFG的边长相等,按如图所示的位置摆放(C 点与E点重合),点B、C、F共线,△ABC沿BF方向匀速运动,直到B点与F点重合.设运动时间为t,运动过程中两图形重叠部分的面积为S,则下面能大致反映s与t 之间关系的函数图象是()A.B.C.D.【答案】A【解析】分点A在D点的左侧、点A在DG上、点A在G点的右侧三种情况,分别求出函数的表达式即可求解.【详解】解:设等边三角形ABC和正方形DEFG的边长都为a,当点A在D点的左侧时,设AC交DE于点H,则CE=t,HE=ET tan ACB=t×3=3t,则S=S△CEH=12×CE×HE=12×t×3t=3t2,图象为开口向上的二次函数;当点A在DG上时,同理可得:S=3a2﹣3(a﹣t)2=3(﹣t2+2at),图象为开口向下的二次函数;点C在EF的中点右侧时,同理可得:S=S△BFH=12×BF×HF=12×(2a﹣t)×32a﹣t3(2a﹣t)2,图象为开口向上的二次函数.故选:A.【点睛】本题考查的是动点图象问题,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.二、填空题11.如图,圆锥母线长为6,圆锥的高与母线所夹的角为θ,且sinθ=13,该圆锥的侧面积是______【答案】12π【解析】根据正弦的定义求出圆锥的底面半径,根据扇形面积公式计算,求出圆锥的侧面积.【详解】解:∵圆锥母线长为6,sinθ=13, ∴圆锥的底面半径=6×13=2,∴圆锥的底面积=4π,∴圆锥的侧面展开图扇形的弧长为4π, ∴该圆锥的侧面积=12×4π×6=12π, 故答案为:12π.【点睛】本题考查的是圆锥的计算,掌握圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长是解题的关键.12.比较a =249,b =328,c =521这三个数的大小,按照从大到小的顺序排列为______.【答案】a >c >b .【解析】直接利用幂的乘方运算法则分别化简得出答案.【详解】∵a =249=(27)7,b =328=(34)7,c =521=(53)7,∴27=128,34=81,53=125,∴a >c >b .故答案为:a >c >b .【点睛】此题主要考查了幂的乘方运算,正确化简各数是解题关键.13.已知实数a ,b ,c 在数轴上的对应点如图所示,化简:2a |a ﹣b |+|c ﹣a 2()b a =_____.【答案】c ﹣2a【解析】直接利用二次根式的性质以及绝对值的性质分别化简得出答案. 【详解】解:由数轴可得:a <0,b <0,c >0,|a |>|b |, 故a ﹣b <0,c ﹣a >0,b ﹣a >0, 原式=﹣a +a ﹣b +c ﹣a +b ﹣a =c ﹣2a . 故答案为:2c a 【点睛】此题主要考查了二次根式的性质以及绝对值的性质,正确化简各数是解题关键. 14.若三角形三条边长分别为a ,b ,c ,且a 2b ﹣a 2c +b 2c ﹣b 3=0,则这个三角形一定是____.【答案】等腰三角形【解析】首先需要将a 2b ﹣a 2c +b 2c ﹣b 3因式分解,则可得到(b ﹣c )(a ﹣b )(a +b )=0,即可得到:b =c 或a =b ,即这个三角形一定是等腰三角形. 【详解】∵a 2b ﹣a 2c +b 2c ﹣b 3=a 2(b ﹣c )﹣b 2(b ﹣c ) =(b ﹣c )(a 2﹣b 2)=(b ﹣c )(a ﹣b )(a +b )=0, ∴b ﹣c =0或a ﹣b =0或a +b =0(舍去), ∴b =c 或a =b .∴这个三角形一定是等腰三角形. 故答案为:等腰三角形. 【点睛】此题考查了因式分解的应用.注意掌握因式分解的步骤,分解要彻底.15.如图,在△ABC 中,CA =CB =10,AB =12,以BC 为直径的圆⊙O 交AC 于点G ,交AB 于点D ,过点D 作⊙O 的切线,交CB 的延长线于点E ,交AC 于点F .