第2讲 数形结合思想 (学生)
- 格式:doc
- 大小:188.51 KB
- 文档页数:8
立足数形结合思想培养小学生的数学思维作者:林明华来源:《天津教育·下》2023年第10期曾有教育工作者说:“把握好数形结合之度,就可以使问题化难为易,化繁为简。
”所以,教师在小学数学教学活动中要科学、有效地落实数形结合思想,将“数”与“形”深度融合,把握二者融合程度,使二者相互依存的同时避免过度依赖。
同时,在落实数形结合思想的教学活动中,教师要充分遵循“生本理念”,尊重学生的课堂主体地位,基于学生设计数形结合教学活动,有效培养学生的数学思维,使学生在数学思维的支撑下发展问题解决能力和自主学习能力。
一、数形结合思想概述数形结合思想就是通过数字与图形的深入结合开展教学活动的教育思想,主张将数学、符号与集合图形相结合,运用数字概括图形相关知识,运用图形展现数学理论知识,增加数学理论的直观性和形象性,降低教学内容的抽象性,便于学生掌握,循序渐进地发展抽象思维,提高学生数学认知和理解能力。
通过数字符号概括几何图形,可以实现数学知识体系的建构,推动学生以数学基本理论知识为基础,综合发展自身能力和数学思维。
数形结合思想主要体现数字、字符与图形的相互促进和相互推动,教学核心在于数字、字符与几何图形不断转换,但要求数、形转换过程中二者的联系不变,对学生转换能力具有较高的要求,推动学生精准把握數、形之间的变量和定量,基于定量探究二者的变换点,通过变量寻找二者的关系,实现教学过程的丰富、多元、简洁和学习过程的高效。
就当下来看,数形结合思想逐渐普及到小学数学教学活动中,成为数学教学活动重要的教学手段,对小学阶段学生学习思维的发展具有重要的推动作用。
与传统的教学模式相比,数形结合教育思想具有形象性、快捷性和丰富性特点,可以较大程度地丰富的学生思想意识,助力学生成长。
二、数形结合思想在小学数学教学中的应用价值(一)激发学生学习热情数学是思维逻辑严谨的学科,对学生而言具有较大的难度,导致学生在学习数学的过程中容易出现抗拒心理,缺乏学习热情和学习兴趣,难以感受到数学学科的魅力。
浅谈初中数学中的数形结合思想在解决初中数学问题过程中,运用数形结合的思想,根据问题的具体情形,把图形性质问题转化成数量关系来研究。
或者把数量关系问题转化成图形性质来研究,以便以“数”助“形”或以“形”助“数”,使问题简单化、具体化,促进“数”与“形”的相互渗透,这种转换不但能提高教学质量,同时也能有效地培养学生思维素质,所以“数形结合”是初中数学的重要思想,也是学好初中数学的关键所在。
数形结合在数学教学中对学生能力的培养是非常重要的,而对一个学生数学能力的培养主要包括使学生形成运算能力和利用数学思想方法解题的能力。
数学思想是对数学知识的更高层次的概括和提炼,是培养学生数学能力的最重要的环节。
数形结合的思想是初中数学学习中一个重要的数学思想,它贯穿了数学教学的始终。
本文就数形结合的思想谈一点自己的认识。
数形结合的思想就是根据数(量)与形(图)的对应关系,把数与形结合起来进行分析研究把抽象的数学语言与直观的图形结合起来;使复杂的问题简单化抽象的问题具体化;通过图形的描述代数的论证来研究和解决数学问题的一种思想方法。
数形结合的思想在初中数学中的应用主要体现在一下两个方面。
一、有数思形数形结合,用形来解决数的问题和解决一些运算公式;把代数关系(数量关系)与几何图形的直观形象有机的结合起来,使抽象的问题形象化复杂的问题简单化。
如1.利用数轴来讲解绝对值的概念、相反数的概念、有理数的加、减、乘、除运算等。
2.用几何图形来推导平方差、平方和、完全平方公式以及多边形外角和定理。
3.用函数的图像解决函数的最值问题、值域问题。
4.用图形比较不等式的大小问题。
解这种类型题的关键是根据数(量)结构特征构造出相应的几何图形,将概念形象化,复杂计算的问题简单化。
二、由形思数数形结合。
解决这类问题的关键是运用数的精确性来阐明形的某些属性;将图形信息转化为代数信息,利用数(量)特征将图形问题转化为代数问题来解决。
这类问题在初中数学中运用的也比较多,如:1.用数(量)表示角的大小和线段的大小,用数(量)的大小比较角的大小和线段的大小。
数形结合思想方法一、知识整合1.数形结合是数学解题中常用的思想方法,使用数形结合的方法,很多问题能迎刃而解,且解法简捷。
所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法。
数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化能够变抽象思维为形象思维,有助于把握数学问题的本质,它是数学的规律性与灵活性的有机结合。
2.实现数形结合,常与以下内容有关:①实数与数轴上的点的对应关系;②函数与图象的对应关系;③曲线与方程的对应关系;④以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;⑤所给的等式或代数式的结构含有明显的几何意义。
如等式()()x y -+-=214223.纵观多年来的高考试题,巧妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果,数形结合的重点是研究“以形助数”。
4.数形结合的思想方法应用广泛,常见的如在解方程和解不等式问题中,在求函数的值域,最值问题中,在求复数和三角函数问题中,运用数形结合思想,不仅直观易发现解题途径,而且能避免复杂的计算与推理,大大简化了解题过程。
这在解选择题、填空题中更显其优越,要注意培养这种思想意识,要争取胸中有图,见数想图,以开拓自己的思维视野。
二、例题分析例1.2230 13x x kx k k ++=-若关于的方程的两根都在和之间,求的取值范围。
分析:2()23f x x kx k x =++令,其图象与轴交点的横坐标就是方程()0f x =()13y f x =-的解,由的图象可知,要使二根都在,之间, (1)0f ->只需,(3)0f >,()()02bf f k a-=-<同时成立. 10(10)k k -<<∈-解得,故,例2. 解不等式x x +>2 解:法一、常规解法:原不等式等价于或()()I x x x x II x x ≥+≥+>⎧⎨⎪⎩⎪<+≥⎧⎨⎩2020202解,得;解,得()()I x II x 0220≤<-≤<综上可知,原不等式的解集为或{|}{|}x x x x x -≤<≤<=-≤<200222 法二、数形结合解法: 令,,则不等式的解,就是使的图象y x y x x x y x 121222=+=+>=+在的上方的那段对应的横坐标,y x 2=如下图,不等式的解集为{|}x x x x A B ≤<而可由,解得,,,x x x x x B B A +===-222故不等式的解集为。
