湖北省武汉市武珞路中学2014-2015学年七年级下学期期末数学试卷(word解析版)
- 格式:doc
- 大小:269.04 KB
- 文档页数:18
2014-2015学年湖北省武汉市武昌区七年级(下)期末数学试卷一、选择题(本大题共10小题,每题3分,共30分)1.在平面直角坐标系中,点P(﹣3,﹣4)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.(16的平方根是()A.4 B.±4 C.﹣4 D.±83.一个不等式组中的两个不等式的解集如图所示,则这个不等式组的解集为()A.x>2 B.x≤4 C.2≤x<4 D.2<x≤44.下列各数中,是无理数的是()A. B.C.D.3.145.已知是方程2x﹣ay=3的一个解,那么a的值是()A.1 B.3 C.﹣3 D.﹣16.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的一组对边上,如果∠1=25°,那么∠2的度数是()A.30°B.25°C.20°D.15°7.以下问题,不适合用全面调查的是()A.旅客上飞机前的安检B.学校招聘教师,对招聘人员的面试C.了解一批灯泡的使用寿命D.了解701班的身高情况8.一个正方体的体积为25,估计这个正方形的边长在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间9.在△ABC内任意一点P(a,b)经过平移后对应点P1(c,d),已知A(3,2)在经过此次平移后对应点A1的坐标为(5,﹣1),则a+b﹣c﹣d的值为()A.﹣5 B.﹣1 C.1 D.510.若关于x的不等式mx﹣n>0的解集是x<,则关于x的不等式(n﹣m)x>(m+n)的解集是()A.x<﹣B.x>﹣C.x<D.x>二、填空题(共6小题,每小题3分,满分18分)11.=.12.如图,直线AB,CD相交于点O,OE⊥AB于点O,∠COB=145°,则∠DOE=.13.一个容量为60的样本,样本中最大值是172,最小值是150,取组距为3,则该样本可以分为组.14.一个正数的平方根是2a﹣2与3﹣a,则a等于.15.若第二象限的点P(a,b)到x轴的距离是4+a,到y轴的距离是b﹣1,则点P的坐标为.16.如图,AB∥CD,∠ABK的角平分线BE的反向延长线和∠DCK的角平分线CF的反向延长线交于点H,∠K﹣∠H=27°,则∠K=.三、解答题(共8小题,共72分)17.(8分)解方程组.18.(8分)解不等式组.19.(8分)如图,已知EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD(请填空)解:∵EF∥AD∴∠2=(又∵∠1=∠2∴∠1=∠3()∴AB∥()∴∠BAC+=180°()∵∠BAC=70°()∴∠AGD=()20.(8分)打折前,买6件A商品和3件B商品用了108元,买5件A商品和1件B商品用了84元,打折后买5件A商品和5件B商品用了80元,问打折后买5件A商品和5件B商品比不打折少花多少元?21.(8分)某校举行“汉字听写”比赛,每位学生听写汉字39个,比赛结束后,随机抽查部分学生的听写结果,以下是根据抽查结果绘制的统计图的一部分.组别正确字数x 人数A 0≤x<8 10B 8≤x<16 15C 16≤x<24 25D 24≤x<32 ME 32≤x<40 20m=,n=,并补全直方图;(2)扇形统计图中“C组”所对应的圆心角的度数是度;(3)若该校共有964名学生,如果听写正确的个数少于24个定为不合格,请你估算这所学校本次比赛听写不合格的学生人数.22.(10分)一个长方形台球桌面ABCD(AB∥CD,AD∥BC,∠A=90)如图1所示,已知台球在与台球桌边沿碰撞的过程中,撞击线路与桌边的夹角等于反射线路与桌边的夹角,如∠1=∠2(1)台球经过如图2的两次反弹后,撞击线路EF,第二次反弹线路GH,求证:EF∥GH;(2)台球经过如图3所示的两次反弹后,撞击线路EF和第二次反弹线路GH是否仍然平行,给出你的结论并说明理由.第3页(共18页)23.(10分)我市为创建“国家级森林城市”,政府将对江边一处废弃地进行绿化,要求种植甲、乙两种不同的树苗6000棵,政府以元将工程承包给某承包商,根据调查及相关资料表品种购买价成活率甲20 90%乙32 95%93%时,没成活的树苗政府负责出资补栽,否则,承包商出资补栽,若成活率达到94%以上(含94%),政府还另给9000元的奖励,请根据以上的信息解答下列问题:(1)承包商要使得种植这批树苗的成活率不低于93%,甲种树苗最多栽种多少棵?(2)已知承包商在没有补栽的情况下树苗成活率在93%以上,除开成本(购置树苗和栽种这批树苗的费用)共获得64000元,问该承包商栽种甲、乙两种树苗各多少棵?24.(12分)在平面直角坐标系中,O为坐标原点,点A的坐标为(a,3),点B的坐标(b,6),(1)若AB与坐标轴平行,求AB的长;(2)若a,b,c满足,AC⊥x轴,垂足为C,BD⊥x轴,垂足为D,①求四边形ACDB的面积②连AB,OA,OB,若△OAB的面积大于6而小于10,求a的取值范围.2014-2015学年武汉市武昌区七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每题3分,共30分)1.(3分)(2015春•武昌区期末)在平面直角坐标系中,点P(﹣3,﹣4)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【分析】根据各象限内点的坐标特征解答即可.【解答】解:点P(﹣3,﹣4)在第三象限.故选C.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).2.(3分)(2006•芜湖)16的平方根是()A.4 B.±4 C.﹣4 D.±8【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a 的一个平方根.【解答】解:∵(±4)2=16,∴16的平方根是±4.故选B.【点评】本题主要考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根.3.(3分)(2015春•武昌区期末)一个不等式组中的两个不等式的解集如图所示,则这个不等式组的解集为()A.x>2 B.x≤4 C.2≤x<4 D.2<x≤4【分析】写出图中表示的两个不等式的解集,这两个式子就是不等式.这两个式子就组成的不等式组就满足条件.【解答】解:根据数轴可得:,∴不等式组的解集为:2<x≤4,故选:D.【点评】此题主要考查了在数轴上表示不等式的解集,关键是用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.4.(3分)(2015春•武昌区期末)下列各数中,是无理数的是()A .B .C .D.3.14第5页(共18页)【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、=4是整数,是有理数,选项错误;B、是无理数,选项正确;C、是分数,是有理数,选项错误;D、3.14是有限小数是有理数,选项错误.故选B.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.…,等有这样规律的数.5.(3分)(2012•颍泉区模拟)已知是方程2x﹣ay=3的一个解,那么a的值是()A.1 B.3 C.﹣3 D.﹣1【分析】把方程的解代入方程,把关于x和y的方程转化为关于a的方程,然后解方程即可.【解答】解:∵是方程2x﹣ay=3的一个解,∴满足方程2x﹣ay=3,∴2×1﹣(﹣1)a=3,即2+a=3,解得a=1.故选A.【点评】本题主要考查了二元一次方程的解.解题关键是把方程的解代入原方程,使原方程转化为以系数a为未知数的方程.6.(3分)(2015春•武昌区期末)如图,把一块含有45°角的直角三角板的两个顶点放在直尺的一组对边上,如果∠1=25°,那么∠2的度数是()A.30°B.25°C.20°D.15°【分析】由a与b平行,得到一对内错角相等,即∠1=∠3,根据等腰直角三角形的性质得到∠2+∠3=45°,根据∠1的度数即可确定出∠2的度数.【解答】解:∵a∥b,∴∠1=∠3,∵∠2+∠3=45°,∴∠2=45°﹣∠3=45°﹣∠1=20°.故选C【点评】此题考查了平行线的性质,熟练掌握平行线的性质是解本题的关键.7.(3分)(2015春•武昌区期末)以下问题,不适合用全面调查的是()A.旅客上飞机前的安检B.学校招聘教师,对招聘人员的面试C.了解一批灯泡的使用寿命D.了解701班的身高情况【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、旅客上飞机前的安检,意义重大,宜用全面调查,故A选项错误;B、学校招聘教师,对应聘人员面试必须全面调查,故B选项错误;C、了解一批灯泡的使用寿,具有破坏性,不适合全面调查,故C选项正确;D、了解全班同学每周体育锻炼的时间,数量不大,宜用全面调查,故D选项错误;故选:C.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.8.(3分)(2015春•武昌区期末)一个正方体的体积为25,估计这个正方形的边长在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间【分析】根据正方体的体积,求出正方体的边长,估算的范围.【解答】解:∵正方体的体积为25,∴正方体的边长为,∵,∴2<<3,故选:A.【点评】本题考查了故算无理数的大小,解决本题的关键是估算的范围.9.(3分)(2015春•武昌区期末)在△ABC内任意一点P(a,b)经过平移后对应点P1(c,d),已知A(3,2)在经过此次平移后对应点A1的坐标为(5,﹣1),则a+b﹣c﹣d的值为()A.﹣5 B.﹣1 C.1 D.5【分析】由A(3,2)在经过此次平移后对应点A1的坐标为(5,﹣1),可得△ABC的平移规律为:向右平移2个单位,向下平移3个单位,由此得到结论.【解答】解:∵A(3,2)在经过此次平移后对应点A1的坐标为(5,﹣1),第7页(共18页)∴△ABC的平移规律为:向右平移个单位,向下平移3个单位,∵点P(a,b)经过平移后对应点P1(c,d),∴a+2=c,b﹣3=d,∴a﹣c=﹣2,b﹣d=3,∴a+b﹣c﹣d=﹣2+3=1,故选C.【点评】本题考查的是坐标与图形变化﹣平移,牢记平面直角坐标系内点的平移规律:上加下减、右加左减是解题的关键.10.(3分)(2015春•武昌区期末)若关于x的不等式mx﹣n>0的解集是x<,则关于x 的不等式(n﹣m)x>(m+n)的解集是()A.x<﹣B.x>﹣C.x<D.x>【分析】先解关于x的不等式mx﹣n>0,得出解集,再根据不等式的解集是x<,从而得出m与n的关系,选出答案即可.【解答】解:∵关于x的不等式mx﹣n>0的解集是x<,∴m<0,=,解得m=4n,∴n<0,∴解关于x的不等式(n﹣m)x>m+n得,(n﹣4n)x<4n+n,∴﹣3nx<5n,∵n<0,∴﹣3n>0,∴x>﹣,故选B.【点评】本题考查了不等式的解集以及不等式的性质,熟练掌握不等式的性质3是解题的关键.二、填空题(共6小题,每小题3分,满分18分)11.(3分)(2014•泰州)=2.【分析】如果一个数x的平方等于a,那么x是a的算术平方根,由此即可求解.