则下列结论正确的是____.①DF ⊥AC ; ②DO =DB ; ③S △ABC =48; ④cos ∠E =2425.【答案】①③④【解析】连接OD、BG、CD,如图,利用切线的性质得到OD⊥DF,再利用圆周角定理和等腰三角形的性质证明OD∥AC,则可对①进行判断;利用OB=12BC=5,BD=6可对②进行判断;利用勾股定理计算出CD=8,则可计算出△ABC的面积,从而可对③进行判断;利用面积法计算出BG=485,则cos∠CBG=2425,然后证明∠E=∠CBG,从而可对④进行判断.【详解】解:连接OD、BG、CD,如图,∵DF为切线,∴OD⊥DF,∵BC为直径,∴∠BDC=90°,∵CA=CB,∴CD平分AB,即AD=BD=6,而OB=OC,∴OD为△ABC的中位线,∴OD∥AC,∴DF⊥AC,所以①正确;∵OB=12BC=5,BD=6,∴OD≠BD,所以②错误;在Rt△BCD中,CD=8,∴S△ABC=12CD•AB=12×8×12=48,所以③正确;∵BC为直径,∴∠BGC=90°,∴S△ABC=12BG•AC=48,∴BG=485,∴cos∠CBG=BGBC=48510=2425,∵BG⊥AC,EF⊥AC,∴BG∥EF,∴∠E=∠CBG,∴cos E=2425,所以④正确.故答案为:①③④.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了等腰三角形的性质、圆周角定理和解直角三角形.16.已知函数y=a(x+2)(x﹣2a),有下列说法:①若平移函数图象,使得平移后的图象经过原点,则只有唯一平移方法:向右平移2个单位;②当0<a<1时,抛物线的顶点在第四象限;③方程a(x+2)(x﹣2a)=﹣4必有实数根;④若a<0,则当x<﹣2时,y随x的增大而增大.其中说法正确的是____.(填写序号)【答案】②③【解析】把函数解析式化为一般式,再结合方程、函数图象等进行判断即可.【详解】解:当函数图象向上平移4个单位时,解析式为y=ax2+2(a﹣1)x,则其图象过原点,故①不正确;在y=ax2+2(a﹣1)x﹣4中,令x=0可得y=﹣4,当0<a<1时,其对称轴为x=﹣1aa->0,此时其顶点坐标在第四象限,故②正确;∵y =a (x +2)(x ﹣2a )=ax 2+2(a ﹣1)x ﹣4, ∴方程a (x +2)(x ﹣2a)=﹣4可化为ax 2+2(a ﹣1)x ﹣4=﹣4,即ax 2+2(a ﹣1)x =0,该方程有实数根,故③正确; 当a <0时,抛物线开口向下,且对称轴在y 轴的左侧, 但无法确定其在x =﹣2的左侧还是右侧,故④不正确; 综上可知正确的是②③, 故答案为:②③. 【点睛】本题主要考查二次函数的性质,掌握二次函数与方程、图象的平移等知识是解题的关键.三、解答题17.计算:(1|﹣(﹣1)2020﹣20;(2)(21639a a ++-)÷13a +.【答案】(1+1;(2)33a a +-.【解析】(1)直接利用零指数幂的性质以及绝对值的性质和二次根式的性质分别化简得出答案;(2)直接将括号里面通分运算,再利用分式的混合运算法则计算得出答案. 【详解】解:(1)原式=1﹣1+1;(2)原式=36(3)(3)a a a -++-•(a +3) =(3)(3)3a a a ++-•(a +3)=33a a +-. 【点睛】此题主要考查了分式的混合运算以及实数运算,正确掌握相关运算法则是解题关键. 18.某数学老师为了了解学生在数学学习中常见错误的纠正情况,收集整理了学生在作业和考试中的常见错误,编制了10道选择题,每题3分,对他所教的初三(1)班、(2)班进行了检测,如图表示从两班各随机抽取的10名学生的得分情况.(1)利用图中提供的信息,补全如表:班级平均数/分中位数/分众数/分方差/分2初三(1)班2424 5.4初三(2)班2421(2)哪个班的学生纠错的得分更稳定?