第二讲数形结合思想对应学生用书P1291数形结合的含义(1)数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法.数形结合思想通过“以形助数,以数辅形”,使复杂问题简单化,抽象问题具体化,能够变抽象思维为形象思维,有助于把握数学问题的本质,它是数学的规律性与灵活性的有机结合.(2)数形结合包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:一是借助形的生动性和直观性来阐明数形之间的联系,即以形作为手段,数作为目的,比如应用函数的图象来直观地说明函数的性质;二是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质.2数形结合的途径(1)通过坐标系“形题数解”借助于直角坐标系、复平面,可以将几何问题代数化.这一方法在解析几何中体现得相当充分(在高考中主要也是以解析几何作为知识载体来考查的).值得强调的是,“形题数解”时,通过辅助角引入三角函数也是常常运用的技巧(这是因为三角公式的使用,可以大大缩短代数推理).实现数形结合,常与以下内容有关:①实数与数轴上的点的对应关系;②函数与图象的对应关系;③曲线与方程的对应关系;④以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;⑤所给的等式或代数式的结构含有明显的几何意义.如等式(x -2)2+(y -1)2=4,表示坐标平面内以(2,1)为圆心,2为半径的圆.(2)通过转化构造“数题形解”许多代数结构都有着相对应的几何意义,据此,可以将数与形进行巧妙地转化.例如,将a (a >0)与距离互化;将a 2与面积互化,将a 2+b 2+ab =a 2+b 2-2|a ||b |cos θ(θ=60°或θ=120°)与余弦定理沟通;将a ≥b ≥c >0且b +c >a 中的a 、b 、c 与三角形的三边沟通;将有序实数对(或复数)和点沟通;将二元一次方程与直线、将二元二次方程与相应的圆锥曲线对应等等.这种代数结构向几何结构的转化常常表现为构造一个图形(平面的或立体的).另外,函数的图象也是实现数形转化的有效工具之一,正是基于此,函数思想和数形结合思想经常相互渗透,演绎出解题捷径.例1 已知函数f (x )=sin ⎝ ⎭⎪⎫2ωx +π3的相邻两条对称轴之间的距离为π4,将函数f (x )的图象向右平移π8个单位后,再将所有点的横坐标伸长为原来的2倍,得到g (x )的图象,若g (x )+k =0在x ∈⎣⎢⎡⎦⎥⎤0,π2有且只有一个实数根,则k 的取值范围是( )A.k ≤12B .-1≤k <-12 C.-12<k ≤12 D .-12<k ≤12或k =-1解析 因为f (x )相邻两条对称轴之间的距离为π4,结合三角函数的图象可知T 2=π4.又T =2π2ω=πω=π2,所以ω=2,f (x )=sin ⎝ ⎛⎭⎪⎫4x +π3. 将f (x )的图象向右平移π8个单位得到f (x )=sin ⎣⎢⎡⎦⎥⎤4⎝ ⎛⎭⎪⎫x -π8+π3=sin ⎝ ⎛⎭⎪⎫4x -π6,再将所有点的横坐标伸长为原来的2倍得到g (x )=sin ⎝ ⎛⎭⎪⎫2x -π6. 所以方程为sin ⎝ ⎛⎭⎪⎫2x -π6+k =0. 令2x -π6=t ,因为x ∈⎣⎢⎡⎦⎥⎤0,π2,所以-π6≤t ≤5π6. 若g (x )+k =0在x ∈⎣⎢⎡⎦⎥⎤0,π2有且只有一个实数根, 即g (t )=sin t 与y =-k 在⎣⎢⎡⎦⎥⎤-π6,5π6有且只有一个交点. 如图所示,由正弦函数的图象可知-12≤-k <12或-k =1,即-12<k ≤12或k =-1.利用数形结合求方程解应注意两点(1)讨论方程的解(或函数的零点)可构造两个函数,使问题转化为讨论两曲线的交点问题,但用此法讨论方程的解一定要注意图象的准确性、全面性,否则会得到错解.(2)正确作出两个函数的图象是解决此类问题的关键,数形结合应以快和准为原则而采用,不要刻意去数形结合.模拟演练1 已知函数f (x )满足f (x )+1=1f (x +1),当x ∈[0,1]时,f (x )=x ,若在区间(-1,1]上方程f (x )-mx -m =0有两个不同的实根,则实数m 的取值范围是( )A.⎣⎢⎡⎭⎪⎫0,12 B.⎣⎢⎡⎭⎪⎫12,+∞ C.⎣⎢⎡⎭⎪⎫0,13 D.⎝ ⎛⎦⎥⎤0,12 答案 D解析方程f (x )-mx -m =0有两个不同的实根等价于方程f (x )=m (x +1)有两个不同的实根,等价于直线y =m (x +1)与函数f (x )的图象有两个不同的交点.因为当x ∈(-1,0)时,x +1∈(0,1),所以f (x )+1=1f (x +1)=1x +1,所以f (x )=1x +1-1,所以f (x )=⎩⎨⎧ x ,x ∈[0,1]1x +1-1,x ∈(-1,0).在同一平面直角坐标系内作出直线y =m (x+1)与函数f (x ),x ∈(-1,1]的图象,由图象可知,当直线y =m (x +1)与函数f (x )的图象在区间(-1,1]上有两个不同的公共点时,实数m 的取值范围为⎝ ⎛⎦⎥⎤0,12.例2 (1)使log 2(-x )<x +1成立的x 的取值范围是________.(2)若不等式|x -2a |≥12x +a -1对x ∈R 恒成立,则a 的取值范围是________.。
浅谈小学数学“数形结合”思想小学数学教学担负着培养小学生数学素养的特殊任务,而数学思想方法是数学的灵魂和精髓,是数学素养的本质所在,因此我们必须给予充分的重视和关注。
数学新课程标准也明确指出:“通过义务教育阶段的数学学习,学生应该获得适应未来社会生活和进一步发展所必需的重要数学知识以及基本的数学思想方法和必要的应用技能。
”数形结合思想是根据“数”与“形”之间的对应关系,通过数与形的相互转化,将抽象的数学语言与直观的图形结合起来解决问题的思想方法。
数形结合思想是数学中最重要、最基本的思想方法之一,是解决许多数学问题的有效思想。
“数”和“形”是紧密联系的。
我们在研究“数”的时候,往往要借助于“形”,在探讨“形”的性质时,又往往离不开“数”。
伟大的数学家华罗庚先生也曾这样形容过“数”与“形”的关系:“数形本是相倚依,焉能分作两边飞,数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休。
”利用数形结合能使“数”和“形”统一起来。
以形助数、以数辅形,可使计算中的算式形象化,帮助学生在理解算理的基础上掌握算法;可将复杂问题简单化,在解决问题的过程中,提高学生的思维能力和数学素养。
适时的渗透数形结合的思想,可达到事半功倍的效果。
一、数形结合,使概念掌握得更扎实。
对1~2年级的学生来说,许多数学概念比较抽象,很难理解,特别需要视觉的有效应用,因此有时教师可采用数形结合的思想展开概念的教学,运用图形提供一定的数学问题情境,通过对图形的分析,帮助学生理解数学概念。
例如,在教学100以内的数的认识时,学生大多对100以内的数顺背、倒背如流,看上去掌握得很不错。
于是我出示了这样一道题考考学生:66接近70还是60呢?结果却发觉好多学生都不会。