【解答】解:∵22=4,∴=2.故答案为:2【点评】此题主要考查了学生开平方的运算能力,比较简单.12.(3分)(2015春•武昌区期末)如图,直线AB,CD相交于点O,OE⊥AB于点O,∠COB=145°,则∠DOE=55°.【分析】根据对顶角相等可得∠DOB=65°,再根据垂直定义可得∠EOB=90°,再根据角的和差关系可得答案.【解答】解:∵∠COB=145°,∴∠DOB=35°,∵OE⊥AB,∴∠EOB=90°,∴∠EOD=90°﹣35°=55°,故答案为:55°.【点评】此题主要考查了垂线,关键是掌握当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线.13.(3分)(2015春•武昌区期末)一个容量为60的样本,样本中最大值是172,最小值是150,取组距为3,则该样本可以分为8组.【分析】求出最大值和最小值的差,然后除以组距,用进一法取整数值就是组数.【解答】解:最大值与最小值的差是:172﹣150=22,则可以分成的组数是:22÷3≈8(组),故答案为:8.【点评】本题考查频率分布表中组数的确定,关键是求出最大值和最小值的差,然后除以组距,用进一法取整数值就是组数.14.(3分)(2015春•武昌区期末)一个正数的平方根是2a﹣2与3﹣a,则a等于﹣1.【分析】根据平方根的定义得到2a﹣3与5﹣a互为相反数,列出关于a的方程,求出方程的解得到a的值.【解答】解:根据题意得:2a﹣2+3﹣a=0,解得:a=﹣1,故答案为:﹣1.【点评】此题考查了平方根,熟练掌握平方根的定义是解本题的关键.15.(3分)(2015春•武昌区期末)若第二象限的点P(a,b)到x轴的距离是4+a,到y轴的距离是b﹣1,则点P的坐标为(﹣,).【分析】根据第二象限内点的横坐标是负数,纵坐标是正数,点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度列出方程组,然后求解即可.【解答】解:∵点P(a,b)在第二象限,∴a<0,b>0,∵点到x轴的距离是4+a,到y轴的距离是b﹣1,∴,第9页(共18页)解方程组得,,所以,点P的坐标为(﹣,).故答案为:(﹣,).【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).16.(3分)(2015春•武昌区期末)如图,AB∥CD,∠ABK的角平分线BE的反向延长线和∠DCK的角平分线CF的反向延长线交于点H,∠K﹣∠H=27°,则∠K=78°.【分析】分别过K、H作AB的平行线MN和RS,根据平行线的性质和角平分线的性质可用∠ABK和∠DCK分别表示出∠H和∠K,从而可找到∠H和∠K的关系,结合条件可求得∠K.【解答】解:如图,分别过K、H作AB的平行线MN和RS,∵AB∥CD,∴AB∥CD∥RS∥MN,∴∠RHB=∠ABE=∠ABK,∠SHC=∠DCF=∠DCK,∠NKB+∠ABK=∠MKC+∠DCK=180°,∴∠BHC=180°﹣∠RHB﹣∠SHC=180°﹣(∠ABK+∠DCK),∠BKC=180°﹣∠NKB﹣∠MKC=180°﹣(180°﹣∠ABK)﹣(180°﹣∠DCK)=∠ABK+∠DCK ﹣180°,∴∠BKC=360°﹣2∠BHC﹣180°=180°﹣2∠BHC,又∠BKC﹣∠BHC=27°,∴∠BHC=∠BKC﹣27°,∴∠BKC=180°﹣2(∠BKC﹣27°),∴∠BKC=78°,故答案为:78°.【点评】本题主要考查平行线的性质,掌握平行线的判定和性质是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a∥b,b∥c⇒a∥c.三、解答题(共8小题,共72分)17.(8分)(2015春•武昌区期末)解方程组.【分析】方程组利用加减消元法求出解即可.【解答】解:,①+②得:4x=8,即x=2,把x=2代入①得:y=1,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.(8分)(2015春•武昌区期末)解不等式组.【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解:,由①得,x<2,由②得,x>﹣1,故不等式组的解集为:﹣1<x<2.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.(8分)(2015春•武昌区期末)如图,已知EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD (请填空)解:∵EF∥AD∴∠2=∠3(两直线平行,同位角相等又∵∠1=∠2∴∠1=∠3(等量代换)∴AB∥DG(内错角相等,两直线平行)∴∠BAC+∠DGA=180°(两直线平行,同旁内角互补)∵∠BAC=70°(已知)∴∠AGD=110°(补角定义)第11页(共18页)【分析】根据平行线的性质和已知求出∠1=∠3,根据平行线的判定推出AB∥DG,根据平行线的性质求出∠BAC+∠DGA=180°即可.【解答】解:∵EF∥AD,∴∠2=∠3(两直线平行,同位角相等),∵∠1=∠2,∴∠1=∠3(等量代换),∴AB∥DG(内错角相等,两直线平行),∴∠BAC+∠DGA=180°(两直线平行,同旁内角互补),∵∠BAC=70°(已知),∴∠AGD=110°(补角定义).故答案为:∠3,两直线平行,同位角相等,等量代换,DG,内错角相等,两直线平行,∠DGA,两直线平行,同旁内角互补,已知,110°,补角定义.【点评】本题考查了平行线的性质和判定的应用,能灵活运用平行线的性质和判定定理进行推理是解此题的关键,注意:平行线的性质是①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.20.(8分)(2015春•武昌区期末)打折前,买6件A商品和3件B商品用了108元,买5件A商品和1件B商品用了84元,打折后买5件A商品和5件B商品用了80元,问打折后买5件A商品和5件B商品比不打折少花多少元?【分析】利用打折前的两个相等关系:6件A商品的价格+3件B商品的价格=108;5件A 商品的价格+1件B商品的价格=84,列方程组求打折前A和B两种商品的价格,再计算比不打折少花的钱数.【解答】解:设打折前A和B两种商品的价格分别为每件x元和y元.依题意得:解得:.则5x+5y﹣80=5(x+y)﹣80=20(元).答:比不打折少花20元.【点评】此题考查二元一次方程组的实际运用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.21.(8分)(2015春•天津期末)某校举行“汉字听写”比赛,每位学生听写汉字39个,比赛结束后,随机抽查部分学生的听写结果,以下是根据抽查结果绘制的统计图的一部分.组别正确字数x 人数A 0≤x<8 10B 8≤x<16 15C 16≤x<24 25D 24≤x<32 M E 32≤x<40 30(1)在统计表中,m=30,n=20,并补全直方图;(2)扇形统计图中“C组”所对应的圆心角的度数是90度;(3)若该校共有964名学生,如果听写正确的个数少于24个定为不合格,请你估算这所学校本次比赛听写不合格的学生人数.【分析】(1)根据B组有15人,所占的百分比是15%即可求得总人数,然后根据百分比的意义求解;(2)利用360度乘以对应的比例即可求解;(3)利用总人数900乘以对应的比例即可求解【解答】解:(1)抽查的总人数是:15÷15%=100(人),则m=100×30%=30,n=100×20%=20.故答案是:30,20;(2)扇形统计图中“C组”所对应的圆心角的度数是:360°×=90°,故答案是:90;(3)“听写正确的个数少于24个”的人数有:10+15+25=50 (人).900×=450(人).答:这所学校本次比赛听写不合格的学生人数约为450人.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.第13页(共18页)22.(10分)(2015春•武昌区期末)一个长方形台球桌面ABCD(AB∥CD,AD∥BC,∠A=90)如图1所示,已知台球在与台球桌边沿碰撞的过程中,撞击线路与桌边的夹角等于反射线路与桌边的夹角,如∠1=∠2(1)台球经过如图2的两次反弹后,撞击线路EF,第二次反弹线路GH,求证:EF∥GH;(2)台球经过如图3所示的两次反弹后,撞击线路EF和第二次反弹线路GH是否仍然平行,给出你的结论并说明理由.【分析】(1)由平行线的性质结合题目条件可得∠AFG=∠FGC=∠BFE=∠DGH,则可求得∠GFE=∠HGF,可证明EF∥GH;(2)结合条件可知∠AFG=∠BFE,∠AGF=∠DGH,由∠A=90°,可求得∠AFG+∠AGF=90°,结合平角的定义可得∠FGH+∠GFE=180°,可证得EF∥GH.【解答】(1)证明:由题意可知∠AFG=∠BFE,∠DGH=∠CGF,∵AB∥CD,∴∠AFG=∠CGF,∴∠AFG=∠BFE=∠DGH=∠CGF,∵∠GFE=180°﹣2∠AFG,∠FGH=180°﹣2∠CGF,∴∠GFE=∠FGF,∴EF∥GH;(2)解:EF∥GH.理由如下:由题意可知∠AFG=∠BFE,∠AGF﹣∠DGH,∵∠A=90°,∴∠AFG+∠AGF=90°,∵∠GFE=180°﹣2∠AFG,∠FGH=180°﹣2∠AGF,∴∠GFE+∠FGH=360°﹣2(∠AFG+∠AGF)=360°﹣180°=180°,∴EF∥GH.【点评】本题主要考查平行线的判定和性质,掌握平行线的判定和性质是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a∥b,b∥c⇒a∥c.23.(10分)(2015春•武昌区期末)我市为创建“国家级森林城市”,政府将对江边一处废弃地进行绿化,要求种植甲、乙两种不同的树苗6000棵,政府以元将工程承包给某承包商,根据调查及相关资料表明:移栽一棵树苗的费用为8元,甲、乙两种树苗购买价和成活率如品种购买价成活率甲20 90%乙32 95%政府与承包商的合同要求,栽种树苗的成活率必须不低于93%.当成活率不低于93%时,没成活的树苗政府负责出资补栽,否则,承包商出资补栽,若成活率达到94%以上(含94%),政府还另给9000元的奖励,请根据以上的信息解答下列问题:(1)承包商要使得种植这批树苗的成活率不低于93%,甲种树苗最多栽种多少棵?(2)已知承包商在没有补栽的情况下树苗成活率在93%以上,除开成本(购置树苗和栽种这批树苗的费用)共获得64000元,问该承包商栽种甲、乙两种树苗各多少棵?【分析】(1)购买甲种树苗a株,则购买乙种树苗(6000﹣a)株,由这批树苗的总成活率不低于93%建立不等式求出其解即可;(2)设购甲种树苗x株,乙种树苗6000﹣x株,根据两种树苗总数为6000株及除开成本(购置树苗和栽种这批树苗的费用)共获得64000元,建立方程组求出其解即可.【解答】解:(1)设购买甲种树苗a株,则购买乙种树苗(6000﹣a)株,列不等式:90%a+95%(6000﹣a)≥93%×6000.解得a ≤2400.答:甲种树苗最多购买2400株,(2)设购甲种树苗x株,乙种树苗6000﹣x株,由题意得:64000=﹣(20x+32×(6000﹣x)+8×6000),解得:x=2000,6000﹣x=4000.答:该承包商栽种甲、乙两种树苗为2000,4000棵.