若把24分以上(含24分)记为“优秀”,两班各40名学生,请估计两班各有多少名学生成绩优秀;(3)现从两个班抽取了数学成绩最好的甲、乙、丙、丁四位同学,并随机分成两组进行数学竞赛,求恰好选中甲、乙一组的概率.【答案】(1)答案见解析;(2)初三(1)班的学生纠错的得分更稳定.28名,24名;(3)16.【解析】(1)中位数、众数的定义、方差的定义进行解答即可;(2)方差越小越稳定.找到样本中24分和24分人数所占的比例,即可得出答案;(3)画出树状图,由树状图求得所有可能的结果与甲、乙分在同一组的情况,再利用概率公式即可求得答案.【详解】(1)初三(1)班有4名学生24分,最多,故众数为24分;把初三(2)班的成绩从小到大排列,则处于中间位置的数为24和24,故中位数为24分,初三(1)班的方差为:S 22=110[(21﹣24)2×3+(24﹣24)2×2+(27﹣24)2×2+(30﹣24)2×2+(15﹣24)2]=110×198=19.8; 补全如表: 比较 平均数/分 中位数/分 众数/分 方差/分2 初三(1)班 24 24 24 5.4 初三(2)班 24242119.8故答案为:24,24,19.8; (2)∵S 12<S 22,∴初三(1)班的学生纠错的得分更稳定.初三(1)班优秀学生为40×4310+=28人; 初三(2)班优秀学生为40×610=24人.(3)画树状图如图:共有12种等可能的结果,恰好选中甲、乙一组的有2种情况, ∴恰好选中甲、乙一组的概率为212=16. 【点睛】此题考查了列表法或树状图法、方差、众数和中位数.注意概率=所求情况数与总情况数之比19.设a 、b 、c 为三个不同的实数,使得方程210x ax ++=和20x bx c ++=有一个相同的实数根,并且使方程20x x a ++=和20x cx b ++=也有一个相同的实数根,试求a b c ++的值. 【答案】a +b +c =-3.【解析】设21110x ax ++=,2110x bx c ++=,得11c x a b-=-,同理,由2220x x a ++=,2220x cx b ++=,得2(1)1a bxc c -=≠-,再根据韦达定理即可求解. 【详解】解:设21110x ax ++=,2110x bx c ++=,两式相减,得1()10a b x c -+-=,解得11c x a b-=-, 同理,由2220x x a ++=,2220x cx b ++=,得2(1)1a bx c c -=≠-, 211x x =, ∴11x 是第一个方程的根, 1x 与11x 是方程21110x ax ++=的两根, 2x ∴是方程210x ax ++=和20x x a ++=的公共根,因此两式相减有2(1)(1)0a x --=, 当1a =时,这两个方程无实根, 故21x =,从而11x =, 于是2a =-,1b c +=-, 所以3a b c ++=-. 【点睛】本题考查了根与系数的关系及二元一次方程的解,关键是根据韦达定理解题,属于中档题.20.在正方形ABCD 中,P 为AB 的中点,BE PD ⊥的延长线于点E ,连接AE 、BE 、FA AE ⊥交DP 于点F ,连接BF ,FC .求证下列结论:(1)FB AB =;(2)CF EF ⊥,FC EF =.【答案】(1)证明见解析;(2)证明见解析.【解析】(1)根据已知和正方形的性质推出EAB DAF ∠=∠,EBA ADP ∠=∠,AB AD =,证ABE ADF ≅即可;取EF 的中点M ,连接AM ,推出AM MF EM DF ===,证AMB FMB ∠=∠,BM BM =,AM MF =,推出ABM FBM ≅,利用全等三角形的性质得出结论;(2)利用(1)中ABM FBM ≅可得BAM BFM ∠=∠,求出FDC EBF ∠=∠,推出BEF DFC ≅,利用全等三角形的性质即可得出结论. 