高二数学不等式的证明4
- 格式:doc
- 大小:77.00 KB
- 文档页数:2
几何法证明不等式如何解答几何法证明不等式如何解答几何法是如何证明不等式的呢?这类的证明要用到哪些证明方法呢?下面就是啦店铺给大家整理的几何法证明不等式内容,希望大家喜欢。
用解析法证明不等式[(a+b)/2]^2<(a^2+b^2)/2(a,b∈R,且a≠b)设一个正方形的边为C,有4个直角三角形拼成这个正方形,设三角形的一条直角边为A,另一条直角边为B, (B>A) A=B,刚好构成,若A不等于B时,侧中间会出现一个小正方形,所以小正方形的面积为(B-A)^2,经化简有(B+A)^2=4AB,所以有((A+B)/2)^2=AB,又因为(A^2+B^2)/2>=AB,所以有((A+B)/2)^2<=(A^2+B^2)/2,又因为A 不等与B,所以不取等号可以在直角三角形内解决该问题=[(a+b)/2]^2-(a^2+b^2)/2=<2ab-(a^2+b^2)>/4=-(a-b)^2/4<0能不能用几何方法证明不等式,举例一下。
比如证明 SIN x不大于x (x范围是0到兀/2,闭区间)做出一个单位圆,以O为顶点,x轴为角的一条边任取第一象限一个角x,它所对应的弧长就是1*x=x那个角另一条边与圆有一个交点交点到x轴的距离就是 SIN x因为点到直线,垂线段长度最小,所以SIN x 小于等于 x,当且尽当x=0时,取等已经有的方法:第一数学归纳法2种;反向归纳法(特殊到一般从2^k过渡到n);重复递归利用结论法;凸函数性质法;能给出方法的就给分(a1+a2+...+an)/n≥(a1a2...an)^(1/n)一个是算术,一个是几何。
人类认认识算术才有几何,人类吃饱了就去研究细微的东西,所以明显有后者小于前者的结论,这么简单都不懂,叼佬就是叼佬^_^搞笑归搞笑,我觉得可以这样做,题目结论相当于证(a1+a2+...+an)/n-(a1a2...an)^(1/n)≥0我们记f(a1,a2,……,an)=(a1+a2+...+an)/n-(a1a2...an)^(1/n)这时n看做固定的。
高二数学基本不等式知识点一、不等式的基本性质在学习不等式之前,我们先来了解一下不等式的基本性质。
不等式具有以下性质:1. 若不等式两边同时加(减)一个相同的正(负)数,不等式的不等关系不变。
2. 若不等式两边同时乘(除)一个相同的正(负)数,不等式的不等关系不变。
但是需注意,当乘(除)以一个负数时,不等号方向需要颠倒。
3. 若不等式两边交换位置,不等号方向需要颠倒。
二、基本不等式1. 两个正数的不等式:若a > 0,b > 0,则a > b等价于a² > b²。
2. 两个负数的不等式:若a < 0,b < 0,则a > b等价于a² < b²。
3. 正负数的不等式:若a > 0,b < 0,则a > b等价于a² < b²。
4. 平方不等式:若x > 0,y > 0,则x < y等价于√x < √y。
同理,对于x < 0,y < 0的情况,不等号方向需要颠倒。
5. 两个正数与一个负数的不等式:若a > 0,b > 0,c < 0,则a > b等价于 -a < -b,a * c > b * c。
三、不等式的解集表示法当我们解不等式时,需要将解表示出来。
不等式的解集表示法有以下几种形式:1. 区间表示法:用数轴上的区间表示解集。
例:对于不等式x > 3,解集可以用开区间(3, +∞)表示。
2. 图形表示法:我们可以通过图形的方式表示解集。
例:对于不等式x ≤ -2,解集可以用沿x轴方向的线段表示。
3. 集合表示法:用集合的形式表示解集。
例:对于不等式2 < x ≤ 5,解集可以用集合表示为{x | 2 < x ≤ 5}。
四、不等式的应用不等式是数学中常见的工具,在现实生活中也有广泛的应用。