分析其原因主要是有些学生只是机械地会背这些数,关于数的顺序、大小等方面的知识其实掌握不佳,因而需要教师创设一定的情境让学生进一步感知和学习的。
于是我在黑板上画了一条数轴,称它是一条带箭头的线,在数轴上逐一标出60~70,将抽象的数在可看得见的线上形象、直观地表示出来,将数与位置建立一一对应关系,这样就有助于学生理解数的顺序、大小。
思想方法专题数形结合思想【思想方法诠释】一、数形结合的思想所谓的数形结合,就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义,使数量关系和空间形式巧妙、和谐地结合起来,并充分利用这种“结合”,寻找解题思路,使问题得到解决,数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法。
数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化,从形的直观和数的严谨两方面思考问题,拓宽了解题思路,是数学的规律性与灵活性的有机结合.数形结合的实质是将抽象的数学语言与直观的图象结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化.二、数形结合思想解决的问题常有以下几种:1.构建函数模型并结合其图象求参数的取值范围;2.构建函数模型并结合其图象研究方程根的范围;3.构建函数模型并结合其图象研究量与量之间的大小关系;4.构建函数模型并结合其几何意义研究函数的最值问题和证明不等式;5.构建立体几何模型研究代数问题;6.构建解析几何中的斜率、截距、距离等模型研究最值问题;7.构建方程模型,求根的个数;8.研究图形的形状、位置关系、性质等。
三、数形结合思想是解答高考数学试题的一种常见方法与技巧,特别是在解选择题、填空题时发挥奇特功效,具体操作时,应注意以下几点:1.准确画出函数图象,注意函数的定义域;2.用图象法讨论方程(特别是含参数的方程)的解的个数是一种行之有效的方法,值得注意的是首先把方程两边的代数式看作是两个函数的表达式(有时可能先作适当调整,以便于作图)然后作出两个函数的图象,由图求解。
四、在运用数形结合思想分析问题和解决问题时,需做到以下四点:1.要清楚一些概念和运算的几何意义以及曲线的代数特征;2.要恰当设参,合理用参,建立关系,做好转化;3.要正确确定参数的取值范围,以防重复和遗漏;4.精心联想“数”与“形”,使一些较难解决的代数问题几何化,几何问题代数化,以便于问题求解。
专题 ·探究与研究45·2020/08(中)著名教育家赞可夫曾说:“教会学生思考,这对学生来说,是一生中最有价值的本钱。
”在数学教学中,关键要引导学生掌握数学思想的方法。
数形结合思想,正是一种重要的数学思想方法。
通过调查、听课发现,学生对数形结合思想的内涵与价值有一定的认识,但并不深刻。
为此,教师需进一步加强实践研究,在教学中渗透与引导,尝试与运用数形结合思想,促进学生数学素养的提升。
一、分年级段,循序渐进地渗透与引导任何一种数学思想的学习与掌握,不是一蹴而就的,应从低年级开始,持之以恒地有目的、有意识地培养。
一是低年级:关注并能画出示意图,打下数形结合思想的基础。
直观想象是数学的核心素养之一,其形成是以掌握相应的数学知识和数学技能为前提的。
可能有的教师认为,只要是“直观”的内容就浅显简单,其实不然。
例如,张平有4件上衣、3条裤子,请问有多少种不同的搭配方法?当学生用画图来解决这一问题时,会先画出上衣和裤子的实物图,但这不是直观,只有用简单的图形来代替实物,画出示意图,才是直观的想象,而这就需要教师的正确引导才能完成。
二是中年级:关注图形的抽象过渡,搭建数形结合的桥梁。
青岛版小学数学教材三年级上册正式引入了线段图,它和实物图、示意图相比,是很抽象的。
虽然线段图未能一一对应实物,但其长短关系仍然符合题目中的数量关系。
学生对于线段图的学习,需要教师的引导。
教师可以充分运用课件,清晰地展示出实物图到线段图的抽象过程,帮助学生认识线段图、理解线段图,会用线段图来表示数量关系。
三是高年级:关注解决问题的策略,感受数形结合的魅力。
对四、五年级学生来说,加强以形助数的教学仍有必要。
只有这样,才能深入贯通直观图形与抽象数量之间的联系。
教师要有意识地引导学生认识到数形结合是解决问题的有效策略,逐步教会学生运用数形结合解决问题的方法,培养学生运用数形结合解决问题的意识与能力。
二、有重点,选择时机来尝试与运用除了循序渐进地渗透数形结合思想方法外,还需要选择恰当的时机,引导学生在感悟体验、提炼升华、灵活运用中,形成解决问题的有效策略。
数学教学中培养学生的数形结合思想作者:张合田来源:《中学生数理化·教与学》2010年第10期学生在数学学习过程中涉及很多数学概念,而通过数形结合的方法对学生掌握这些概念是一个比较好的途径.本文就数形结合在数学教学中的如何进行培养,在学生把握对数学概念的应用,提高学生对数学的学习兴趣等方面谈谈自己的看法.一、教师要善于激发学生的“数形结合”兴趣,熏陶学生的“数形结合”意识有关数形结合思想的内容几乎贯穿于初中数学的始终我个人认为,“数轴”的学习对于处于“数形结合”萌芽时期的初中生而言是决定性的.因为它在初中生的数形结合能力培养过程中起到一个根基性的作用.一方面,它可以与有理数、无理数的学习联系起来,让初中生开始感受什么是数形结合.另一方面,它通过方程、不等式的应用让学生真正体验到数形结合的思想气息,而恰恰是这种体验令学生见证了数与形的和谐统一,并在潜移默化中最终形成运用数形结合的思想意识.1.在教学过程中处处结合数形结合思想初中阶段学生对于函数性质的学习,客观地说是有一定的难度的,尤其对函数的增减性,图象在直角坐标中的位置,以及图象的形状等内容难以把握.在具体教学的时候,教师可以考虑将抽象的数学语言与直观图形结合,达到化抽象为直观、化难为易的目的.2.在活动中贯穿数形结合思想例如,在讲“矩形的识别”时,可以这样设计,只有一条足够长的绳子,谁能够通过测量得出教室的门是矩形?同学们马上讨论起来,最后得出结论,用绳子量出门的长、宽和对角线,如果三组线段两两相等,那么就一定是矩形.通过实践认识知识形态的思想仅仅是一种感性认识,还要通过问题式教学,让学生独立找到解决办法,使他们认识到该问题的解决方法的实质是等积变换.在保持面积不变的情形下实现化归目标,而化归的手段是“三角形”移位,作辅助线是为“三角形移位”创造条件,在这种思想方法指导下,便能实现转化目标的正确选择.在使用数形结合方法的时候,必须结合教学内容和学生的实际,采取适当方法和措施,有意识地去体现和解释数学知识中抽象概念和形象事物之间的联系,提高学生的数学思维.对讲过的知识点必须及时总结和复习,强化这些知识,让它们在学生脑海中留下深刻的印象,促使学生对概念的认识从感性上升到理性.二、以“形”为起点——充分利用教材使学生感受“数形结合”“形”具有形象直观的优势,但也有其粗略和不便于表达的劣势.只有以简洁的数学描述、形式化的数学模型表达“形”的特性,才能更好地体现数学抽象化与形式化的魅力.以“形”为起点,充分利用教材使学生感受“数形结合”.