【详解】 证明:(1)正方形ABCD ,BE PD ⊥,EA FA ⊥,AB AD CD BC ∴===,90BAD EAF BEF ∠=∠=︒=∠,APD EPB ∠=∠,∴∠=∠EAB DAF ,EBA ADP ∠=∠,AB AD =,在ABE △与ADF 中,EAB DAF AB ADEBA ADP ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()ABE ADF ASA ∴≅,AE AF ∴=,BE DF =,45AEF AFE ∴∠=∠=︒,取EF 的中点M ,连接AM ,AM EF ∴⊥,AM EM FM ==,//BE AM ∴,AP BP =, AM BE DF ∴==,45EMB EBM ∴∠=∠=︒,9045135AMB FMB ∴∠=︒+︒=︒=∠,在ABM 与FBM 中,AM FM AMB FMB BM BM =⎧⎪∠=∠⎨⎪=⎩, ()ABM FBM SAS ∴≅,AB BF ∴=;(2)ABM FBM ≅,BAM BFM ∴∠=∠,90BEF ∠=︒,AM EF ⊥,90BAM APM ∴∠+∠=︒,90EBF EFB ∠+∠=︒,APF EBF ∴∠=∠,//AB CD ,APD FDC ∴∠=∠, EBF FDC ∴∠=∠,在BEF 与DFC △中,BE DF EBF FDC BF CF =⎧⎪∠=∠⎨⎪=⎩, ()BEF DFC SAS ∴≅,CF EF ∴=,90DFC FEB ∠=∠=︒, CF EF ∴=且CF EF ⊥.【点睛】本题主要考查对正方形的性质,等腰直角三角形,直角三角形斜边上的中线性质,全等三角形的性质和判定,三角形的内角和定理等知识点的理解和掌握,综合运用这些性质进行推理是解此题的关键. 21.已知函数y =261x +,请根据已学知识探究该函数的图象和性质. (1)列表,写出表中a 、b 、c 的值:a = ,b = ,c = . x … ﹣3 ﹣2 ﹣1 0 1 2 3 … y …0.6a3b31.2c…(2)描点、连线,在下面的平面直角坐标系中画出该函数的图象,并写出该函数的一条性质: .(3)已知函数y =x +2的图象如图所示,结合你所画的函数图象,直接写出不等式261x +≥x +2的解集: .【答案】(1)1.2,6,0.6;(2)图象见解析,函数关于y 轴对称;(3)图象见解析,x ≤1. 【解析】(1)分别将x 的值代入函数y =261x +中,可得结论; (2)根据表中的数据,描点连线、画出函数的图象,并直接说性质; (3)由图象:函数y =261x +的图象在y =x +2的图象的上方对应的x 值取值范围可得. 【详解】解:(1)当x =﹣2时,a =641+=1.2, 当x =0时,b =6, 当x =3时,c =2631+=0.6, 故答案为:1.2,6,0.6; (2)如图所示:性质:函数关于y 轴对称;(答案不唯一:或函数有最大值是6); 故答案为:函数关于y 轴对称; (3)由图象得:不等式261x +≥x +2的解集是:x ≤1;故答案为:x ≤1.【点睛】本题考查了一次函数的图象与性质,一次函数与一元一次不等式,利用数形结合思想,正确画出函数的图象是解题的关键.22.如图,AB 是半O 的直径,点C 是半圆弧的中点,点D 是弧AC 的中点,连结BD 交AC 、OC 于点E 、F .(1)在图中与BOF 相似的三角形有 个;(2)求证:2BE AD =;(3)求DE BE的值. 【答案】(1)3;(2)证明见解析;(3)212. 【解析】(1)利用相似三角形的判定方法,结合圆周角定理得出即可;(2)利用全等三角形的判定与性质得出ACG BCE ≅,进而求出即可; (3)利用已知首先判断DHE BCE ,进而得出答案. 