【点评】此题考查一元一次不等式的应用,关键是根据题意列出不等式组和一元一次方程进行解答.24.(12分)(2015春•武昌区期末)在平面直角坐标系中,O为坐标原点,点A的坐标为(a,3),点B的坐标(b,6),(1)若AB与坐标轴平行,求AB的长;(2)若a,b,c满足,AC⊥x轴,垂足为C,BD⊥x轴,垂足为D,①求四边形ACDB的面积②连AB,OA,OB,若△OAB的面积大于6而小于10,求a的取值范围.【分析】(1)AB与坐标轴平行,则AB的长为两点的纵坐标之差;(2)①先解方程组得到b﹣a=2,则根据梯形的面积公式可计算出四边形ACDB的面积=9;②分类讨论:当a>0,S△OAB=S△OBD﹣S△OAC﹣S梯形ACDB=a﹣3,则6<a﹣3<10,解得6<a<;当a<0,b>0,S△OAB=S梯形ACDB﹣S△OBD﹣S△OAC=3﹣a,则6<3﹣a <10,解得﹣<a<﹣2,而b=2+a>0,则a>﹣2,故舍去;当a<0,b<0,S△OAB=S△OBD+S﹣S△OAC=3﹣a,则6<3﹣a<10,解得﹣<a<﹣2,于是得到a的取值范围梯形ACDB为6<a<或﹣<a<﹣2.第15页(共18页)【解答】解:(1)∵AB与坐标轴平行,即AB平行于y轴,∴AB=6﹣3=3;(2)①由方程组得b﹣a=2,∵AC⊥x轴,垂足为C,BD⊥x轴,垂足为D,∴C(a,0),D(b,0),如图,∴四边形ACDB的面积=•(3+6)•(b﹣a)=•9•2=9;②当a>0,∵S△OAB=S△OBD﹣S△OAC﹣S梯形ACDB,∴S△OAB=•6•b﹣•3•a﹣9=3b﹣a﹣9,而b=2+a,∴S△OAB=3(2+a)﹣a﹣9=S△OAB=a﹣3,∴6<a﹣3<10,解得6<a<;当a<0,b>0,S△OAB=S梯形ACDB﹣S△OBD﹣S△OAC=9﹣•6•b+•3•a=9﹣3b+a=9﹣3(2+a)+a=3﹣ a ∴6<3﹣a<10,解得﹣<a<﹣2,而b=2+a>0,则a>﹣2,故舍去,当a<0,b<0,∵S△OAB=S△OBD+S梯形ACDB﹣S△OAC=﹣•6•b+9+•3•a=﹣3b+9+a=﹣3(2+a)+9+a=3﹣ a∴6<3﹣a<10,解得﹣<a<﹣2,综上所述,a的取值范围为6<a<或﹣<a<﹣2.【点评】本题考查了坐标与图形性质:利用点的坐标求相应线段的长和判断线段与坐标轴的位置关系.也考查了三角形面积公式.第17页(共18页)。
武汉重点中学2014~2015学年度下学期七年级期末数学试卷选编一、选择题(共10小题,每小题3分,共30分)1.81的算术平方根是( )A .9B .-9C .±9D .32.设x 、y 为实数,且y 2=4+55-+-x x ,则|x -y |的值是( )A .7B .3C .7或3D .13.如果m <n <0,那么下列结论中错误的是( )A .m -9<n -9B .-m >-nC .m n 11>D .1>nm 4.关于x 的方程ax +3=4x +1的解为正整数,则正整数a 的值为( )A .2B .3C .1或2D .2或35.若实数a >1,则实数M =a ,N =32+a ,P =312+a 的大小关系是( ) A .P >N >M B .M >N >PC .N >P >MD .M >P >N 6.已知关于x 的不等式组⎪⎩⎪⎨⎧>-><a x x x 12无解,则a 的取值范围是( )A .a ≤-1B .a ≥2C .-1<a <2D .a <-1或a >27.如图在方格纸中每个小方格都是边长为1的正方形,A 、B 两点在小方格的顶点上,点C 也在小方格的顶点上,且以A 、B 、C 为顶点的三角形的面积为1个平方单位,则点C 的个数为( )A .1个B .4个C .5个D .6个8.某商贩去菜摊买黄瓜,他上午买了30斤,价格为每斤x 元;下午,他又买了20斤,价格为每斤y 元,后来他以每斤2y x +元的价格卖完后,结果发现自己赔了钱,其原因是( ) A .x <y B .x >yC .x ≤yD .x ≥y 9.若方程组⎩⎨⎧=+=+222111c y b x a c y b x a 的解是⎩⎨⎧=-=1514y x ,则方程组⎩⎨⎧=+=+222111957957c y b x a c y b x a 的解为( ) A .⎩⎨⎧=-=1514y x B .⎩⎨⎧-==1514y x C .⎩⎨⎧-=-=1514y x D .⎩⎨⎧=-=2718y x 10.求1+2+22+23+……+22014的值,可令S =1+2+22+23+……+22014,则2S =2+22+23+24+……+22015.因此2S -S =22015-1,S =22015-1.我们把这种求和方法叫错位相减法,仿照上述的思路方法,计算出1+5+52+53+……+52014的值为( )A .52015-1B .52016-1C .4152015-D .4152016-二、填空题(共6小题,每题3分,共18分)11.方程组⎩⎨⎧=+=+18526y cx by ax 的解应为⎩⎨⎧-==24y x ,一个同学把c 看错了,因此解得⎩⎨⎧==37y x ,则a +b +c =__________12.若方程组⎩⎨⎧=-=+ty x t y x 3652,则y x =__________ 13.已知关于x 的不等式组⎩⎨⎧->-≥-1230x a x 的整数解共有4个,则a 的取值范围是_________ 14.已知方程组⎩⎨⎧-=-+=++4736452z y x z y x ,则式子x +y -z 的值为__________ 15.有三种物品,每件的价格分别是2元、4元和6元,现用60元买这三种物品,总共买16件而钱恰好用完,则价格为6元的物品最多买__________件16.如图中,在长方形内画了一些直线,已知边上有三块面积分别是13、35、49.那么图中阴影部分的面积是__________三、解答题(共9小题,共72分)19.(本题7分)阅读下列不等式的解法,按要求解不等式,不等式021>--x x 的解的过程如下: 解:根据题意,得⎩⎨⎧>->-0201x x ①或⎩⎨⎧<-<-0201x x ② 解不等式组①,得x >2;解不等式组②,得x <1 所以原不等式的解为x >2或x <1 请你按照上述方法求出不等式052≥-+x x 的解20.(本题7分)师傅对徒弟说“我像你这样大时,你才4岁,将来当你像我这样大时,我已经是52岁的人了”.问这位师傅与徒弟现在的年龄各是多少岁?21.(本题7分)如图,A 、B 、C 共线,∠DCE =∠BDC ,∠ADB =∠E ,求证:∠A =∠EBC22.(本题7分)若不等式mx+n>0的解集是x<2,求不等式(3m-n)x<2m+6n解集23.(本题8分)已知△ABC在平面直角坐标系中的位置如图所示(1) 画出△ABC关于y轴对称的△AB1C1,并写出B1的坐标(2) 将△ABC向右平移8个单位,画出平移后的△A2B2C2,并写出B2的坐标(3) 认真观察所作的图形,△AB1C1与△A2B2C2有怎样的位置关系?24.(本题10分)某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元(1) 今年三月份甲种电脑每台售价多少元?(2) 为了增加收入,电脑公司决定再经销乙种型号电脑,已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?25.(本题12分)长方形OABC ,O 为平面直角坐标系的原点,OA =5,OC =3,点B 在第三象限(1) 求点B 的坐标(2) 如图1,若过点B 的直线BP 与长方形OABC 的边交于点P ,且将长方形OABC 的面积分为1∶4两部分,求点P 的坐标(3) 如图2,M 为x 轴负半轴上一点,且∠CBM =∠CMB ,N 是x 轴正半轴上一动点,∠MCN 的平分线CD 交BM 的延长线于点D ,在点N 运动的过程中,CNMD ∠∠的值是否变化?若不变,求出其值;若变化,请说明理由24.(本题12分)如图,A (0,a )、C (c ,0),且|c -3a +3|+7 a =0,将点C 向上平移7个单位长度再向左平移4个单位长度,得到对应点B(1) 求点B 的坐标及四边形ABCO 的面积(2) 若点P 从点C 以2个单位长度/秒的速度沿CO 方向移动,同时点Q 以每秒1个单位长度的速度沿OA 方向移动.设移动的时间为t 秒(0<t <7),是否存在一段时间,使S 四边形OPBA <2S △OQB ,若存在,求出t 的取值范围;若不存在,试说明理由(3) P 、Q 在(2)的条件下运动,问S 四边形QOPB 的值是否随P 、Q 的运动而改变?给出你的结论,并加以证明24.(本题12分)如图,在平面直角坐标系中,若A(m-6,0)、B(0,m+1),且OA=OB+1(1) 求点A、B的坐标(2) 将线段AB向右平移2个单位长度至CD,且点A对应点为点C,点B的对应点为点D,线段CD交y轴于H点.DE⊥x轴于点E,在y轴上是否存在一点P,使S△PCD=S△CDE,若存在,求出点P的坐标(3) 在(2)的条件下,点M在x轴上点A的左侧,∠MAB与∠CHO的平分线交于点Q,求∠Q的度数。
汉阳区2013-2014学年度第二学期期末考试七年级数学试卷第Ⅰ卷(选择题,共30分)一、选择题(每小题3分,共30分)1、在实数0,3,2,2-中,最大的是( )A 、0B 、3C 、2D 、2-2、下列四组值中不是方程12=-y x 的解的是( )A 、⎪⎩⎪⎨⎧-==210y x B 、⎩⎨⎧==11y x C 、⎩⎨⎧==01y x D 、⎩⎨⎧-=-=11y x 3、“今有鸡兔同笼,上有三十无头,下有九十四足,问鸡兔各几何?”设鸡为x 只,兔为y 只,则所列方程正确的是( )A 、⎩⎨⎧=+=+94235y x y xB 、⎩⎨⎧=+=+942435y x y xC 、⎩⎨⎧=+=+944235y x y xD 、⎩⎨⎧=+=+942235y x y x 4、下列调查中,适合用全面调查方式的是( )A 、了解一批炮弹的杀伤半径B 、了解武汉电视台某栏目的收视率C 、了解长江中鱼的种类D 、了解某班学生对“武汉精神”的知晓率5、直角三角板与两条平行线a ,b 的位置关系如图,已知∠1=55°,则∠2=( )A 、35°B 、45°C 、55°D 、125°6、若点P (a ,1-a )在第一象限,则a 的取值范围是( )A 、a<0B 、a<1C 、a>1D 、0<a<17、下列说法:①3.14159是无理数;②-3是-24的立方根;③10在两个连续整数a 和b 之间,那么a+b=5;④若实数m 的平方根是3a-1和3a-11,则m=2,其中正确的说法有( )个。
A 、1B 、2C 、3D 、48、若a>b ,则下列不等式不一定成立的是( )A 、a+m>b+mB 、)1()1(22+>+m b m aC 、b a 22-<-D 、22b a > 9、小明和爸爸妈妈三人玩跷跷板,三人的体重一共为150千克,爸爸坐在跷跷板的一端,体重只有妈妈一半的小明和妈妈一同坐在跷跷板的另一端,这时爸爸那端仍然着地.那么小明的体重应小于( )千克A 、24B 、25C 、49D 、5010、对点(x ,y )的一次操作变换记为P (x ,y),定义其变换法则如下:),(),(1y x y x y x p -+=;且规定),((),(11y x p p y x p n n -=,(n为大于1的整数),如)4,2()1,3()2,1(()2,1(),1,3()2,1(11121=-==-=p p p p p 。