例如,在讲“点阵中的规律”时,我不断地问自己“利用点阵来研究数的规律”,其更为深入的价值在哪?在深入分析研究教材的基础上,我认为本节课的教学:旨在让学生体会到我们借助点阵可以研究数的规律.如果仅仅研究数,将是很困难的.以“形”为起点,使学生探究出更多的“数”的规律.教学设计时,我让学生充分利用自己手中的点阵图(图略),认真观察,并提出活动要求:(1)独立思考.从不同角度观察正方形点阵.你发现点阵中有哪些不同的排列规律,并在图中表示出来.(2)组内交流.说一说你发现的排列规律.试着用算式表示出来.学生在图形的帮助下,了解图形中点的个数1,4,9,16,25…这些有规律的数是完全平方数,进而利用图形动手画一画可以发现更重要的规律.看似一节看图找规律的数学课.正是因为有了图形,激发了学生学习的欲望,锻炼了学生的思维.在短短的一节课中,学生总结出了一条又一条的重要公式.以“形”为起点,学生尝到了“数形结合”带给他们的快乐.三、渗透数形结合的思想,养成用数形结合分析问题的意识每个学生在日常生活中都具有一定的图形知识,如绳子和绳子上的结、刻度尺与它上面的刻度,温度计与其上面的温度,我们每天走过的路线可以看做是一条直线,教室里每个学生的坐位等,我们利用学生的这一认识基础,把生活中的形与数相结合迁移到数学中来,在教学中进行数学数形结合思想的渗透,挖掘教材提供的机会,把握渗透的契机如数与数轴,一对有序实数与平面直角坐标系,一元一次不等式的解集与一次函数的图象,二元一次方程组的解与一次函数图象之间的关系等,都是渗透数形结合思想的很好机会.总之,结合探索规律和生活中的实际问题,反复渗透,强化数学中的数形结合思想,使学生逐步形成数学学习中的数形结合的意识.在应用数形结合思想的时候注意一些基本原则,如是知形确定数还是知数确定形,在探索规律的过程中应该遵循由特殊到一般的思路进行,从而归纳总结出一般性的结论.。
数形结合数学思想方法2数形结合数学思想方法用图形的直观,帮助同学理解数量关系,提升教学效率用数形结合策略表示题中量与量之关系,可以达到化繁为简、化难为易的目的。
"数形结合'可以借助简单的图形(如统计图)、符号和文字所作的示意图,促进同学形象思维和抽象思维的协调发展,〔沟通〕数学知识之间的联系,从复杂的数量关系中凸显最本质的特征。
它是小学数学教材的一个重要特点,更是解决问题时常用的方法。
众所周知,同学从形象思维向抽象思维发展,一般来说必须要借助于直观。
以数解形:有关图形中往往蕴含着数量关系,特别是复杂的几何〔形体〕可以用简单的数量关系来表示。
而我们也可以借助代数的运算,经常可以将几何图形化难为易,表示为简单的数量关系(如算式等),以获得更多的知识面,简单地说就是"以数解形'。
它往往借助于数的准确性来阐明形的某些属性,表示形的特征、形的求积计算等等,而有的老师在出示图形时太过简单,同学直接来观察却看不出个所以然,这时我们就必须要给图形赋予一定价值的问题。
助表象,发展同学的空间观念,培养同学初步的逻辑思维能力。
儿童的熟悉规律,一般来说是从直接感知到表象,再到形成科学概念的过程。
表象介于感知和形成科学概念之间,抓住这中间环节,在几何初步知识教学中,发展同学的空间观念,培养初步的逻辑思维能力,具有十分重要意义。
数形结合,为建立函数思想打好基础。
小学数学中虽然没有学习函数,但还是慢慢的开始渗透函数的思想。
为初中数学学习打好基础,如确实位置中,用数对表示平面图形上的点,点的平移引起了了数对的变化,而数对变化也对应了不同的点。
此外,在六年二期学习的比例中,让同学通过描点连线来表示正比例函数的图象,发现成只要是正比例关系的式子,画在坐标图中是就一条直线。
从而体会到图形与函数之间密不可分的关系。
3数形结合数学思想渗透方法小同学都是从直观、形象的图形开始入门学习数学。
从人类发展史来看,具体的事物是出现在抽象的文字、符号之前的,人类一开始用小石子,贝壳记事,慢慢的发展成为用形象的符号记事,最后才有了数字。
数学人教六年级上册《第八单元_第02课时_数学广角-数与形(二)例2》(教案)一. 教材分析本节课为人教六年级上册数学广角-数与形(二)中的例2。
例2主要通过观察、操作、探索等活动,让学生体会数形结合思想,培养学生的逻辑思维能力和创新思维能力。
教材内容紧密联系学生的生活实际,具有很强的趣味性和实践性,能激发学生的学习兴趣。
二. 学情分析六年级的学生已经具备了一定的数学基础,对数形结合思想有一定的认识。
但在解决实际问题时,部分学生还存在着思维定势,不能很好地将数形结合思想运用到解题过程中。
因此,在教学过程中,教师需要关注学生的个体差异,引导他们积极思考,突破思维定势,提高解决问题的能力。
三. 教学目标1.让学生通过观察、操作、探索等活动,理解数形结合思想的内涵,体会数形结合在解决问题中的重要作用。
2.培养学生运用数形结合思想解决实际问题的能力,提高学生的逻辑思维能力和创新思维能力。
3.激发学生对数学的兴趣,培养学生的团队合作意识和动手操作能力。
四. 教学重难点1.重点:让学生通过观察、操作、探索等活动,理解数形结合思想的内涵,体会数形结合在解决问题中的重要作用。
2.难点:引导学生运用数形结合思想解决实际问题,培养学生创新思维能力和逻辑思维能力。
五. 教学方法1.采用问题驱动法,引导学生主动参与课堂,积极思考。
2.运用观察、操作、探索等教学方法,让学生在实践中感受数形结合思想。
3.采用小组合作学习,培养学生的团队合作意识和沟通能力。
4.利用多媒体辅助教学,提高课堂趣味性和生动性。
六. 教学准备1.准备相关的教学课件和教学素材。
2.准备足够的学习材料,如白纸、彩笔等。
3.提前学生进行预习,了解学生对数形结合思想的掌握情况。
七. 教学过程1.导入(5分钟)教师通过一个简单的数学问题,引导学生回顾已学的数形结合思想,为新课的学习做好铺垫。
2.呈现(10分钟)教师展示例2的问题,让学生观察并思考:如何利用数形结合思想解决这个问题?3.操练(10分钟)学生分组讨论,每组选择一种方法利用数形结合思想解决这个问题。
高中数学常用的数学思想一、数形结合思想方法中学数学的基本知识分三类:一类是纯粹数的知识,如实数、代数式、方程(组)、不等式(组)、函数等;一类是关于纯粹形的知识,如平面几何、立体几何等;一类是关于数形结合的知识,主要体现是解析几何。
数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质。
恩格斯曾说过:“数学是研究现实世界的量的关系与空间形式的科学。
”数形结合就是根据数学问题的条件和结论之间的内在联系,既分析其代数意义,又揭示其几何直观,使数量关的精确刻划与空间形式的直观形象巧妙、和谐地结合在一起,充分利用这种结合,寻找解题思路,使问题化难为易、化繁为简,从而得到解决。
“数”与“形”是一对矛盾,宇宙间万物无不是“数”和“形”的矛盾的统一。
华罗庚先生说过:数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休。