【详解】(1)因为圆周角ADB ∠、ACB ∠所对的弦是直径,所以90ADB ACB ∠=∠=, 由点D 是弧AC 的中点,可得:ABD CBD ∠=∠;又点C 是半圆弧的中点,所以90FOB COB ∠=∠=,因此由ADB FOB ∠=∠,DBA FBO ∠=∠得BAD BFO ;由ECB ACB FOB ∠=∠=∠,FBO ABD CBD CBE ∠=∠=∠=∠,所以BCE BOF ;又AED CEB ∠=∠,90ADB ACB ∠=∠=,所以DAE CBE FBO ∠=∠=∠, 又90ADE FOB ∠=∠=,所以ADE BOF ,即与BOF 相似的三角形有BAD ;EAD ;BEC △共3个.(2)证明:如图,延长AD 与BC 相交于G ,∵点C 是半圆弧的中点,点D 是弧AC 的中点,∴CBE GAC ∠=∠,在ACG 和BCE 中∵GAC CBE AC BC ACG BCE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴ACG BCE ≅∴BE AG =,而2AG AD =,∴2BE AD =.(3)解:如图,连接OD 交AC 于点H ,则OD AC ⊥,可得://DH BC ,故DHE BCE , 故DE DH BE BC =,设2BC x =,则2OD OB x ==, 故OH x =,()21DH x =-, 则212DE BE -=.【点睛】此题主要考查了相似三角形的判定与性质以及全等三角形的判定与性质,正确利用圆周角定理得出对应角相等是解题关键.23.在平面直角坐标系xOy 中,抛物线y =x 2﹣2x ﹣3与x 轴相交于A ,B (点A 在点B 的左边),与y 轴相交于C .(1)求直线BC 的表达式.(2)垂直于y 轴的直线l 与直线BC 交于点N (x 1,y 1),与抛物线相交于点P (x 2,y 2),Q (x 3,y 3).若x 1<x 2<x 3,结合函数图象,求x 1+x 2+x 3的取值范围.【答案】(1)y =x ﹣3;(2)1<x 1+x 2+x 3<2.【解析】(1)利用抛物线解析式求得点B 、C 的坐标,利用待定系数法求得直线BC 的表达式即可;(2)由抛物线解析式得到对称轴和顶点坐标,结合图形解答.【详解】(1)由y=x2﹣2x﹣3得到:y=(x﹣3)(x+1),C(0,﹣3).所以A(﹣1,0),B(3,0),设直线BC的表达式为:y=kx+b(k≠0),则330 bk b=-⎧⎨+=⎩,解得13 kb=⎧⎨=-⎩,所以直线BC的表达式为y=x﹣3;(2)由y=x2﹣2x﹣3得到:y=(x﹣1)2﹣4,所以抛物线y=x2﹣2x﹣3的对称轴是直线x=1,顶点坐标是(1,﹣4).∵y2=y3,∴x2+x3=2.令y=﹣4,y=x﹣3,x=﹣1.∵x1<x2<x3,∴﹣1<x1<0,即1<x1+x2+x3<2.【点睛】本题考查了抛物线与x轴的交点,待定系数法求一次函数的解析式,“数形结合”的数学思想是解题的关键.。
2020年秋季高一新生入学分班考试数学试卷(浙江专用)01一、单选题(★) 1. 下列计算中正确的是()A.a6÷a2=a3B.(a4)2=a6C.3a2﹣a2=2D.a2•a3=a5(★) 2. 已知圆锥的底面直径与母线长均为10cm,则该圆锥的全面积为()A.50πcm2B.75πcm2C.100πcm2D.150πcm2(★★) 3. 关于 x的代数式( x+ a)( x+ b)( x+ c)的化简结果为 x 3+ mx+2,其中 a, b, c,m都是整数,则 m的值为()A.﹣3B.﹣2C.﹣1D.不确定(★★) 4. 如图,在△ ABC中, BD平分∠ ABC, E是 BC的中点,过点 E作 BC的垂线交 BD于点 F,连结 CF.若∠ A=50°,∠ ACF=40°,则∠ CFD的度数为()A.30°B.45°C.55°D.60°(★★) 5. 定义一种对正整数 n的“ F”运算:①当 n为奇数时,结果为3 n+5;②当 n为偶数时,结果为;(其中 k是使为奇数的正整数),并且运算可以重复进行,例如,取 n=26.则:若 n=49,则第449次“ F运算”的结果是()A.98B.88C.78D.68(★★) 6. 已知: a, b, c三个数满足,则的值为()A.B.C.D.(★★) 7. 