湖北省武汉市汉阳区2014-2015学年七年级下学期期末数学试卷一、选择题(每小题3分,共36分)1.(3分)要反映我市某一周每天的最高气温的变化趋势,宜采用()A.条形统计图B.扇形统计图C.折线统计图D.频数分布统计图2.(3分)下列调查适合全面调查的是()A.了解武汉市民消费水平B.了解全班同学每周体育锻炼的时间C.了解武汉市中学生的眼睛视力情况D.了解一批节能灯的使用寿命情况3.(3分)下列各组数中互为相反数的是()A.|﹣2|与2 B.﹣2与C.﹣2与D.﹣2与4.(3分)下列无理数中,在﹣2与1之间的是()A.﹣B.﹣C.D.5.(3分)如图,能判定EB∥AC的条件是()A.∠C=∠ABE B.∠A=∠EBD C.∠C=∠ABC D.∠A=∠ABE 6.(3分)若m<n,则下列不等式中,正确的是()A.m﹣4>n﹣4 B.>C.﹣3m<﹣3n D.2m+1<2n+17.(3分)不等式的解集在数轴上表示正确的是()A.B.C.D.8.(3分)方程5x+2y=﹣9与下列方程构成的方程组的解为的是()A.x+2y=1 B.3x+2y=﹣8 C.5x+4y=﹣3 D.3x﹣4y=﹣89.(3分)直角坐标系中点P(a+2,a﹣2)不可能所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限10.(3分)解方程组时,小强正确解得,而小刚只看错了C,解得,则当x=﹣1时,ax2+bx+c的值是()A.6B.2C.0D.﹣811.(3分)若关于x的不等式mx﹣n>0的解集是x<,则关于x的不等式(m+n)x>n ﹣m的解集是()A.x<﹣B.x>﹣C.x<D.x>12.(3分)在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位…依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位;当n被3除,余数为1时,则向右走1个单位;当n被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是()A.(66,34)B.(67,33)C.(100,33)D.(99,34)二、填空题(每小题3分,共18分)13.(3分)若x2=4,则x的值为.14.(3分)的立方根是.15.(3分)已知a,b,c为平面内三条不同直线,若a⊥b,c⊥b,则a与c的位置关系是.16.(3分)如图所示的是某年参加国际教育评估的15个国家学生的数学平均成绩的统计图,则平均成绩大于或等于60的国家个数是.17.(3分)已知关于x的不等式组只有四个整数解,则实数a的取值范是.18.(3分)若方程组的解是,则方程组的解为.三、解答题(共8小题,共66分)19.(8分)解下列方程组(1)(2).20.(8分)解不等式(组),并在数轴上表示它的解集(1)3x﹣7>x+3(2).21.(8分)如图,AB∥DC,A C和BD相交于点O,E是CD上一点,F是OD上一点,且∠1=∠A.(1)求证:FE∥OC;(2)若∠BOC比∠DFE大20°,求∠OFE的度数.22.(8分)某校学生会为了解该校同学对乒乓球、羽毛球、排球、篮球和足球五种球类运动项目的喜爱情况(每位同学必须且只能从中选择一项),随机选取了若干名同学进行抽样调查,并将调查结果绘制成了如图1,图2所示的不完整的统计图.(1)参加调查的同学一共有名,图2中乒乓球所在扇形的圆心角为°;(2)在图1中补全条形统计图(标上相应数据);(3)若该校共有2400名同学,请根据抽样调查数据估计该校同学中喜欢羽毛球运动的人数.23.(8分)如图直角坐标系中,A(﹣2,1),B(﹣3,﹣2),平移线段AB,使B点的对应点刚好与坐标原点O重合.(1)在图中画出平移后的对应线段A1O;(2)若线段AB上有点M(a,b),用a,b表示平移后的对应点M1的坐标是;(3)求出线段AB在平移过程中扫过的面积.24.(10分)小林在某商店购买商品A、B共三次,只有一次购买时,商品A、B同时打折,其余两次均按标价购买,三次购买商品A、B的数量和费用如下表:购买商品A的数量(个)购买商品B的数量(个)购买总费用(元)第一次购物 6 5 1140第二次购物 3 7 1110第三次购物9 8 1062(1)小林以折扣价购买商品A、B是第次购物;(2)求出商品A、B的标价;(3)若商品A、B的折扣相同,问商店是打几折出售这两种商品的?25.(10分)某工厂用如图甲所示的长方形和正方形纸板,做成如图乙所示的竖式与横式两种长方体形状的无盖纸盒.(1)现有正方形纸板162张,长方形纸板340张.若要做两种纸盒共l00个,有哪几种生产方案?(2)若有正方形纸板162张,长方形纸板a张,做成上述两种纸盒,纸板恰好用完.已知290<a<306.求a的值.26.(6分)对非负实数x“四舍五入”到个位的值记为[x].即当n为非负整数时,若n﹣≤x<n+,则[x]=n.如:[3.4]=3,[3.5]=4,…根据以上材料,解决下列问题:(1)填空:①若[x]=3,则x应满足的条件:;②若[3x+1]=3,则x应满足的条件:;(2)求满足[x]=x﹣1的所有非负实数x的值.湖北省武汉市汉阳区2014-2015学年七年级下学期期末数学试卷参考答案与试题解析一、选择题(每小题3分,共36分)1.(3分)要反映我市某一周每天的最高气温的变化趋势,宜采用()A.条形统计图B.扇形统计图C.折线统计图D.频数分布统计图考点:统计图的选择.分析:根据统计图的特点进行分析可得:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.解答:解:根据题意,要求直观反映我市一周内每天的最高气温的变化情况,结合统计图各自的特点,应选择折线统计图.故选:C.点评:此题主要考查统计图的选择,根据扇形统计图、折线统计图、条形统计图各自的特点来判断.2.(3分)下列调查适合全面调查的是()A.了解武汉市民消费水平B.了解全班同学每周体育锻炼的时间C.了解武汉市中学生的眼睛视力情况D.了解一批节能灯的使用寿命情况考点:全面调查与抽样调查.分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.解答:解:A、了解武汉市民消费水平,调查范围广,适合抽样调查,故A错误;B、了解全班同学每周体育锻炼的时间,调查范围小,适合普查,故B正确;C、了解武汉市中学生的眼睛视力情况,调查范围广,适合抽样调查,故C错误;D、了解一批节能灯的使用寿命情况,调查具有破坏性,适合抽样调查,故D错误;故选:B.点评:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.(3分)下列各组数中互为相反数的是()A.|﹣2|与2 B.﹣2与C.﹣2与D.﹣2与考点:实数的性质.分析:首先根据|﹣2|=2,可得|﹣2|与2相等;然后根据,可得﹣2=;再根据互为倒数的含义,可得﹣2与﹣互为倒数;最后根据,可得﹣2与互为相反数,据此解答即可.解答:解:∵|﹣2|=2,∴|﹣2|与2相等;∵,∴﹣2=;∵(﹣2)×(﹣)=1,∴﹣2与﹣互为倒数;∵据,∴﹣2与互为相反数.故选:D.点评:(1)此题主要考查了相反数的含义以及求法,要熟练掌握,解答此题的关键是要明确:相反数是成对出现的,不能单独存在;求一个数的相反数的方法就是在这个数的前边添加“﹣”.(2)此题还考查了绝对值的非负性,以及互为倒数的含义以及判断,要熟练掌握.(3)此题还考查了立方根的性质和应用,要熟练掌握,解答此题的关键是要明确:一个数的立方根只有一个,正数的立方根是正数,负数的立方根是负数,0的立方根是0.4.(3分)下列无理数中,在﹣2与1之间的是()A.﹣B.﹣C.D.考点:估算无理数的大小.分析:根据无理数的定义进行估算解答即可.解答:解:A.,不成立;B.﹣2,成立;C.,不成立;D.,不成立,故答案为:B.点评:此题主要考查了实数的大小的比较,解答此题要明确,无理数是不能精确地表示为两个整数之比的数,即无限不循环小数.5.(3分)如图,能判定EB∥AC的条件是()A.∠C=∠ABE B.∠A=∠EBD C.∠C=∠ABC D.∠A=∠ABE考点:平行线的判定.分析:在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.解答:解:A、∠C=∠ABE不能判断出EB∥AC,故A选项不符合题意;B、∠A=∠EBD不能判断出EB∥AC,故B选项不符合题意;C、∠C=∠ABC只能判断出AB=AC,不能判断出EB∥AC,故C选项不符合题意;D、∠A=∠ABE,根据内错角相等,两直线平行,可以得出EB∥AC,故D选项符合题意.故选:D.点评:正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.6.(3分)若m<n,则下列不等式中,正确的是()A.m﹣4>n﹣4 B.>C.﹣3m<﹣3n D.2m+1<2n+1考点:不等式的性质.分析:运用不等式的基本性质求解即可.解答:解:已知m<n,A、m﹣4<n﹣4,故A选项错误;B、<,故B选项错误;C、﹣3m>﹣3n,故C选项错误;D、2m+1<2n+1,故D选项正确.故选:D.点评:本题主要考查了不等式的性质,解题的关键是注意不等号的开口方向.7.(3分)不等式的解集在数轴上表示正确的是()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式组.分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可解答:解:,解得,即:﹣1<x<3,在数轴上表示不等式的解集:.故选:A.点评:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.8.(3分)方程5x+2y=﹣9与下列方程构成的方程组的解为的是()A.x+2y=1 B.3x+2y=﹣8 C.5x+4y=﹣3 D.3x﹣4y=﹣8考点:二元一次方程组的解.专题:计算题.分析:将x与y的值代入各项检验即可得到结果.解答:解:方程5x+2y=﹣9与下列方程构成的方程组的解为的是3x﹣4y=﹣8.故选:D.点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.9.(3分)直角坐标系中点P(a+2,a﹣2)不可能所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限考点:点的坐标.分析:确定出点P的横坐标比纵坐标大,再根据各象限内点的坐标特征解答.解答:解:∵(a+2)﹣(a﹣2)=a+2﹣a+2=4,∴点P的横坐标比纵坐标大,∵第二象限内点的横坐标是负数,纵坐标是正数,∴点P不可能在第二象限.故选B.点评:本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).10.(3分)解方程组时,小强正确解得,而小刚只看错了C,解得,则当x=﹣1时,ax2+bx+c的值是()A.6B.2C.0D.﹣8考点:二元一次方程组的解.分析:根据题意把和代入ax+by=6组成方程组,解方程组求出a、b的值,把代入cx﹣4y=﹣2求出c,计算得到答案.解答:解:由题意得,,解得,,把代入cx﹣4y=﹣2,得c=3,当x=﹣1时,x2+2x+3=2,故选:B.