数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化。
在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围。
数学中的知识,有的本身就可以看作是数形的结合。
如:锐角三角函数的定义是借助于直角三角形来定义的;任意角的三角函数是借助于直角坐标系或单位圆来定义的。
Ⅰ、再现性题组:1.设命题甲:0<x<5;命题乙:|x-2|<3,那么甲是乙的_____。
浅谈如何培养学生的数形结合思想所谓的“数形结合”就是把抽象的数学语言、数量关系与直观的几何图形、位置关系结合起来,通过“以形助数”或“以数解形”的方法,把抽象思维与形象思维有机的结合起来。
这样可以使很多复杂问题简单化,抽象问题具体化,从而起到优化解题途径的目的。
因此“数形结合”的思想在我们的学习和生活中有着不可忽视的地位和作用,然而不少初学者遇到这类问题时就有点显得有些不知所措、束手无策、无从下手了。
鉴于此种情况,本人结合多年的教学经验谈谈自己几点不成熟的看法,仅供大家作为参考,若有不当处望各位批评指正。
一、通过观察、实践活动培养学生数形结合思想“数形结合”是在学生具备一定的数感和空间想象力的基础上发展起来的,一般要通过对实物的观察、分析、猜测或实地测量获取必要的资料信息,然后运用几何的初步知识,逐步在脑海中形成几何形体的表象,为我们的探究问题、解决问题指明思路和方向。
在实际的教学活动中我们可利用剪、拼、折、叠、拆等方法让学生亲自动手、主动参与从而感受知识形成过程。
(一)通过观察培养学生的数感——以数解形数感主要表现在:理解数的意义;能用多种方法表示数;能在具体的情境中把数的相对大小关系;能用数表达和交流信息;能为解决问题而选择适当的方法;能估计运算的结果,并对结果的合理性作出解释。
我们在实际教育教学过程中要引导学生联系自己身边具体的有趣的事物,通过观察、操作、解决问题等丰富的活动,感受数的意义,体会数用来表示和交流的作用初步建立数感。
下面举例说明:例如,某教师上课不是开始进行新知识的学习,而是在黑板上画青蛙,同时讲解。
师:同学们,看黑板上老师画出来的青蛙,一只青蛙有一张嘴,2只眼睛4条腿。
2只青蛙有2张嘴,4只眼睛8条腿。
3只青蛙有3张嘴,6只眼睛12条腿。
老师编到这里,请同学们接着往下编。
生:4只青蛙有4张嘴,8只眼睛16条腿。
5只青蛙有5张嘴,10只眼睛20条腿。
6只青蛙有6张嘴,12只眼睛24条腿。
数形结合的思想方法(2)---高考题选讲数形结合思想是一种很重要的数学思想,数与形是事物的两个方面,正是基于对数与形的抽象研究才产生了数学这门学科,才能使人们能够从不同侧面认识事物,华罗庚先生说过:“数与形本是两依倚,焉能分作两边飞.数缺形时少直观,形少数时难入微.”把数量关系的研究转化为图形性质的研究,或者把图形性质的研究转化为数量关系的研究,这种解决问题过程中“数”与“形”相互转化的研究策略,就是数形结合的思想.数形结合思想就是要使抽象的数学语言与直观的图形结合起来,使抽象思维与形象思维结合起来.在使用过程中,由“形”到“数”的转化,往往比较明显,而由“数”到“形”的转化却需要转化的意识,因此,数形结合思想的使用往往偏重于由“数”到“形”的转化.考试中心对考试大纲的说明中强调:“在高考中,充分利用选择题和填空题的题型特点,为考查数形结合的思想提供了方便,能突出考查考生将复杂的数量关系转化为直观的几何图形问题来解决的意识,而在解答题中,考虑到推理论证的严密性,对数量关系问题的研究仍突出代数的方法而不提倡使用几何的方法,解答题中对数形结合思想的考查以由…形‟到…数‟的转化为主.”1. 注重图形的内涵与拓展,突出对数字直觉能力的考查【例1】图1有面积关系则由图2有体积关系:_______.解:【点评】本题注重考查图形分析能力.思维方式上从平面向空间拓展,面积与体积类比,直观类比与猜想并举.体现了高考题以能力立意考查注重素质的命题原则.【例2】如图所示,已知椭圆=1的左、右焦点分别为F1,F2,点P在椭圆上,若F1,F2,P 是一个直角三角形的三个顶点,则点P到x轴的距离为().解:以O为圆心以OF1为半径画圆,可知此圆与椭圆无交点,则△F1F2P中∠PF1F2(或∠PF2F1)为直角,如此求出P点坐标即得yp=±,故选D.【点评】本题以作图直观判断为突破口,直觉与逻辑推理互动,化解析几何问题为平面几何问题,化计算为判断,在理性的高度认识问题.【例3】某城市各类土地租价y(万元)与该地段和市中心的距离x(km)关系如图所示.其中l1表示商业用地,l2表示工业用地,l3表示居住用地.要使各类用地租金收入最高,应将工业用地划在().A. 与市中心距离分别为3km和5km的圆环型区域上B. 与市中心距离分别为1km和4km的圆环型区域上C. 与市中心距离为5km的区域外D. 与市中心距离为5km的区域内解:由函数y的实际意义知:在区间(1,4)上,即在与市中心距离分别为1km和4km的圆环型区域上,工业用地的租金大于商业用地的租金和居住用地的租金,为了获取最高的租金,因此这个区域应租用给工业,故选B.【点评】这道题考查的是阅读理解能力,提醒我们在日常的学习中,要注意训练直觉思维,养成整体观察、检索信息、把握问题实质的良好习惯.2. 注重绘图,突出对动手能力和探究性学习的考查【例4】设奇函数f(x)定义域为[-5,5],若当x∈[0,5]时,f(x)图象如下图,则不等式f(x)<0的解集是____.解:由奇函数的图象关于原点对称,完成f(x)在定义域内的图象,再由f(x)<0找出使f(x)图象在x轴下方的区域,从而得到不等式f(x)<0的解集为(-2,0)∪(2,5].【点评】用数形结合的方法去分析解决问题除了能读图外,还要能画图.绘制图形既是数形结合方法的需要,也是培养我们动手能力的需要.【例5】设集合U={(x,y)x∈R,y∈R},A={(x,y)2x-y+m>0},B={(x,y)x+y-n≤0},那么点P(2,3)∈A∩(B)的充要条件是().A. m>-1,n<5B. m<-1,n<5C. m<-1,n>5D. m>-1,n>5解:先假定点P(2,3)在直线2x-y+m=0和直线x+y-n=0上,则m=-1,n=5.再确定两个不等式2x-y-1>0和x+y-5>0所共同确定的区域,平移两直线得到答案A.【点评】此题考查了集合、二元一次不等式表示的区域、充要条件等知识.以运动、变化、联系的观点考虑问题,变静态思维方式为动态思维方式,强调辨证思维能力.3. 注重对思维的灵活性和创造性的考查【例6】已知点P是椭圆上的动点,F1,F2分别是左、右焦点,O为原点,则的取值范围是().解:此题的一种解法是:在△PF1F2中,根据中线定理得:PF12+PF22=2OP2+2F1O2,再由椭圆定义,得到(PF1-PF2)2=OP2-16,由2≤OP≤2得答案D.另一种解法是数形结合,根据P点所处的位置对取值的影响来判断出结论.逐渐移动P点到长轴端点,OP值逐渐增大,逐渐接近,当移动P点到短轴端点时PF1=PF2,取最小值0.