已知min{ , x 2, x}表示取三个数中最小的那个数,例如:当 x=9,min{ , x 2, x}=min{ ,9 2,9}=3﹒当min{ , x 2, x}=时,则 x的值为()A.B.C.D.(★★★) 8. 使方程2 x 2﹣5 mx+2 m 2=5的一根为整数的整数 m的值共有()A.1个B.2个C.3个D.4个(★★★) 9. 关于 x的不等式组有四个整数解,则 a的取值范围是()A.B.C.D.(★★) 10. 小王同学类比研究一次函数性质的方法,研究并得出函数的四条性质,其中错误的是()A.当时,具有最小值为B.如果的图象与直线有两个交点,则C.当时,D.的图象与轴围成的几何图形的面积是二、双空题(★★★) 11. 已知 x 2﹣2 x﹣1=0,则3 x 2﹣6 x=__;则2 x 3﹣7 x 2+4 x﹣2019=_____.三、填空题(★) 12. 若,则_____.(★) 13. 小明的爸爸妈妈各有2把钥匙,可以分别打开单元门和家门,小明随机从爸爸和妈妈的包里各拿出一把钥匙,恰好能打开单元门和家门的概率______.(★★) 14. 已知 a+ b+ c=0, a> b> c,则的取值范围是_______.(★★★) 15. 若函数的图象经过, ,当时,随的增大而减小,则实数的范围_______.(★★★) 16. 如图,已知直线 y= x﹣3与 x轴、 y轴分别交于 A、 B两点, P在以 C(0,1)为圆心,1为半径的圆上一动点,连结 PA、 PB,则△ PAB面积的最大值是_______.(★★★) 17. 已知关于的一元二次方程:(1)若,求方程的解;(2)若方程恰有两个不同解,求实数的取值范围.四、解答题(★) 18. (1)计算:[ xy(2 x 2 y﹣ xy 2)﹣ y(3 x 2 y 2+ x 3 y)]÷2 x 2 y;(2)解方程组:.(★★) 19. 观察下列等式:(4﹣1)(4 2+4×1+1 2)=4 3﹣1 3,(3﹣2)(3 2+3×2+2 2)=3 3﹣2 3,(5﹣7)(5 2+5×7+7 2)=5 3﹣7 3,………………(1)观察上述规律可归纳出一公式( a﹣ b)()=;(2)利用上述规律计算:( x﹣2)( x 2+2 x+4)﹣ x 3+1;(3)尝试在实数范围内因式分解: x 3﹣27;(4)先化简:+( x+1)(1﹣ x),再求当 x=﹣1时原式的值.(★) 20. 某校为了提高学生的实践能力,开展了手工制作比赛.已知参赛作品分数记为 x分(60≤ x≤100),校方在参赛作品中随机抽取了50件作品进行质量评估,分数情况统计表和统计图如图所示:手工制作比赛作品分数情况频数分布表手工制作比赛作品分数情况频数分布直方图根据以上信息解答下列问题:手工制作比赛作品分数情况频数分布表分数段频数频率60≤x<70150.370≤x<8022c80≤x<90a0.290≤x≤100b0.06合计501(1)频数分布表中c的值为;(2)补全频数分布直方图;(3)本次比赛校方共收到参赛作品800件,若80分以上(含80分)的作品将被展出,试估计全校将展出的作品数量.(★★) 21. 我国于2019年6月5日首次完成运载火箭海上发射,达到了发射技术的新高度.如图,运载火箭海面发射站点 M与岸边雷达站 N处在同一水平高度.当火箭到达点 A处时,测得点 A距离发射站点 M的垂直高度为9千米,雷达站 N测得 A处的仰角为37°,火箭继续垂直上升到达点 B处,此时海岸边 N处的雷达测得 B处的仰角为70°,根据下面提供的参考数据计算下列问题:(1)求火箭海面发射站点 M与岸边雷达站 N的距离;(2)求火箭所在点 B处距发射站点 M处的高度.(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,sin37°≈0.6,cos37°≈0.80,tan37°≈0.75)(★★★) 22. 已知抛物线( a, c是常数,且a≠0),过点(0,2). (1)求 c的值,并通过计算说明点是否也在该抛物线上;(2)若该抛物线与直线 y=5只有一个交点,求 a的值;(3)若当0≤ x≤2时, y随 x的增大而增大,求 a的取值范围.(★★★★) 23. 如图,点 A在线段 EB上,且 EA= AB,以 AB直径作⊙ O,过点 E作射线EM交⊙ O于 D、 C两点,且.过点 B作BF⊥ EM,垂足为点 F.(1)求证:;(2)求tan∠ CBF的值.。