一、不等式的性质1.两个实数a与b之间的大小关系2.不等式的性质(4) (乘法单调性)3.绝对值不等式的性质(2)如果a>0,那么(3)|a•b|=|a|•|b|.(5)|a|-|b|≤|a±b|≤|a|+|b|.(6)|a1+a2+……+an|≤|a1|+|a2|+……+|an|.二、不等式的证明1.不等式证明的依据(2)不等式的性质(略)(3)重要不等式:①|a|≥0;a2≥0;(a-b)2≥0(a、b∈R)②a2+b2≥2ab(a、b∈R,当且仅当a=b时取“=”号)2.不等式的证明方法(1)比较法:要证明a>b(a<b),只要证明a-b>0(a-b<0),这种证明不等式的方法叫做比较法.用比较法证明不等式的步骤是:作差——变形——判断符号.(2)综合法:从已知条件出发,依据不等式的性质和已证明过的不等式,推导出所要证明的不等式成立,这种证明不等式的方法叫做综合法.(3)分析法:从欲证的不等式出发,逐步分析使这不等式成立的充分条件,直到所需条件已判断为正确时,从而断定原不等式成立,这种证明不等式的方法叫做分析法.证明不等式除以上三种基本方法外,还有反证法、数学归纳法等.三、解不等式1.解不等式问题的分类(1)解一元一次不等式.(2)解一元二次不等式.(3)可以化为一元一次或一元二次不等式的不等式.①解一元高次不等式;②解分式不等式;③解无理不等式;④解指数不等式;⑤解对数不等式;⑥解带绝对值的不等式;⑦解不等式组.2.解不等式时应特别注意下列几点:(1)正确应用不等式的基本性质.(2)正确应用幂函数、指数函数和对数函数的增、减性.(3)注意代数式中未知数的取值范围.3.不等式的同解性(5)|f(x)|<g(x)与-g(x)<f(x)<g(x)同解.(g(x)>0)(6)|f(x)|>g(x)①与f(x)>g(x)或f(x)<-g(x)(其中g(x)≥0)同解;②与g(x)<0同解.(9)当a>1时,af(x)>ag(x)与f(x)>g(x)同解,当0<a<1时,af(x)>ag(x)与f(x)<g(x)同平方关系:sin^2α+cos^2α=11+tan^2α=sec^2α1+cot^2α=csc^2α·积的关系:sinα=tanα×cosαcosα=cotα×sinαtanα=sinα×secαcotα=cosα×cscαsecα=tanα×cscαcscα=secα×cotα·倒数关系:tanα ·cotα=1sinα ·cscα=1cosα ·secα=1商的关系:sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα直角三角形ABC中,角A的正弦值就等于角A的对边比斜边,余弦等于角A的邻边比斜边正切等于对边比邻边,·[1]三角函数恒等变形公式·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)·三角和的三角函数:sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)·辅助角公式:Asinα+Bcosα=(A²+B²)^(1/2)sin(α+t),其中sint=B/(A²+B²)^(1/2)cost=A/(A²+B²)^(1/2)tant=B/AAsinα-Bcosα=(A²+B²)^(1/2)cos(α-t),tant=A/B·倍角公式:sin(2α)=2sinα·cosα=2/(tanα+cotα)cos(2α)=cos²(α)-sin²(α)=2cos²(α)-1=1-2sin²(α)tan(2α)=2tanα/[1-tan²(α)]·三倍角公式:sin(3α)=3sinα-4sin³(α)=4sinα·sin(60+α)sin(60-α)cos(3α)=4cos³(α)-3cosα=4cosα·cos(60+α)cos(60-α)tan(3α)=tan a · tan(π/3+a)· tan(π/3-a)·半角公式:sin(α/2)=±√((1-cosα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα·降幂公式sin²(α)=(1-cos(2α))/2=versin(2α)/2cos²(α)=(1+cos(2α))/2=covers(2α)/2tan²(α)=(1-cos(2α))/(1+cos(2α))·万能公式:sinα=2tan(α/2)/[1+tan²(α/2)]cosα=[1-tan²(α/2)]/[1+tan²(α/2)]tanα=2tan(α/2)/[1-tan²(α/2)]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]·推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos²α1-cos2α=2sin²α1+sinα=(sinα/2+cosα/2)²·其他:sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin²(α)+sin²(α-2π/3)+sin²(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0cosx+cos2x+...+cosnx= [sin(n+1)x+sinnx-sinx]/2sinx证明:左边=2sinx(cosx+cos2x+...+cosnx)/2sinx=[sin2x-0+sin3x-sinx+sin4x-sin2x+...+ sinnx-sin(n-2)x+sin(n+1)x-sin(n-1)x]/2sinx (积化和差)=[sin(n+1)x+sinnx-sinx]/2sinx=右边等式得证sinx+sin2x+...+sinnx= - [cos(n+1)x+cosnx-cosx-1]/2sinx证明:左边=-2sinx[sinx+sin2x+...+sinnx]/(-2sinx)=[cos2x-cos0+cos3x-cosx+...+cosnx-cos(n-2)x+cos(n+1)x-cos(n-1)x]/(-2sinx) =- [cos(n+1)x+cosnx-cosx-1]/2sinx=右边等式得证[编辑本段]三角函数的诱导公式公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-t anαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)对于任意非直角三角形中,如三角形ABC,总有tanA+tanB+tanC=tanAtanBtanC证明:已知(A+B)=(π-C)所以tan(A+B)=tan(π-C)则(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)整理可得tanA+tanB+tanC=tanAtanBtanC类似地,我们同样也可以求证:当α+β+γ=nπ(n∈Z)时,总有tanα+tanβ+tanγ=tanαtanβtanγ设a=(x,y),b=(x',y')。
高二数学不等式的公式定理记忆口诀高中数学中通常不等式中的数是实数,字母也代表实数,下面是店铺给大家带来的高二数学不等式的公式定理记忆口诀,希望对你有帮助。
数学不等式的公式定理记忆口诀解不等式的途径,利用函数的性质。
对指无理不等式,化为有理不等式。
高次向着低次代,步步转化要等价。
数形之间互转化,帮助解答作用大。
证不等式的方法,实数性质威力大。
求差与0比大小,作商和1争高下。
直接困难分析好,思路清晰综合法。
非负常用基本式,正面难则反证法。
还有重要不等式,以及数学归纳法。
图形函数来帮助,画图建模构造法。
数学不等式例题例1判断下列命题的真假,并说明理由.若a>b,c=d,则ac>bd(假,因为c.d符号不定)若a+c>c+b,则a>b;(真)若a>b且ab<0,则a<0;(假)若-a<-b,则a>b;(真)若|a|b2;(充要条件)说明:本题要求学生完成一种规范的证明或解题过程,在完善解题规范的过程中完善自身逻辑思维的严密性.例2a,b∈R且a>b,比较a3-b3与ab2-a2b的大小.(≥)说明:强调在最后一步中,说明等号取到的情况,为今后基本不等式求最值作思维准备.例3设a>b,n是偶数且n∈N*,试比较an+bn与an-1b+abn-1的大小.说明:本例条件是a>b,与正值不等式乘方性质相比在于缺少了a,b 为正值这一条件,为此我们必须对a,b的取值情况加以分类讨论.因为a>b,可由三种情况(1)a>b≥0;(2)a≥0>b;(3)0>a>b.由此得到总有an+bn>an-1b+abn-1.通过本例可以开始渗透分类讨论的数学思想。