从而判断出答案为D.【点评】解法二是采用极端性原则变静态思维方式为动态思维方式,把数与形分别视为运动事物在某一瞬间的取值或某一瞬间的相对位置.运用动态思维方式处理、研究问题,揭示了问题的本质,体现了思维的灵活性.4. 注重方法的通用性、应用性,突出能力考查【例7】电信局为了满足客户的不同需求,制定了A,B两种话费计算方案.这两种方案应付话费(元)与通话时间(分钟)之间的关系如下图所示(MN∥CD).(1)若通话时间为2小时,按方案A,B各付话费多少元?(2)方案B从500钟以后,每分钟收费多少元?(3)通话时间在什么范围内方案B才会比方案A优惠?解:由M(60,98),C(500,168),N(500,230).∵MN∥CD.设这两方案的应付话费与通话时间的函数关系式分别为f A(x),f B(x),(1)通话两小时的费用分别是116元和168元.(2)由f B(n+1)-f B(n)=0.3(n>500)或由直线CD的斜率的实际意义知方案B从500分钟以后每分钟收费0.3元.(3)由图知:当0≤x≤60时f A(x)<f B(x);当x>500时f A(x)>f B(x);当60<x≤500时,令f A(x)>f B(x )得x>,即通话时间为(,+∞)时方案B 较优惠.【评析】此题在实际问题中融入函数,直线等知识,考查了阅读理解能力,体现了在知识应用过程中对能力的考查.下面就高考中出现的一些相关题进行点评【例8】. 若方程lg(-x 2+3x -m)=lg(3-x)在x ∈(0,3)内有唯一解,求实数m 的取值范围。
张喜林制[选取日期]高三数学第二轮专题讲座复习:数形结合思想高考要求数形结合思想在高考中占有非常重要的地位,其“数”与“形”结合,相互渗透,把代数式的精确刻划与几何图形的直观描述相结合,使代数问题、几何问题相互转化,使抽象思维和形象思维有机结合 应用数形结合思想,就是充分考查数学问题的条件和结论之间的内在联系,既分析其代数意义又揭示其几何意义,将数量关系和空间形式巧妙结合,来寻找解题思路,使问题得到解决 运用这一数学思想,要熟练掌握一些概念和运算的几何意义及常见曲线的代数特征 重难点归纳应用数形结合的思想,应注意以下数与形的转化 (1)集合的运算及韦恩图 (2)函数及其图象(3)数列通项及求和公式的函数特征及函数图象 (4)方程(多指二元方程)及方程的曲线以形助数常用的有 借助数轴;借助函数图象;借助单位圆;借助数式的结构特征;借助于解析几何方法以数助形常用的有 借助于几何轨迹所遵循的数量关系;借助于运算结果与几何定理的结合典型题例示范讲解例1设A ={x |–2≤x ≤a },B ={y |y =2x +3,且x ∈A },C ={z |z =x 2,且x ∈A },若C ⊆B ,求实数a 的取值范围命题意图 本题借助数形结合,考查有关集合关系运算的题目知识依托 解决本题的关键是依靠一元二次函数在区间上的值域求法确定集合C 进而将C ⊆B 用不等式这一数学语言加以转化错解分析 考生在确定z =x 2,x ∈[–2,a ]的值域是易出错,不能分类而论 巧妙观察图象将是上策 不能漏掉a <–2这一种特殊情形技巧与方法 解决集合问题首先看清元素究竟是什么,然后再把集合语言“翻译”为一般的数学语言,进而分析条件与结论特点,再将其转化为图形语言,利用数形结合的思想来解决解 ∵y =2x +3在[–2, a ]上是增函数∴–1≤y ≤2a +3,即B ={y |–1≤y ≤2a +3}作出z =x 2的图象,该函数定义域右端点x =a 有三种不同的位置情况如下①当–2≤a ≤0时,a 2≤z ≤4即C ={z |a 2≤z ≤4}要使C ⊆B ,必须且只须2a +3≥4得a ≥21与–2≤a <0矛盾 ②当0≤a ≤2时,0≤z ≤4即C ={z |0≤z ≤4},要使C ⊆B ,由图可知必须且只需⎩⎨⎧≤≤≥+20432a a 解得21≤a ≤2③当a >2时,0≤z ≤a 2,即C ={z |0≤z ≤a 2},要使C ⊆B 必须且只需⎩⎨⎧>+≤2322a a a 解得2<a ≤3 ④当a <–2时,A =∅此时B =C =∅,则C ⊆B 成立综上所述,a 的取值范围是(–∞,–2)∪[21,3] 例2已知a cos α+b sin α=c , a cos β+b sin β=c (ab ≠0,α–β≠k π, k ∈Z )求证22222c o sb a +=-βα 命题意图 本题主要考查数学代数式几何意义的转换能力知识依托 解决此题的关键在于由条件式的结构联想到直线方程 进而由A 、B 两点坐标特点知其在单位圆上错解分析 考生不易联想到条件式的几何意义,是为瓶颈之一 如何巧妙利用其几何意义是为瓶颈之二技巧与方法 善于发现条件的几何意义,还要根据图形的性质分析清楚结论的几何意义,这样才能巧用数形结合方法完成解题证明:在平面直角坐标系中,点A (cos α,sin α)与点B (cos β, sin β)是直线l :ax +by =c 与单位圆x 2+y 2=1的两个交点如图从而 |AB |2=(cos α–cos β)2+(sin α–sin β)2=2–2cos(α–β) 又∵单位圆的圆心到直线l 的距离22||ba c d +=由平面几何知识知|OA |2–(21|AB |)2=d 2即 b a c d +==---2224)cos(221βα∴22222cos ba c +=-βα 例3曲线y =1+24x - (–2≤x ≤2)与直线y =r (x –2)+4有两个交点时,实数r 的取值范围解析 方程y =1+24x -的曲线为半圆,y =r (x –2)+4为过(2,4)的直线答案 (43,125] 例4设f (x )=x 2–2ax +2,当x ∈[–1,+∞)时,f (x )>a 恒成立,求a 的取值范围 解法一 由f (x )>a ,在[–1,+∞)上恒成立 ⇔x 2–2ax +2–a >0在[–1,+∞)上恒成立考查函数g (x )=x 2–2ax +2–a 的图象在[–1,+∞]时位于x 轴上方 如图两种情况不等式的成立条件是(1)Δ=4a 2–4(2–a )<0⇒a ∈(–2,1)(2)⇒⎪⎩⎪⎨⎧>--<≥∆0)1(10g a a ∈(–3,–2], 综上所述a ∈(–3,1)解法二 由f (x )>a ⇔x 2+2>a (2x +1)令y 1=x 2+2,y 2=a (2x +1),在同一坐标系中作出两个函数的图象如图满足条件的直线l 位于l 1与l 2之间,而直线l 1、l 2对应的a 值(即直线的斜率)分别为1,–3, 故直线l 对应的a ∈(–3,1) 学生巩固练习1 方程sin(x –4π)=41x 的实数解的个数是( ) A 2 B 3 C 4 D 以上均不对2 已知f (x )=(x –a )(x –b )–2(其中a <b ),且α、β是方程f (x )=0的两根(α<β),则实数a 、b 、α、β的大小关系为( )A α<a <b <βB α<a <β<bC a <α<b <βD a <α<β<b3(4cos θ+3–2t )2+(3sin