2020年高一新生入学分班考数学测试卷浙江专用
一、单选题1.一元二次方程x 2﹣+6=0的根的情况为( )
A .有两个不相等的实数根
B .有两个相等的实数根
C .只有一个实数根
D .没有实数根
2.如图,AB 是⊙O 的直径,BP 是⊙O 的切线,AP 与⊙O 交于点C ,D 为BC 上一点,若⊙P =36°,则⊙ADC 等于( )
A .18°
B .27°
C .36°
D .54°
3.如果把1、3、6、10…这样的数称为“三角形数”,而把1、4、9、16…这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( )
A .13=3+10
B .25=9+16
C .49=18+31
D .36=15+21
4.甲、乙、丙进入了“中国主持人大赛”的东南区预选赛的决赛,他们三人擅长主持的节目分别是A 、B 、C .现将标有A 、B 、C 的三个标签的球放入不透明的盒子中,让三位选手随机摸取一球,以确定比赛时的节目.则三人抽到的恰好都是自己擅长主持的节目的概率是( )
A .13
B .1
2 C .16 D .19
5.在平面直角坐标系中,若点A (1,m )到原点的距离小于或等于5,则m 的取值范围是( )
A .0≤m
B .0≤m
C m
D .﹣m
6.如图,在⊙ABC 中,4575B C AD ∠︒∠︒=,=,平分BAC ∠,交BC 于点D ,DE AC ⊥,垂足为E ,若2DE =,则AB 的长为( )
A .6
B 4
C
D .2+7.已知函数()2
2
1x f x x =+,若M =f (1)+f (2)+f (3)+…+f (2013)+f (2014),11111...23420132014N f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭
,则M +N =( ) A .2014 B .40292 C .2013 D .40272
8.如图,一艘快艇从O 港出发,向东北方向行驶到A 处,然后向西行驶到B 处,再向东南方向行驶,共经过1小时到O 港,已知快艇的速度是60km/h ,则A ,B 之间的距离是( )
A .60-
B .60
C .120-
D .120
9.设x ,则341x ⎛⎫+ ⎪⎝⎭
=( ) A .3 B .4 C .5 D .8
10.已知抛物线y =ax 2+bx +c (a <0)的对称轴为直线x =﹣2,记m =a +b ,n =a ﹣b ,则下列选项中一定成立的是( )
A .m =n
B .m <n
C .m >n
D .n ﹣m <3
二、填空题 11.已知扇形的弧长为8cm π,面积为224cm π,则该扇形的圆心角度数为__.
12.若⊙ABC 的三边长为3,4,5,则⊙ABC 的外接圆半径R 与内切圆半径r 的差为__.
13.如果关于x 的一元二次方程ax 2+bx +c =0有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”,若(x ﹣1)(mx ﹣n )=0是倍根方程,则2n m
的值为__. 14.如图1表示一个时钟的钟面垂直固定于水平桌面上,其中分针上有一点A ,当钟面显示3点30分时,分针垂
直与桌面,A 点距离桌面的高度为10公分,若此钟面显示3点45分时,A 点距桌面的高度为16公分,如图2,钟面显示3点50分时,A 点距桌面的高度__.