高中高二数学知识点不等式证明方法学习高中频道为各位同学整理了高二数学知识点不等式证明方法,供大伙儿参考学习。
更多各科知识点请关注新查字典数学网高中频道。
一、不等式的性质1.两个实数a与b之间的大小关系2.不等式的性质(4) (乘法单调性)3.绝对值不等式的性质(2)假如a0,那么(3)|ab|=|a||b|.(5)|a|-|b||ab||a|+|b|.(6)|a1+a2++an||a1|+|a2|++|an|.二、不等式的证明1.不等式证明的依据(2)不等式的性质(略)(3)重要不等式:①|a|0;(a-b)20(a、bR)②a2+b22ab(a、bR,当且仅当a=b时取=号)2.不等式的证明方法(1)比较法:要证明ab(a0(a-b0),这种证明不等式的方法叫做比较法.一样说来,“教师”概念之形成经历了十分漫长的历史。
杨士勋(唐初学者,四门博士)《春秋谷梁传疏》曰:“师者教人以不及,故谓师为师资也”。
这儿的“师资”,事实上确实是先秦而后历代对教师的别称之一。
《韩非子》也有云:“今有不才之子……师长教之弗为变”其“师长”因此也指教师。
这儿的“师资”和“师长”可称为“教师”概念的雏形,但仍说不上是名副事实上的“教师”,因为“教师”必须要有明确的传授知识的对象和本身明确的职责。
用比较法证明不等式的步骤是:作差变形判定符号.(2)综合法:从已知条件动身,依据不等式的性质和已证明过的不等式,推导出所要证明的不等式成立,这种证明不等式的方法叫做综合法.(3)分析法:从欲证的不等式动身,逐步分析使这不等式成立的充分条件,直到所需条件已判定为正确时,从而确信原不等式成立,这种证明不等式的方法叫做分析法.要练说,得练看。
看与说是统一的,看不准就难以说得好。
练看,确实是训练幼儿的观看能力,扩大幼儿的认知范畴,让幼儿在观看事物、观看生活、观看自然的活动中,积存词汇、明白得词义、进展语言。
在运用观看法组织活动时,我着眼观看于观看对象的选择,着力于观看过程的指导,着重于幼儿观看能力和语言表达能力的提高。
高二不等式知识点总结不等式是数学中一种重要的关系式,它描述了两个数或两个式子之间的大小关系。
在高二阶段学习数学时,不等式是必不可少的知识点之一。
本文将对高二阶段学习的不等式知识点进行总结和概述。
一、一元一次不等式1. 不等式的定义:不等式是含有不等号(<、>、≤、≥)的数学式子。
2. 不等式的解:解不等式可以通过移项和绘制数轴的方法。
解集通常用区间表示。
3. 不等式的性质:不等式在两边同时加上一个相等的数或者在两边同时乘以一个正数时,不等关系不变;在两边同时乘以一个负数时,不等关系会颠倒。
4. 一元一次不等式的解法:考虑到正负数以及系数的情况,可以分为以下几种情况进行讨论。
二、一元二次不等式1. 一元二次不等式的定义:一元二次不等式是含有平方项的不等式。
2. 一元二次不等式的解法:可通过化为标准形式,配方法或绘制图像等方式进行求解,解集常用区间来表示。
3. 一元二次不等式的性质:与一元一次不等式类似,需要注意平方项对不等式性质的影响。
三、绝对值不等式1. 绝对值不等式的定义:绝对值不等式是含有绝对值的不等式。
2. 绝对值不等式的解法:可通过绝对值的定义以及正负号的讨论来解决。
四、分式不等式1. 分式不等式的定义:分式不等式是含有分式的不等式。
2. 分式不等式的通解:利用分式不等式的定义,可通过化简、拆分分式等方式求得通解。
五、不等式组1. 不等式组的定义:含有多个不等式的组合形式。
2. 不等式组的解法:可通过图示法、代入法、消元法等不同的方法求解。
六、不等式的应用1. 不等式在数学问题中的应用:不等式常常被应用于解决实际问题,如优化问题、约束条件等。
2. 不等式在证明中的应用:不等式在数学证明中具有重要的作用,可通过不等式进行推导、化简等。
综上所述,高二阶段的不等式知识点主要包括一元一次不等式、一元二次不等式、绝对值不等式、分式不等式、不等式组等内容。