θ–1+2t )2,(θ、t 为参数)的最大值是4 已知集合A ={x |5–x ≥)1(2-x },B ={x |x 2–ax ≤x –a },当A B 时,则a 的取值范围是5 设关于x 的方程sin x +3cos x +a =0在(0,π)内有相异解α、β(1)求a 的取值范围; (2)求tan(α+β)的值6 设A ={(x ,y )|y =222x a -,a >0},B ={(x ,y )|(x –1)2+(y –3)2=a 2,a >0},且A ∩B≠∅,求a 的最大值与最小值 参考答案1 解析 在同一坐标系内作出y 1=sin(x –4π)与y 2=41x 的图象如图答案 B2 解析 a ,b 是方程g (x )=(x –a )(x –b )=0的两根,在同一坐标系中作出函数f (x )、g (x )的图象如图所示 答案 A3 解析 联想到距离公式,两点坐标为A (4cos θ,3sin θ),B (2t –3,1–2t )点A的几何图形是椭圆,点B 表示直线 考虑用点到直线的距离公式求解 答案227 4 解析 解得A ={x |x ≥9或x ≤3},B ={x |(x –a )(x –1)≤0},画数轴可得 答a >35 解 ①作出y =sin(x +3π)(x ∈(0,π))及y =–2a 的图象,知当|–2a |<1且–2a ≠23时,曲线与直线有两个交点, 故a ∈(–2,–3)∪(–3,2)②把sin α+3cos α=–a ,sin β+3cos β=–a 相减得tan 332=+βα, 故tan(α+β)=36 解 ∵集合A 中的元素构成的图形是以原点O 为圆心,2a 为半径的半圆;集合B 中的元素是以点O ′(1,3)为圆心,a 为半径的圆 如图所示∵A ∩B ≠∅,∴半圆O 和圆O ′有公共点 显然当半圆O 和圆O ′外切时,a 最小2a +a =|OO ′|=2,∴a min =22–2当半圆O 与圆O ′内切时,半圆O 的半径最大,即2a 最大此时2a –a =|OO ′|=2,∴a max =22+2。
1、数形结合思想的概念。
数形结合思想就就是通过数与形之间的对应关系与相互转化来解决问题的思想方法。
数学就是研究现实世界的数量关系与空间形式的科学,数与形之间就是既对立又统一的关系,在一定的条件下可以相互转化。
这里的数就是指数、代数式、方程、函数、数量关系式等,这里的形就是指几何图形与函数图象。
在数学的发展史上,直角坐标系的出现给几何的研究带来了新的工具,直角坐标系与几何图形相结合,也就就是把几何图形放在坐标平面上,使得几何图形上的每个点都可以用直角坐标系里的坐标(有序实数对)来表示,这样可以用代数的量化的运算的方法来研究图形的性质,堪称数形结合的完美体现。
数形结合思想的核心应就是代数与几何的对立统一与完美结合,就就是要善于把握什么时候运用代数方法解决几何问题就是最佳的、什么时候运用几何方法解决代数问题就是最佳的。
如解决不等式与函数问题有时用图象解决非常简捷,几何证明问题在初中就是难点,到高中运用解析几何的代数方法有时就比较简便。
2、数形结合思想的重要意义。
数形结合思想可以使抽象的数学问题直观化、使繁难的数学问题简捷化,使得原本需要通过抽象思维解决的问题,有时借助形象思维就能够解决,有利于抽象思维与形象思维的协调发展与优化解决问题的方法。
数学家华罗庚曾说过:“数缺形时少直觉,形少数时难入微。
”这句话深刻地揭示了数形之间的辩证关系以及数形结合的重要性。
众所周知,小学生的逻辑思维能力还比较弱,在学习数学时必须面对数学的抽象性这一现实问题;教材的编排与课堂教学都在千方百计地使抽象的数学问题转化成学生易于理解的方式呈现,借助数形结合思想中的图形直观手段,可以提供非常好的教学方法与解决方案。
如从数的认识、计算到比较复杂的实际问题,经常要借助图形来理解与分析,也就就是说,在小学数学中,数离不开形。
另外,几何知识的学习,很多时候只凭直接观察瞧不出什么规律与特点,这时就需要用数来表示,如一个角就是不就是直角、两条边就是否相等、周长与面积就是多少等。
1第二讲 数形结合思想2014、2、11.数形结合的含义(1)数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法.数形结合思想通过“以形助数,以数辅形”,使复杂问题简单化,抽象问题具体化,能够变抽象思维为形象思维,有助于把握数学问题的本质,它是数学的规律性与灵活性的有机结合.(2)数形结合包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:一是借助形的生动性和直观性来阐明数形之间的联系,即以形作为手段,数作为目的,比如应用函数的图像来直观地说明函数的性质;二是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质.2.数形结合的途径 (1)通过坐标系“形题数解”借助于直角坐标系、复平面,可以将几何问题代数化.这一方法在解析几何中体现得相当充分(在高考中主要也是以解析几何作为知识载体来考查的).值得强调的是,“形题数解”时,通过辅助角引入三角函数也是常常运用的技巧(这是因为三角公式的使用,可以大大缩短代数推理).实现数形结合,常与以下内容有关:①实数与数轴上的点的对应关系;②函数与图像的对应关系;③曲线与方程的对应关系;④以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;⑤所给的等式或代数式的结构含有明显的几何意义.如等式(x -2)2+(y -1)2=4,表示坐标平面内以(2,1)为圆心,2为半径的圆.(2)通过转化构造“数题形解”许多代数结构都有着相对应的几何意义,据此,可以将数与形进行巧妙地转2化.例如,将a (a >0)与距离互化;将a 2与面积互化,将a 2+b 2+ab =a 2+b 2-2|a ||b |cos θ(θ=60°或θ=120°)与余弦定理沟通;将a ≥b ≥c >0且b +c >a 中的a 、b 、c 与三角形的三边沟通;将有序实数对(或复数)和点沟通;将二元一次方程与直线、将二元二次方程与相应的圆锥曲线对应等等.这种代数结构向几何结构的转化常常表现为构造一个图形(平面的或立体的).另外,函数的图像也是实现数形转化的有效工具之一,正是基于此,函数思想和数形结合思想经常相互渗透,演绎出解题捷径.[例1] (2013·长沙模拟)若f (x )+1=1f (x +1),当x ∈[0,1]时,f (x )=x ,若在区间(-1,1]内g (x )=f (x )-mx -m 有两个零点,则实数m 的取值范围是( )A.⎣⎡⎭⎫0,12 B.⎣⎡⎭⎫12,+∞ C.⎣⎡⎭⎫0,13 D.⎝⎛⎦⎤0,12 [答案] D——————————规律·总结———————————————————利用数形结合求方程解应注意两点(1)讨论方程的解(或函数的零点)可构造两个函数,使问题转化为讨论两曲线的交点问题,但用此法讨论方程的解一定要注意图像的准确性、全面性,否则会得到错解.