点评:本题考察的是二元一次方程组的解的定义和解法,正确理解题意组成新的方程组是解题的关键.11.(3分)若关于x的不等式mx﹣n>0的解集是x<,则关于x的不等式(m+n)x>n ﹣m的解集是()A.x<﹣B.x>﹣C.x<D.x>考点:不等式的解集;不等式的性质.分析:先解关于x的不等式mx﹣n>0,得出解集,再根据不等式的解集是x<,从而得出m与n的关系,选出答案即可.解答:解:∵关于x的不等式mx﹣n>0的解集是x<,∴m<0,=,解得m=5n,∴n<0,∴解关于x的不等式(m+n)x>n﹣m得,x<,∴x<=﹣,故选A.点评:本题考查了不等式的解集以及不等式的性质,要熟练掌握不等式的性质3.12.(3分)在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位…依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位;当n被3除,余数为1时,则向右走1个单位;当n被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是()A.(66,34)B.(67,33)C.(100,33)D.(99,34)考点:坐标确定位置;规律型:点的坐标.专题:规律型.分析:根据走法,每3步为一个循环组依次循环,且一个循环组内向右3个单位,向上1个单位,用100除以3,然后根据商和余数的情况确定出所处位置的横坐标与纵坐标即可.解答:解:由题意得,每3步为一个循环组依次循环,且一个循环组内向右3个单位,向上1个单位,∵100÷3=33余1,∴走完第100步,为第34个循环组的第1步,所处位置的横坐标为33×3+1=100,纵坐标为33×1=33,∴棋子所处位置的坐标是(100,33).故选:C.点评:本题考查了坐标确定位置,点的坐标位置的规律变化,读懂题目信息并理解每3步为一个循环组依次循环是解题的关键.二、填空题(每小题3分,共18分)13.(3分)若x2=4,则x的值为±2.考点:有理数的乘方.分析:根据有理数的乘方的定义解答即可.解答:解:∵(±2)2=4,∴x=±2.故答案为:±2.点评:本题考查了有理数的乘方,是基础题,需要要注意,x的值有两个.14.(3分)的立方根是2.考点:立方根;算术平方根.专题:计算题.分析:如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.根据算术平方根的定义可知64的算术平方根是8,而8的立方根是2,由此就求出了这个数的立方根.解答:解:∵64的算术平方根是8,8的立方根是2,∴这个数的立方根是2.故答案为:2.点评:本题主要考查了立方根的概念的运用.如果一个数x的立方等于a,即x的三次方等于a(x3=a),那么这个数x就叫做a的立方根,也叫做三次方根.读作“三次根号a”其中,a叫做被开方数,3叫做根指数.15.(3分)已知a,b,c为平面内三条不同直线,若a⊥b,c⊥b,则a与c的位置关系是平行.考点:平行线的判定;垂线.分析:根据在同一平面内,如果两条直线同时垂直于同一条直线,那么这两条直线平行可得答案.解答:解:∵a⊥b,c⊥b,∴a∥c,故答案为:平行.点评:此题主要考查了平行线的判定,关键是掌握在同一平面内,如果两条直线同时垂直于同一条直线,那么这两条直线平行.16.(3分)如图所示的是某年参加国际教育评估的15个国家学生的数学平均成绩的统计图,则平均成绩大于或等于60的国家个数是12.考点:频数(率)分布直方图.分析:根据直方图即可直接求得平均成绩大于或等于60的国家个数.解答:解:平均成绩大于或等于60的国家个数是:8+4=12.故答案是:12.点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.17.(3分)已知关于x的不等式组只有四个整数解,则实数a的取值范是﹣3<a≤﹣2.考点:一元一次不等式组的整数解.分析:首先解不等式组,即可确定不等式组的整数解,即可确定a的范围.解答:解:,解①得:x≥a,解②得:x<2.∵不等式组有四个整数解,∴不等式组的整数解是:﹣2,﹣1,0,1.则实数a的取值范围是:﹣3<a≤﹣2.故答案是:﹣3<a≤﹣2.点评:本题考查了不等式组的整数解,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.18.(3分)若方程组的解是,则方程组的解为.考点:二元一次方程组的解.分析:把方程组的解是代入原方程组中可得到,再把关于c1c2的代数式代入所求的方程组即可得解.解答:解:把方程组的解代入原方程组中得:,此式代入所求的方程得:,解得.故答案填.点评:本题考查了运用代入法解二元一次方程组的方法,解题时要根据方程组的特点进行有针对性的计算.三、解答题(共8小题,共66分)19.(8分)解下列方程组(1)(2).考点:解二元一次方程组.专题:计算题.分析:(1)方程组利用加减消元法求出解即可;(2)方程组利用加减消元法求出解即可.解答:解:(1),①+②得:5x=5,即x=1,把x=1代入②得:y=1,则方程组的解为;(2),①×3+②×2得:19x=114,即x=6,把x=6代入①得:y=﹣,则方程组的解为.点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20.(8分)解不等式(组),并在数轴上表示它的解集(1)3x﹣7>x+3(2).考点:解一元一次不等式组;在数轴上表示不等式的解集;解一元一次不等式.分析:(1)根据解不等式的一般步骤解答即可,一般步骤为:移项及合并同类项,系数化为1解答即可;(2)先解不等式,再求解集的公共部分即可.解答:解:(1)3x﹣7>x+3,3x﹣x>3+7,2x>10,x>5,把解集画在数轴上为:;(2)解①得x<2,②得x≥﹣3,∴不等式组的解集为﹣3≤x<2.点评:本题考查了一元一次不等式的求解,熟记不等式的性质是解题的关键:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.21.(8分)如图,AB∥DC,AC和BD相交于点O,E是CD上一点,F是OD上一点,且∠1=∠A.(1)求证:FE∥OC;(2)若∠BOC比∠DFE大20°,求∠OFE的度数.考点:平行线的判定与性质.专题:计算题.分析:(1)由AB与CD平行,利用两直线平行内错角相等得到一对角相等,再由已知角相等,等量代换得到一对同位角相等,利用同位角相等两直线平行即可得证;(2)由EF与OC平行,利用两直线平行同旁内角互补得到一对角互补,利用等角的补角相等得到∠BOC+∠DFE=180°,结合∠BOC+∠DFE=180°,求出∠OFE的度数即可.解答:(1)证明:∵AB∥DC,∴∠C=∠A,∵∠1=∠A,∴∠1=∠C,∴FE∥OC;(2)解:∵FE∥OC,∴∠FOC+∠OFE=180°,∵∠FOC+∠BOC=180°,∠DFE+∠OFE=180°,∴∠BOC+∠DFE=180°,∴∠BOC+∠DFE=180°,解得:∠DFE=80°,∴∠OFE=100°.点评:此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.22.(8分)某校学生会为了解该校同学对乒乓球、羽毛球、排球、篮球和足球五种球类运动项目的喜爱情况(每位同学必须且只能从中选择一项),随机选取了若干名同学进行抽样调查,并将调查结果绘制成了如图1,图2所示的不完整的统计图.(1)参加调查的同学一共有200名,图2中乒乓球所在扇形的圆心角为72°;(2)在图1中补全条形统计图(标上相应数据);(3)若该校共有2400名同学,请根据抽样调查数据估计该校同学中喜欢羽毛球运动的人数.考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)用喜欢蓝球运动的人数除以对应的百分比即可求解;用喜欢乒乓球人数与总人数的百分比,再乘以360度即可求出扇形统计图中的乒乓球部分的圆心角的度数;(2)用总人数乘以喜欢排球运动人数的百分比求得喜欢排球运动的人数;用总人数减去喜欢其他运动的人数可求得喜欢足球的人数,从而将条形统计图补充完整;(3)用喜欢羽毛球运动的人数除以总人数,再乘以2400即可.解答:解:(1)66÷33%=200,×360°=72°,故答案为:200,72;(2)200×10%=20(名),200﹣40﹣24﹣66﹣20=50(名),如右图所示:(3)×2400=288(名),答:估计该校2400名同学中喜欢羽毛球运动的有288名同学.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.(8分)如图直角坐标系中,A(﹣2,1),B(﹣3,﹣2),平移线段AB,使B点的对应点刚好与坐标原点O重合.(1)在图中画出平移后的对应线段A1O;(2)若线段AB上有点M(a,b),用a,b表示平移后的对应点M1的坐标是(a+3,a+2);(3)求出线段AB在平移过程中扫过的面积.考点:作图-平移变换.分析:(1)根据图形平移的性质画出线段A1O即可;(2)由点B到点O可知应把线段先向右平移2的单位,再向上平移3个单位得出,由此可得出M1的坐标;(3)利用矩形的面积减去四个顶点上三角形的面积与矩形的面积即可得出结论.解答:解:(1)如图所示;(2)由图可知,点B到点O可知应把线段先向右平移2的单位,再向上平移3个单位得出,∴M1(a+3,a+2).故答案为:(a+3,a+2);(3)S四边形ABOA1=4×5﹣×2×3﹣1×2﹣×1×3﹣×2×3﹣1×2﹣×1×3=20﹣3﹣﹣3﹣2﹣=9.点评:本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.24.(10分)小林在某商店购买商品A、B共三次,只有一次购买时,商品A、B同时打折,其余两次均按标价购买,三次购买商品A、B的数量和费用如下表:购买商品A的数量(个)购买商品B的数量(个)购买总费用(元)第一次购物 6 5 1140第二次购物 3 7 1110第三次购物9 8 1062(1)小林以折扣价购买商品A、B是第三次购物;(2)求出商品A、B的标价;(3)若商品A、B的折扣相同,问商店是打几折出售这两种商品的?考点:二元一次方程组的应用;一元一次方程的应用.专题:应用题.分析:(1)根据图表可得小林以折扣价购买商品A、B是第三次购物;(2)设商品A的标价为x元,商品B的标价为y元,根据图表列出方程组求出x和y的值;(3)设商店是打a折出售这两种商品,根据打折之后购买9个A商品和8个B商品共花费1062元,列出方程求解即可.解答:解:(1)小林以折扣价购买商品A、B是第三次购物.故答案为:三;(2)设商品A的标价为x元,商品B的标价为y元,根据题意,得,解得:.答:商品A的标价为90元,商品B的标价为120元;(3)设商店是打a折出售这两种商品,由题意得,(9×90+8×120)×=1062,解得:a=6.答:商店是打6折出售这两种商品的.点评:本题考查了二元一次方程组和一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解.25.(10分)某工厂用如图甲所示的长方形和正方形纸板,做成如图乙所示的竖式与横式两种长方体形状的无盖纸盒.(1)现有正方形纸板162张,长方形纸板340张.若要做两种纸盒共l00个,有哪几种生产方案?(2)若有正方形纸板162张,长方形纸板a张,做成上述两种纸盒,纸板恰好用完.已知290<a<306.