掌握这些知识点对高中数学的学习以及今后的学习和工作都具有重要的意义。
高二数学知识点及公式总结(通用10篇)高二数学公式总结篇一1、不等式证明的依据(2)不等式的性质(略)(3)重要不等式:①|a|≥0;a2≥0;(a-b)2≥0(a、b∈R)②a2+b2≥2ab(a、b∈R,当且仅当a=b时取“=”号)2、不等式的证明方法(1)比较法:要证明ab(a0(a-b0),这种证明不等式的方法叫做比较法。
用比较法证明不等式的步骤是:作差——变形——判断符号。
(2)综合法:从已知条件出发,依据不等式的性质和已证明过的不等式,推导出所要证明的不等式成立,这种证明不等式的方法叫做综合法。
(3)分析法:从欲证的不等式出发,逐步分析使这不等式成立的充分条件,直到所需条件已判断为正确时,从而断定原不等式成立,这种证明不等式的方法叫做分析法。
证明不等式除以上三种基本方法外,还有反证法、数学归纳法等。
高二数学知识点及公式总结篇二圆与圆的位置关系1、利用平面直角坐标系解决直线与圆的位置关系;2、过程与方法用坐标法解决几何问题的步骤:第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中的几何元素,将平面几何问题转化为代数问题;第二步:通过代数运算,解决代数问题;第三步:将代数运算结果“翻译”成几何结论。
高二数学公式总结篇三1、辗转相除法是用于求公约数的一种方法,这种算法由欧几里得在公元前年左右首先提出,因而又叫欧几里得算法。
2、所谓辗转相法,就是对于给定的两个数,用较大的数除以较小的数。
若余数不为零,则将较小的数和余数构成新的一对数,继续上面的除法,直到大数被小数除尽,则这时的除数就是原来两个数的公约数。
3、更相减损术是一种求两数公约数的方法。
其基本过程是:对于给定的两数,用较大的数减去较小的数,接着把所得的差与较小的数比较,并以大数减小数,继续这个操作,直到所得的数相等为止,则这个数就是所求的公约数。
4、秦九韶算法是一种用于计算一元二次多项式的值的方法。
5、常用的排序方法是直接插入排序和冒泡排序。
6.3 不等式的证明(四)
教学要求:掌握用分析法证明不等式,理解分析法与综合法的互逆关系。
教学重点:掌握用分析法证明。
教学难点:利用分析法证明原理。
教学过程:
一、复习准备:
1.已知x 、y 、z ∈R +且x<y ,求证:z y z x ++>y
x 。
解法:应用比较法,先作差再通分后判别符号。
2.已知a 、b 、c 为互不相等的正数,求证:a 1+b 1+c 1>bc
1+ac 1+ab 1 解法一:比较法,先作差再配方; 解法二:综合法,利用二元均值不等式。
3.知识回顾:比较法及基本步骤; 综合法及基本思路(应用基本不等式和性质)。
二、讲授新课:
1.教学用分析法证明不等式:
①出示例1:已知x 、y 、z ∈R +且x<y ,求证:z y z x ++>y
x 。
②思考:如何用初中学习到的分析法,即从求证的不等式出发,分析这个不等式成立的条件,直到条件都已经是具备的?
③教师板演证明格式,并强调书写格式。
④推广:真分数的性质、假分数的性质。
⑤出示例2:已知a>0,求证:a +5+a <1+a +4+a
⑥思考:能否用综合法证明?如何用分析法证明? → 学生试写分析法证明格式。
⑦讨论:再如何改写,就变成了用综合法证明?两种证明方法有何关系?并由此证明思路对
你解题有何帮助?(分析法、综合法并用)→变题:证明移项后式子。
2.练习: 先用分析法证明,再用综合法证明,最后用比较法证明
已知x 、y ∈R +,求证:x 3+y 3≥x 2y +xy 2 →应用:证明x 3+y 3+z 3
≥3xyz
3.小结:分析法证明思路; 格式防错; 与综合法的关系。
三、巩固练习:
1. 求证:ac +bd ≤22b a +22d c +
解法:分ac +bd>0和ac +bd ≤0两种情况进行证明。
(技巧:平方) 2. 已知x>5, 求证:5-x -3-x <2-x -x
解法:使用分析法,再移项后再平方。
3.课堂作业:书P17 5、6题。