(2)正确作出两个函数的图像是解决此类问题的关键,数形结合应以快和准为原则而采用,不要刻意去数形结合.1.若定义在R 上的函数f (x )满足f (x +2)=f (x ),且x ∈[-1,1]时,f (x )=1-x 2,3函数g (x )=⎩⎪⎨⎪⎧lg x ,x >0,0,x =0,-1x ,x <0,则函数h (x )=f (x )-g (x )在区间[-5,5]内零点的个数是( )A .5B .7C .8D .102(2)若不等式|x -2a |≥12x +a -1对x ∈R 恒成立,则a 的取值范围是________.[答案](1)(-1,0)(2)⎝⎛⎦⎤-∞,12 利用数形结合解不等式应注意的问题解含参数的不等式时,由于涉及到参数,往往需要讨论,导致运算过程繁琐冗长.如果题设与几何图形有联系,那么利用数形结合的方法,问题将会顺利地得到解决.2.当x ∈(1,2)时,不等式(x -1)2<log a x 恒成立,则a 的取值范围为( ) A .(2,3] B .[4,+∞) C .(1,2]D .[2,4)[例3] (1)如果实数x ,y 满足(x -2)2+y 2=3,则yx 的最大值为( )A.12B.334C.32D. 3(2)已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足(a -c )·(b -c )=0,则|c |的最大值是( )A .1B .2 C. 2D.22[答案] (1)D (2)C利用数形结合求最值的方法步骤第一步:分析数理特征,确定目标问题的几何意义.一般从图形结构、图形的几何意义分析代数式是否具有几何意义.第二步:转化为几何问题. 第三步:解决几何问题. 第四步:回归代数问题.第五步:回顾反思.应用几何意义数形结合法解决问题需要熟悉常见的几何结构的代数形式,主要有:(1)比值——可考虑直线的斜率;(2)二元一次式——可考虑直线的截距;(3)根式分式——可考虑点到直线的距离;(4)根式——可考虑两点间的距离.3.对于任意x ∈R ,函数f (x )表示-x +3,32x +12,x 2-4x +3中的较大者,则f (x )的最小值是( )A .2B .3C .8D .-1 4.当0<x <π2,函数f (x )=1+cos 2x +4sin 2x sin 2x 的最小值为( )A .-4B .-2 2C .4D .2 21.应用数形结合的思想应注意以下数与形的转化 (1)集合的运算及韦恩图;5(2)函数及其图像;(3)数列通项及求和公式的函数特征及函数图像; (4)方程(多指二元方程)及方程的曲线;(5)对于研究距离、角或面积的问题,直接从几何图形入手进行求解即可; (6)对于研究函数、方程或不等式(最值)的问题,可通过函数的图像求解(函数的零点、顶点是关键点),做好知识的迁移与综合运用.2.运用数形结合的思想分析解决问题时,应把握以下三个原则 (1)等价性原则在数形结合时,代数性质和几何性质的转换必须是等价的,否则解题将会出现漏洞,有时,由于图形的局限性,不能完整地表现数的一般性,这时图形的性质只能是一种直观而浅显的说明,但它同时也是抽象而严格证明的诱导.(2)双向性原则在数形结合时,既要进行几何直观的分析,又要进行代数抽象的探索,两方面相辅相成,仅对代数问题进行几何分析(或仅对几何问题进行代数分析)在许多时候是很难行得通的.例如,在解析几何中,我们主要是运用代数的方法来研究几何问题,但是在许多时候,若能充分地挖掘利用图形的几何特征,将会使得复杂的问题简单化.(3)简单性原则就是找到解题思路之后,至于用几何方法还是用代数方法或者兼用两种方法来叙述解题过程,则取决于哪种方法更为简单,而不是去刻意追求代数问题运用几何方法,几何问题运用代数方法.数学思想专练(二)一、选择题1.不等式x 2-log a x <0,在x ∈⎝⎛⎭⎫0,12时恒成立,则a 的取值范围是( ) A .0<a <1 B.116≤a <1 C .a >1D .0<a ≤11662.(2013·西城模拟)已知f (x )=⎩⎪⎨⎪⎧x +3,x ≤1,-x 2+2x +3,x >1,则函数g (x )=f (x )-e x 的零点个数为( )A .1B .2C .3D .43.已知函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,log 2x ,x >0,则函数y =f (f (x ))+1的零点个数是( )A .4B .3C .2D .14.已知平面向量a 、b ,|a |=1,|b |=3,且|2a +b |=7,则向量a 与向量a +b 的夹角为( )A.π2B.π3C.π6D .π5.以椭圆的右焦点F 2为圆心作一个圆,使此圆过椭圆的中心,交椭圆于M ,N 两点,若直线MF 1(F 1为椭圆的左焦点)是圆F 2的切线,则椭圆的离心率为( )A .2- 3 B.3-1 C.22D.326.已知函数f (x )=⎩⎪⎨⎪⎧|lg x |,0<x ≤10,-12x +6,x >10,若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则abc 的取值范围是( )A .(1,10)B .(5,6)C .(10,12)D .(20,24)二、填空题7.如果函数y =1+4-x 2(|x |≤2)的图像与函数y =k (x -2)+4的图像有两个交点,那么实数k 的取值范围是________.7答案:⎝⎛⎦⎤512,348.已知1a +2b =1(a >0,b >0),当ab 取最小值时,方程2-2x =b -bax |x |的实数解的个数是________.答案:19.已知函数f (x )=⎩⎪⎨⎪⎧e -x -2,x ≤0,2ax -1,x >0(a 是常数且a >0).对于下列命题:①函数f (x )的最小值是-1;②函数f (x )在R 上是单调函数;③若f (x )>0在⎣⎡⎭⎫12,+∞上恒成立,则a 的取值范围是a >1;④对任意的x 1<0,x 2<0且x 1≠x 2,恒有f ⎝⎛⎭⎫x 1+x 22<f (x 1)+f (x 2)2. 其中正确命题的序号是________. 答案:①③④ 三、解答题=43x +1,已知10.设有函数f (x )=a +-x 2-4x 和g (x )x ∈[-4,0]时恒有f (x )≤g (x ),求实数a 的取值范围.所以实数a 的取值范围是(-∞,-5]. 11.已知a >0,函数f (x )=x |x -a |+1(x ∈R ). (1)当a =1时,求所有使f (x )=x 成立的x 的值;(2)当a ∈(0,3)时,求函数y =f (x)在闭区间[1,2]上的最小值.8所以函数f (x )min =f (2)=2a -3.12.设函数F (x )=⎩⎪⎨⎪⎧f (x ),x ≤0,g (x ),x >0,其中f (x )=ax 3-3ax ,g (x )=12x 2-ln x ,方程F (x )=a 2有且仅有四个解,求实数a 的取值范围..。