求a的值.考点:一元一次不等式组的应用;二元一次方程组的应用.分析:(1)设生产竖式纸盒x个,则生产横式纸盒(100﹣x)个.根据生产竖式纸盒用的正方形纸板+生产横式纸盒用的正方形纸板≤162张;生产竖式纸盒用的长方形纸板+生产横式纸盒用的长方形纸板≤340张.由此,可得出不等式组,求出自变量的取值范围,然后得出符合条件的方案.(2)设x个竖式需要正方形纸板x张,长方形纸板横4x张;y个横式需要正方形纸板2y 张,长方形纸板横3y张,可列出方程组,再根据a的取值范围求出y的取值范围即可.解答:解:(1)设生产竖式纸盒x个,则生产横式纸盒(100﹣x)个.由题意得,解得38≤x≤40.答:共有三种生产方案,方案一:生产竖式纸盒38个,横式纸盒62个;方案二:生产竖式纸盒39个,横式纸盒61个;方案三:生产竖式纸盒40个,横式纸盒60个.(2)设生产竖式纸盒x个,则生产横式纸盒y个.由题意得解得y=∵290<a<306,∴342<648﹣a<358∵y是整数,∴648﹣a=345,350,355.此时;;∴a=303,298,293.点评:本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.26.(6分)对非负实数x“四舍五入”到个位的值记为[x].即当n为非负整数时,若n﹣≤x <n+,则[x]=n.如:[3.4]=3,[3.5]=4,…根据以上材料,解决下列问题:(1)填空:①若[x]=3,则x应满足的条件:≤x;②若[3x+1]=3,则x应满足的条件:≤x;(2)求满足[x]=x﹣1的所有非负实数x的值.考点:一元一次不等式组的应用.专题:新定义.分析:(1)①因为[x]=3,根据n﹣≤x<n+,求得x取值范围即可;②由①得出3x+1的取值范围,进一步解不等式组得出答案即可;(2)设x﹣1=m,m为整数,表示出x,进一步得出不等式组得出答案即可.解答:题:(1)①≤x;②≤x;(2)设x﹣1=m,m为整数,则x=,∴[x]=[]=m,∴m﹣≤<m+∴<m≤,∵m为整数,∴m=1,或m=2,∴x=或x=.点评:本题考查理解题意的能力,关键是看到所得值是个位数四舍五入后的值,问题得解.。
第3题图321第6题图A武汉市2014~2015学年度下学期期末模拟考试七年级数学试卷一、选择题(每小题3分,共30分)1.下列不等式中,是一元一次不等式的是( )A.40-<B.50x -<C.515x y -+≥D.27a > 2.在平面直角坐标系中,点P (5,-4)在( )A.第一象限B.第二象限C.第三象限D.第四象限3.如图,数轴上表示某不等式组的解集,则这个不等式组可能是( ) A.2030x x ->⎧⎨-≥⎩ B.2030x x -<⎧⎨-≤⎩ C. 2030x x ->⎧⎨-≥⎩D.2030x x -<⎧⎨-≤⎩4.下列调查适合用抽样调查的是( )A.了解“东方之星”号客轮翻沉事件中的人员受伤情况B.北京陆航团大阅兵前对彩排飞机重要零部件的检查C.了解浙江卫视“奔跑吧兄弟”节目的收视率D.中考将至,了解我校九年级学生的体育达标情况5.若6543x m y m =+⎧⎨=-⎩是方程321x y -=的一个解,则m 的值是( )A .-2B .-1 C. 45-D.1 6.如图,直线AB 、CD 相交于点O ,OA 平分EOC ∠, 若:2:3EOC EOD ∠∠=,则AOC ∠的度数是( ) A.9° B.18° C.36° D.54°7.一个正方形的面积扩大4倍后为20cm 2,估计原正方形的边的长度在什么范围内( ) A.1cm 和2cm 之间 B.2cm 或3cm 之间 C.3cm 或4cm 之间 D.4cm 或5cm 之间8.为了调查卧龙自然保护区大熊猫的数量,先在保护区内捕捉了20只大熊猫,在这些大熊猫的身上做上记号,然后把大熊猫放回保护区。
过一段时间后,在保护区内重新捕捉18只大熊猫,其中带有记号的大熊猫有2只,试估计卧龙自然保护区大熊猫的数量( ) A.90只 B.100只 C.180只 D.200只 9.已知关于x 的不等式组0831x m x +<⎧⎨--≤⎩的整数解共有5个,则m 的取值范围是( )A.12m <≤B. 12m <<C. 21m -≤<-D. 21m -<<- 10.观察下列运算并填空:第1个式子:212342451⨯⨯⨯==-;第2个式子:22345120111⨯⨯⨯==-;第3个式子:23456360191⨯⨯⨯==-;……,根据以上结果,猜想第15个式子的值是( ) A. 22551- B. 22561- C. 22701- D. 22711-第16题图xG 二、填空题(每小题3分,共18分) 11.计算:(= 。
武汉市武珞路中学七年级下册数学期末试卷真题汇编[解析版]一、解答题1.如图,//MN GH ,点A 、B 分别在直线MN 、GH 上,点O 在直线MN 、GH 之间,若116NAO ∠=︒,144OBH ∠=︒.(1)AOB ∠= ︒;(2)如图2,点C 、D 是NAO ∠、GBO ∠角平分线上的两点,且35CDB ∠=︒,求ACD ∠ 的度数;(3)如图3,点F 是平面上的一点,连结FA 、FB ,E 是射线FA 上的一点,若MAE ∠=n OAE ∠,HBF n OBF ∠=∠,且60AFB ∠=︒,求n 的值.2.如图,已知AM //BN ,点P 是射线AM 上一动点(与点A 不重合),BC BD 、分别平分ABP ∠和PBN ∠,分别交射线AM 于点,C D .(1)当60A ∠=︒时,ABN ∠的度数是_______;(2)当A x ∠=︒,求CBD ∠的度数(用x 的代数式表示);(3)当点P 运动时,ADB ∠与APB ∠的度数之比是否随点P 的运动而发生变化?若不变化,请求出这个比值;若变化,请写出变化规律.(4)当点P 运动到使ACB ABD =∠∠时,请直接写出14DBN A +∠∠的度数. 3.综合与实践背景阅读:在同一平面内,两条不重合的直线的位置关系有相交、平行,若两条不重合的直线只有一个公共点,我们就说这两条直线相交,若两条直线不相交,我们就说这两条直线互相平行两条直线的位置关系的性质和判定是几何的重要知识,是初中阶段几何合情推理的基础.已知:AM ∥CN ,点B 为平面内一点,AB ⊥BC 于B .问题解决:(1)如图1,直接写出∠A 和∠C 之间的数量关系; (2)如图2,过点B 作BD ⊥AM 于点D ,求证:∠ABD =∠C ;(3)如图3,在(2)问的条件下,点E 、F 在DM 上,连接BE 、BF 、CF ,BF 平分∠DBC ,BE 平分∠ABD ,若∠FCB +∠NCF =180°,∠BFC =3∠DBE ,则∠EBC = .4.已知AB ∥CD ,线段EF 分别与AB ,CD 相交于点E ,F .(1)请在横线上填上合适的内容,完成下面的解答:如图1,当点P 在线段EF 上时,已知∠A =35°,∠C =62°,求∠APC 的度数; 解:过点P 作直线PH ∥AB , 所以∠A =∠APH ,依据是 ; 因为AB ∥CD ,PH ∥AB , 所以PH ∥CD ,依据是 ; 所以∠C =( ),所以∠APC =( )+( )=∠A +∠C =97°. (2)当点P ,Q 在线段EF 上移动时(不包括E ,F 两点): ①如图2,∠APQ +∠PQC =∠A +∠C +180°成立吗?请说明理由;②如图3,∠APM =2∠MPQ ,∠CQM =2∠MQP ,∠M +∠MPQ +∠PQM =180°,请直接写出∠M ,∠A 与∠C 的数量关系.5.已知,如图:射线PE 分别与直线AB 、CD 相交于E 、F 两点,PFD ∠的角平分线与直线AB 相交于点M ,射线PM 交CD 于点N ,设PFM α∠=︒,EMF β∠=︒且()2350αβα-+-=.(1)α=________,β=________;直线AB 与CD 的位置关系是______;(2)如图,若点G 是射线MA 上任意一点,且MGH PNF ∠=∠,试找出FMN ∠与GHF ∠之间存在一个什么确定的数量关系?并证明你的结论.(3)若将图中的射线PM 绕着端点P 逆时针方向旋转(如图)分别与AB 、CD 相交于点1M 和点1N 时,作1PM B ∠的角平分线1M Q 与射线FM 相交于点Q ,问在旋转的过程中1FPN Q∠∠的值变不变?若不变,请求出其值;若变化,请说明理由.二、解答题6.已知//AM CN ,点B 为平面内一点,AB BC ⊥于B .(1)如图1,点B 在两条平行线外,则A ∠与C ∠之间的数量关系为______; (2)点B 在两条平行线之间,过点B 作BD AM ⊥于点D . ①如图2,说明ABD C ∠=∠成立的理由;②如图3,BF 平分DBC ∠交DM 于点,F BE 平分ABD ∠交DM 于点E .若180,3FCB NCF BFC DBE ∠∠∠∠+=︒=,求EBC ∠的度数.7.将两块三角板按如图置,其中三角板边AB AE =,90BAC EAD ∠=∠=︒,45C ∠=︒,30D ∠=︒.(1)下列结论:正确的是_______. ①如果60BFD ∠=︒,则有//BC AD ; ②180BAE CAD ∠+∠=︒;③如果//BC AD ,则AB 平分EAD ∠.(2)如果150CAD ∠=︒,判断BFD ∠与C ∠是否相等,请说明理由.(3)将三角板ABC 绕点A 顺时针转动,直到边AC 与AD 重合即停止,转动的过程中当两块三角板恰有两边平行时,请直接写出EAB ∠所有可能的度数. 8.如图1所示:点E 为BC 上一点,∠A =∠D ,AB ∥CD (1)直接写出∠ACB 与∠BED 的数量关系;(2)如图2,AB∥CD,BG平分∠ABE,BG的反向延长线与∠EDF的平分线交于H点,若∠DEB比∠GHD大60°,求∠DEB的度数;(3)保持(2)中所求的∠DEB的度数不变,如图3,BM平分∠EBK,DN平分∠CDE,作BP∥DN,则∠PBM的度数是否改变?若不发生变化,请求它的度数,若发生改变,请说明理由.(本题中的角均为大于0°且小于180°的角).9.已知:直线1l∥2l,A为直线1l上的一个定点,过点A的直线交2l于点B,点C在线段BA的延长线上.D,E为直线2l上的两个动点,点D在点E的左侧,连接AD,AE,满足∠AED=∠DAE.点M在l上,且在点B的左侧.2(1)如图1,若∠BAD=25°,∠AED=50°,直接写出 ABM的度数;(2)射线AF为∠CAD的角平分线.① 如图2,当点D在点B右侧时,用等式表示∠EAF与∠ABD之间的数量关系,并证明;② 当点D与点B不重合,且∠ABM+∠EAF=150°时,直接写出∠EAF的度数.10.如图,AB⊥AK,点A在直线MN上,AB、AK分别与直线EF交于点B、C,∠MAB+∠KCF=90°.(1)求证:EF∥MN;(2)如图2,∠NAB与∠ECK的角平分线交于点G,求∠G的度数;(3)如图3,在∠MAB内作射线AQ,使∠MAQ=2∠QAB,以点C为端点作射线CP,交直.线.AQ于点T,当∠CTA=60°时,直接写出∠FCP与∠ACP的关系式.三、解答题11.小明在学习过程中,对教材中的一个有趣问题做如下探究:(习题回顾)已知:如图1,在ABC 中,90ACB ∠=︒,AE 是角平分线,CD 是高,AE 、CD 相交于点F .求证:CFE CEF ∠=∠;(变式思考)如图2,在ABC 中,90ACB ∠=︒,CD 是AB 边上的高,若ABC 的外角BAG ∠的平分线交CD 的延长线于点F ,其反向延长线与BC 边的延长线交于点E ,则CFE ∠与CEF ∠还相等吗?