15.若函数2y ax bx c =++的图象经过()1,0P ,()5,4Q -,当15x ≤≤时,y 随x 的增大而减小,则实数a 的范围__. 16.已知直线l 经过点D (﹣1,4)与x 轴负半轴和y 轴正半轴分别交于A ,B 两点,且Rt⊙AOB 的内切圆面积为π,则直线l 对应的一次函数表达式为__.
三、解答题 17.阅读以下材料:对数的创始人是苏格兰数学家纳皮尔(J .Napier ,1550年﹣1617年),纳皮尔发明对数是在指数概念建立之前,直到18世纪瑞士数学家欧拉(Euler ,1707年﹣1783年)才发现指数与对数之间的联系.对数的定义:一般地,若x a N =()00a a >≠, ,则x 叫做以a 为底N 的对数,记作log a x N =.比如指数式4216=可以转化为24log 16=,对数式52log 25=可以转化为2525=..我们根据对数的定义可得到对数的一个性质:
()010a a a log MN log M log N a ,a M N 0=+>≠>>,,
.理由如下:设log a M m =,log a N n =,所以m M a =,n N a =,所以
m n m n MN a a a +==,
由对数的定义得:a m n log MN +=,又因为log log a a m n M N +=+,所以log log log a a a MN M N =+ 解决以下问题:
(1)将指数35=125转化为对数式:__.
(2)仿照上面的材料,试证明:log log log a a a M M N N
=-()010a ,a M N 0>≠>>,,. (3)拓展运用:计算3332+18-4=____log log log .
18.受疫情影响,很多学校都纷纷响应了“停课不停学”的号召.开展线上教学活动.为了解学生上网课使用的设备类型.某校从“电脑、手机、电视、其它“四种类型的设备对学生进行了一次抽样调查.调查结果显示.每个学生只选择了以上四种设备类型中的一种.现将调查的结果绘制成如图两幅不完整的统计图,请你根据图中提供的信息.解答下列问题:
(1)补全条形统计图;
(2)若该校共有1500名学生,估计全校用手机上网课的学生共有多少名;
(3)在上网课时,老师在A、B、C、D四位同学中随机抽取一名学生回答问题.求两次都抽取到同一名学生回答问题的概率.
19.已知22
5221410170
x y xy x y
--+
+=
+,求x,y的实数值.
20.甲、乙两家樱桃采摘园的樱桃品质相同,销售价格也相同.六月初,为庆祝“六一儿童节“,两家均推出了优惠方案,甲采摘园的优惠方案是:游客进园需购买60元的门票,采摘的樱桃六折优惠;乙采摘园的优惠方案是:游客进园不需购买门票,采摘的樱桃超过一定数量后,超过部分打折优惠,优惠期间,设某游客的樱桃采摘量为x(千克),在甲采摘园所需总费用为1y(元),在乙采摘园所需总费用为2y(元),图中折线OAB表示2y与x之间的函数关系.
(1)求1y、2y与x的函数表达式;
(2)当10
x>时,求甲采摘园所需总费用小于乙采摘园所需总费用时樱桃采摘量x的范围.
21.如图,在四边形ABCD中,AB=AD,⊙DAC=⊙ABC=⊙ACD=45°,点G,H分别是线段AC,CD的中点.
(1)求证:⊙GAB⊙⊙BAC;
(2)求BG
BC
的值;
(3)求证:B,G,H三点在同一条直线上.
22.如图,在Rt⊙ABC中,⊙C=90°,以BC为直径的⊙O交AB于点D,切线DE交AC于点E.
(1)求证:⊙A=⊙ADE;
(2)若AD=8,DE=5,求⊙O的半径.
23.如图,在平面直角坐标系中,已知点A的坐标为(2,4),直线x=2与x轴相交于点B,连结OA,抛物线C:y=x2沿射线OA方向平移得到抛物线C',抛物线C'与直线x=2交于点P,设抛物线C'的顶点M的横坐标为m.
(1)求抛物线C'的解析式(用含m的式子表示);
(2)连结OP,当tan(⊙OAB﹣⊙AOP)=8
21
时,求点P的坐标;
(3)点Q为y轴上的动点,以P为直角顶点的⊙MQP与⊙OAB相似,求m的值.。