说明理由;(探究延伸)如图3,在ABC 中,AB 上存在一点D ,使得ACD B ∠=∠,BAC ∠的平分线AE 交CD 于点F .ABC 的外角BAG ∠的平分线所在直线MN 与BC 的延长线交于点M .直接写出M ∠与CFE ∠的数量关系.12.如图,已知直线a ∥b ,∠ABC =100°,BD 平分∠ABC 交直线a 于点D ,线段EF 在线段AB 的左侧,线段EF 沿射线AD 的方向平移,在平移的过程中BD 所在的直线与EF 所在的直线交于点P .问∠1的度数与∠EPB 的度数又怎样的关系?(特殊化)(1)当∠1=40°,交点P 在直线a 、直线b 之间,求∠EPB 的度数;(2)当∠1=70°,求∠EPB 的度数;(一般化)(3)当∠1=n°,求∠EPB 的度数(直接用含n 的代数式表示). 13.(生活常识)射到平面镜上的光线(入射光线)和变向后的光线(反射光线)与平面镜所夹的角相等.如图 1,MN 是平面镜,若入射光线 AO 与水平镜面夹角为∠1,反射光线 OB 与水平镜面夹角为∠2,则∠1=∠2 .(现象解释)如图 2,有两块平面镜 OM ,ON ,且 OM ⊥ON ,入射光线 AB 经过两次反射,得到反射光线 CD .求证 AB ∥CD . (尝试探究)如图 3,有两块平面镜 OM ,ON ,且∠MON =55︒ ,入射光线 AB 经过两次反射,得到反射光线 CD ,光线 AB 与 CD 相交于点 E ,求∠BEC 的大小.(深入思考)如图 4,有两块平面镜 OM ,ON ,且∠MON = α ,入射光线 AB 经过两次反射,得到反射光线 CD ,光线 AB 与 CD 所在的直线相交于点 E ,∠BED =β , α 与 β 之间满足的等量关系是 .(直接写出结果)14.已知//,MN GH 在Rt ABC 中,90,30ACB BAC ∠=︒∠=︒,点A 在MN 上,边BC 在GH 上,在Rt DEF △中,90,DFE ∠=︒边DE 在直线AB 上,45EDF ∠=︒;(1)如图1,求BAN ∠的度数;(2)如图2,将Rt DEF △沿射线BA 的方向平移,当点F 在M 上时,求AFE ∠度数; (3)将Rt DEF △在直线AB 上平移,当以A D F 、、为顶点的三角形是直角三角形时,直接写出FAN ∠度数.15.已知,如图1,直线l 2⊥l 1,垂足为A ,点B 在A 点下方,点C 在射线AM 上,点B 、C 不与点A 重合,点D 在直线11上,点A 的右侧,过D 作l 3⊥l 1,点E 在直线l 3上,点D 的下方.(1)l 2与l 3的位置关系是 ;(2)如图1,若CE 平分∠BCD ,且∠BCD =70°,则∠CED = °,∠ADC = °; (3)如图2,若CD ⊥BD 于D ,作∠BCD 的角平分线,交BD 于F ,交AD 于G .试说明:∠DGF =∠DFG ;(4)如图3,若∠DBE =∠DEB ,点C 在射线AM 上运动,∠BDC 的角平分线交EB 的延长线于点N ,在点C 的运动过程中,探索∠N:∠BCD 的值是否变化,若变化,请说明理由;若不变化,请直接写出比值.【参考答案】一、解答题1.(1)100;(2)75°;(3)n=3. 【分析】(1)如图:过O 作OP//MN ,由MN//OP//GH 得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OB 解析:(1)100;(2)75°;(3)n =3. 【分析】(1)如图:过O 作OP //MN ,由MN //OP //GH 得∠NAO +∠POA =180°,∠POB +∠OBH =180°,即∠NAO +∠AOB +∠OBH =360°,即可求出∠AOB ;(2)如图:分别延长AC 、CD 交GH 于点E 、F ,先根据角平分线求得58NAC ∠=︒,再根据平行线的性质得到58CEF ∠=︒;进一步求得18DBF ∠=︒,17DFB ∠=︒,然后根据三角形外角的性质解答即可;(3)设BF 交MN 于K ,由∠NAO =116°,得∠MAO =64°,故∠MAE =641nn ︒⨯+,同理∠OBH =144°,∠HBF =n ∠OBF ,得∠FBH =1441n n ︒⨯+,从而=n BKA FBH n ∠∠=⨯︒+1441,又∠FKN =∠F +∠FAK ,得144606411n nn n ︒︒︒⨯=+⨯++,即可求n . 【详解】解:(1)如图:过O 作OP //MN , ∵MN //GHl ∴MN //OP //GH∴∠NAO +∠POA =180°,∠POB +∠OBH =180° ∴∠NAO +∠AOB +∠OBH =360° ∵∠NAO =116°,∠OBH =144° ∴∠AOB =360°-116°-144°=100°;(2)分别延长AC 、CD 交GH 于点E 、F ,∵AC 平分NAO ∠且116NAO ∠=︒, ∴58NAC ∠=︒, 又∵MN //GH , ∴58CEF ∠=︒;∵144OBH ∠=︒,36OBG ∠=︒ ∵BD 平分OBG ∠, ∴18DBF ∠=︒, 又∵,CDB ∠=︒35∴351817DFB CDB DBF ∠=∠-∠=-=︒; ∴175875ACD DFB AEF ∠=∠+∠=︒+︒=︒; (3)设FB 交MN 于K ,∵116NAO ∠=︒,则MAO ∠=︒64; ∴641nMAE n ∠=⨯︒+ ∵144OBH ∠=︒, ∴+1n FBH n ∠=⨯︒144,=n BKA FBH n ∠∠=⨯︒+1441, 在△FAK 中,64601nBKA FKA F n ∠=∠+∠=⨯︒+︒+, ∴144646011n n n n ⨯︒=⨯︒+︒++, ∴3n =.经检验:3n =是原方程的根,且符合题意. 【点睛】本题主要考查平行线的性质及应用,正确作出辅助线、构造平行线、再利用平行线性质进行求解是解答本题的关键.2.(1)120°;(2)90°-x°;(3)不变,;(4)45° 【分析】(1)由平行线的性质:两直线平行同旁内角互补可得;(2)由平行线的性质可得∠ABN=180°-x°,根据角平分线的定义知∠解析:(1)120°;(2)90°-12x °;(3)不变,12;(4)45° 【分析】(1)由平行线的性质:两直线平行同旁内角互补可得;(2)由平行线的性质可得∠ABN =180°-x °,根据角平分线的定义知∠ABP =2∠CBP 、∠PBN =2∠DBP ,可得2∠CBP +2∠DBP =180°-x °,即∠CBD =∠CBP +∠DBP =90°-12x °; (3)由AM ∥BN 得∠APB =∠PBN 、∠ADB =∠DBN ,根据BD 平分∠PBN 知∠PBN =2∠DBN ,从而可得∠APB :∠ADB =2:1;(4)由AM ∥BN 得∠ACB =∠CBN ,当∠ACB =∠ABD 时有∠CBN =∠ABD ,得∠ABC +∠CBD =∠CBD +∠DBN ,即∠ABC =∠DBN ,根据角平分线的定义可得∠ABP =∠PBN =12∠ABN =2∠DBN ,由平行线的性质可得12∠A +12∠ABN =90°,即可得出答案. 【详解】解:(1)∵AM ∥BN ,∠A =60°, ∴∠A +∠ABN =180°,∴∠ABN=120°;(2)∵AM∥BN,∴∠ABN+∠A=180°,∴∠ABN=180°-x°,∴∠ABP+∠PBN=180°-x°,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠CBP,∠PBN=2∠DBP,∴2∠CBP+2∠DBP=180°-x°,∴∠CBD=∠CBP+∠DBP=12(180°-x°)=90°-12x°;(3)不变,∠ADB:∠APB=12.∵AM∥BN,∴∠APB=∠PBN,∠ADB=∠DBN,∵BD平分∠PBN,∴∠PBN=2∠DBN,∴∠APB:∠ADB=2:1,∴∠ADB:∠APB=12;(4)∵AM∥BN,∴∠ACB=∠CBN,当∠ACB=∠ABD时,则有∠CBN=∠ABD,∴∠ABC+∠CBD=∠CBD+∠DBN,∴∠ABC=∠DBN,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠ABC,∠PBN=2∠DBN,∴∠ABP=∠PBN=2∠DBN=12∠ABN,∵AM∥BN,∴∠A+∠ABN=180°,∴12∠A+12∠ABN=90°,∴12∠A+2∠DBN=90°,∴14∠A+∠DBN=12(12∠A+2∠DBN)=45°.【点睛】本题主要考查平行线的性质和角平分线的定义,熟练掌握平行线的性质是解题的关键.3.(1);(2)见解析;(3)105°【分析】(1)通过平行线性质和直角三角形内角关系即可求解.(2)过点B作BG∥DM,根据平行线找角的联系即可求解.(3)利用(2)的结论,结合角平分线性质解析:(1)90A C ∠+∠=︒;(2)见解析;(3)105°【分析】(1)通过平行线性质和直角三角形内角关系即可求解.(2)过点B 作BG ∥DM ,根据平行线找角的联系即可求解.(3)利用(2)的结论,结合角平分线性质即可求解.【详解】解:(1)如图1,设AM 与BC 交于点O ,∵AM ∥CN ,∴∠C =∠AOB ,∵AB ⊥BC ,∴∠ABC =90°,∴∠A +∠AOB =90°,∠A +∠C =90°,故答案为:∠A +∠C =90°;(2)证明:如图2,过点B 作BG ∥DM ,∵BD ⊥AM ,∴DB ⊥BG ,∴∠DBG =90°,∴∠ABD +∠ABG =90°,∵AB ⊥BC ,∴∠CBG +∠ABG =90°,∴∠ABD =∠CBG ,∵AM ∥CN ,∴∠C =∠CBG ,∴∠ABD =∠C ;(3)如图3,过点B 作BG ∥DM ,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)知∠ABD=∠CBG,∴∠ABF=∠GBF,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=∠AFB=β,∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°得:2α+β+3α+3α+β=180°,∵AB⊥BC,∴β+β+2α=90°,∴α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.故答案为:105°.【点睛】本题考查平行线性质,画辅助线,找到角的和差倍分关系是求解本题的关键.4.(1)两直线平行,内错角相等;平行于同一条直线的两条直线平行;∠CPH;∠APH,∠CPH;(2)①∠APQ+∠PQC=∠A+∠C+180°成立,理由见解答过程;②3∠PMQ+∠A+∠C=360°.解析:(1)两直线平行,内错角相等;平行于同一条直线的两条直线平行;∠CPH;∠APH,∠CPH;(2)①∠APQ+∠PQC=∠A+∠C+180°成立,理由见解答过程;②3∠PMQ+∠A+∠C=360°.【分析】(1)根据平行线的判定与性质即可完成填空;(2)结合(1)的辅助线方法即可完成证明;(3)结合(1)(2)的方法,根据∠APM=2∠MPQ,∠CQM=2∠MQP,∠PMQ+∠MPQ+∠PQM=180°,即可证明∠PMQ,∠A与∠C的数量关系.【详解】解:过点P作直线PH∥AB,所以∠A=∠APH,依据是两直线平行,内错角相等;因为AB∥CD,PH∥AB,所以PH∥CD,依据是平行于同一条直线的两条直线平行;所以∠C=(∠CPH),所以∠APC=(∠APH)+(∠CPH)=∠A+∠C=97°.故答案为:两直线平行,内错角相等;平行于同一条直线的两条直线平行;∠CPH;∠APH,∠CPH;(2)①如图2,∠APQ+∠PQC=∠A+∠C+180°成立,理由如下:过点P作直线PH∥AB,QG∥AB,∵AB∥CD,∴AB∥CD∥PH∥QG,∴∠A=∠APH,∠C=∠CQG,∠HPQ+∠GQP=180°,∴∠APQ+∠PQC=∠APH+∠HPQ+∠GQP+∠CQG=∠A+∠C+180°.∴∠APQ+∠PQC=∠A+∠C+180°成立;②如图3,过点P作直线PH∥AB,QG∥AB,MN∥AB,∵AB∥CD,∴AB∥CD∥PH∥QG∥MN,∴∠A=∠APH,∠C=∠CQG,∠HPQ+∠GQP=180°,∠HPM=∠PMN,∠GQM=∠QMN,∴∠PMQ=∠HPM+∠GQM,∵∠APM=2∠MPQ,∠CQM=2∠MQP,∠PMQ+∠MPQ+∠PQM=180°,∴∠APM+∠CQM=∠A+∠C+∠PMQ=2∠MPQ+2∠MQP=2(180°﹣∠PMQ),∴3∠PMQ+∠A+∠C=360°.【点睛】考核知识点:平行线的判定和性质.熟练运用平行线性质和判定,添加适当辅助线是关键.5.(1)35,35,平行;(2)∠FMN+∠GHF=180°,证明见解析;(3)不变,2【分析】(1)根据(α-35)2+|β-α|=0,即可计算α和β的值,再根据内错角相等可证AB ∥CD ;(2解析:(1)35,35,平行;(2)∠FMN +∠GHF =180°,证明见解析;(3)不变,2【分析】(1)根据(α-35)2+|β-α|=0,即可计算α和β的值,再根据内错角相等可证AB ∥CD ; (2)先根据内错角相等证GH ∥PN ,再根据同旁内角互补和等量代换得出∠FMN +∠GHF =180°;(3)作∠PEM 1的平分线交M 1Q 的延长线于R ,先根据同位角相等证ER ∥FQ ,得∠FQM 1=∠R ,设∠PER =∠REB =x ,∠PM 1R =∠RM 1B =y ,得出∠EPM 1=2∠R ,即可得1FPN Q∠∠=2. 【详解】解:(1)∵(α-35)2+|β-α|=0,∴α=β=35,∴∠PFM =∠MFN =35°,∠EMF =35°,∴∠EMF =∠MFN ,∴AB ∥CD ;(2)∠FMN +∠GHF =180°;理由:由(1)得AB ∥CD ,∴∠MNF =∠PME ,∵∠MGH =∠MNF ,∴∠PME =∠MGH ,∴GH ∥PN ,∴∠GHM =∠FMN ,∵∠GHF +∠GHM =180°,∴∠FMN +∠GHF =180°;(3)1FPN Q∠∠的值不变,为2, 理由:如图3中,作∠PEM 1的平分线交M 1Q 的延长线于R ,∵AB ∥CD ,∴∠PEM 1=∠PFN ,∵∠PER =12∠PEM 1,∠PFQ =12∠PFN ,∴∠PER =∠PFQ ,∴ER ∥FQ ,∴∠FQM 1=∠R ,设∠PER =∠REB =x ,∠PM 1R =∠RM 1B =y ,则有:122y x R y x EPM ⎧⎨⎩=+∠=+∠, 可得∠EPM 1=2∠R ,∴∠EPM 1=2∠FQM 1, ∴11EPM FQM ∠∠=1FPN Q∠∠=2. 【点睛】本题主要考查平行线的判定与性质,熟练掌握内错角相等证平行,平行线同旁内角互补等知识是解题的关键.二、解答题6.(1)∠A+∠C=90°;(2)①见解析;②105°【分析】(1)根据平行线的性质以及直角三角形的性质进行证明即可;(2)①过点B 作BG ∥DM ,根据平行线找角的联系即可求解;②先过点B 作BG ∥解析:(1)∠A +∠C =90°;(2)①见解析;②105°【分析】(1)根据平行线的性质以及直角三角形的性质进行证明即可;(2)①过点B 作BG ∥DM ,根据平行线找角的联系即可求解;②先过点B 作BG ∥DM ,根据角平分线的定义,得出∠ABF =∠GBF ,再设∠DBE =α,∠ABF =β,根据∠CBF +∠BFC +∠BCF =180°,可得2α+β+3α+3α+β=180°,根据AB ⊥BC ,可得β+β+2α=90°,最后解方程组即可得到∠ABE =15°,进而得出∠EBC =∠ABE +∠ABC =15°+90°=105°.【详解】解:(1)如图1,AM 与BC 的交点记作点O ,∵AM ∥CN ,∴∠C =∠AOB ,∵AB⊥BC,∴∠A+∠AOB=90°,∴∠A+∠C=90°;(2)①如图2,过点B作BG∥DM,∵BD⊥AM,∴DB⊥BG,∴∠DBG=90°,∴∠ABD+∠ABG=90°,∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,BG∥DM,BG CN//,∴∠C=∠CBG,∠ABD=∠C;②如图3,过点B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)知∠ABD=∠CBG,∴∠ABF=∠GBF,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=∠AFB=β,∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°得:2α+β+3α+3α+β=180°,∵AB⊥BC,∴β+β+2α=90°,∴α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.【点睛】本题主要考查了平行线的性质的运用,解决问题的关键是作平行线构造内错角,运用等角的余角(补角)相等进行推导.余角和补角计算的应用,常常与等式的性质、等量代换相关联.解题时注意方程思想的运用.7.(1)②③;(2)相等,理由见解析;(3)30°或45°或75°或120°或135°【分析】(1)根据平行线的判定和性质分别判定即可;(2)利用角的和差,结合∠CAB=∠DAE=90°进行判断解析:(1)②③;(2)相等,理由见解析;(3)30°或45°或75°或120°或135°【分析】(1)根据平行线的判定和性质分别判定即可;(2)利用角的和差,结合∠CAB=∠DAE=90°进行判断;(3)依据这两块三角尺各有一条边互相平行,分五种情况讨论,即可得到∠EAB角度所有可能的值.【详解】解:(1)①∵∠BFD=60°,∠B=45°,∴∠BAD+∠D=∠BFD+∠B=105°,∴∠BAD=105°-30°=75°,∴∠BAD≠∠B,∴BC和AD不平行,故①错误;②∵∠BAC+∠DAE=180°,∴∠BAE+∠CAD=∠BAE+∠CAE+∠DAE=180°,故②正确;③若BC∥AD,则∠BAD=∠B=45°,∴∠BAE=45°,即AB平分∠EAD,故③正确;故答案为:②③;(2)相等,理由是:∵∠CAD=150°,∴∠BAE=180°-150°=30°,∴∠BAD=60°,∵∠BAD+∠D=∠BFD+∠B,∴∠BFD=60°+30°-45°=45°=∠C;(3)若AC∥DE,则∠CAE=∠E=60°,∴∠EAB=90°-60°=30°;若BC∥AD,则∠B=∠BAD=45°,∴∠EAB=45°;若BC∥DE,则∠E=∠AFB=60°,∴∠EAB=180°-60°-45°=75°;若AB∥DE,则∠D=∠DAB=30°,∴∠EAB=30°+90°=120°;若AE ∥BC ,则∠C =∠CAE =45°,∴∠EAB =45°+90°=135°;综上:∠EAB 的度数可能为30°或45°或75°或120°或135°.【点睛】本题考查了平行线的判定和性质,角平分线的定义,解题的关键是理解题意,分情况画出图形,学会用分类讨论的思想思考问题.8.(1) ;(2) ;(3)不发生变化,理由见解析【分析】(1)如图1,延长DE 交AB 于点F ,根据平行线的性质推出;(2)如图2,过点E 作ES ∥AB ,过点H 作HT ∥AB ,根据AB ∥CD ,AB ∥E 解析:(1) +180ACB BED ∠∠=︒;(2) 100︒;(3)不发生变化,理由见解析【分析】(1)如图1,延长DE 交AB 于点F ,根据平行线的性质推出+180ACB BED ∠∠=︒;(2)如图2,过点E 作ES ∥AB ,过点H 作HT ∥AB ,根据AB ∥CD ,AB ∥ES 推出BED ABE CDE ∠=∠+∠,再根据AB ∥TH ,AB ∥CD 推出GHD THD THB ∠=∠-∠,最后根据BED ∠比BHD ∠大60︒得出BED ∠的度数;(3)如图3,过点E 作EQ ∥DN ,根据DEB CDE ABE ∠=∠+∠得出βα-的度数,根据条件再逐步求出PBM ∠的度数.【详解】(1)如答图1所示,延长DE 交AB 于点F .AB ∥CD ,所以D EFB ∠=∠,又因为A D ∠=∠,所以A EFB ∠=∠,所以AC ∥DF ,所以ACB CED ∠=∠.因为+180CED BED ∠∠=︒,所以+180ACB BED ∠∠=︒.(2)如答图2所示,过点E 作ES ∥AB ,过点H 作HT ∥AB .设ABG EBG α∠=∠=,FDH EDH β∠=∠=,因为AB ∥CD ,AB ∥ES ,所以ABE BES ∠=∠,SED CED ∠=∠,所以21802BED BES SED ABE CDE αβ∠=∠+∠=∠+∠=+︒-,因为AB ∥TH ,AB ∥CD ,所以ABG THB ∠=∠,FDH DHT ∠=∠,所以GHD THD THB βα∠=∠-∠=-,因为BED ∠比BHD ∠大60︒,所以2+1802()60αββα︒---=︒,所以40βα-=︒,所以40BHD ∠=︒,所以100BED ∠=︒(3)不发生变化如答图3所示,过点E 作EQ ∥DN .设CDN EDN α∠=∠=,EBM KBM β∠=∠=,由(2)易知DEB CDE ABE ∠=∠+∠,所以2+1802100αβ︒-=︒,所以40βα-=︒, 所以180()180DEB CDE EDN EBM PBM PBM αβ∠=∠+∠+︒-∠+∠=+︒--∠, 所以80()40PBM βα∠=︒--=︒.【点睛】本题考查了平行线的性质,求角的度数,正确作出相关的辅助线,根据条件逐步求出角度的度数是解题的关键.9.(1);(2)①,见解析;②或【分析】(1)由平行线的性质可得到:,,再利用角的等量代换换算即可;(2)①设,,利用角平分线的定义和角的等量代换表示出对比即可;②分类讨论点在的左右两侧的情况,解析:(1)125︒;(2)①2ABD EAF ∠=∠,见解析;②30或110︒【分析】(1)由平行线的性质可得到:DEA EAN =∠∠,MBA BAN =∠∠,再利用角的等量代换换算即可;(2)①设EAF α∠=,AED=DAE=β∠∠,利用角平分线的定义和角的等量代换表示出ABD ∠对比即可;②分类讨论点D 在B 的左右两侧的情况,运用角的等量代换换算即可.【详解】.解:(1)设在1l 上有一点N 在点A 的右侧,如图所示:∵12//l l∴DEA EAN =∠∠,MBA BAN =∠∠∴50AED DAE EAN ==︒∠=∠∠∴255050125BAN BAD DAE EAN =++=︒+︒+︒=︒∠∠∠∠125BAM =︒∠(2)①2ABD=EAF ∠∠.证明:设EAF α∠=,AED=DAE=β∠∠.∴+=+FAD EAF DAE αβ=∠∠∠.∵AF 为CAD ∠的角平分线,∴22+2CAD FAD αβ==∠∠.∵12l l ,∴EAN=AED=β∠∠.∴2+22CAN CAD DAE EAN αβββα=--=--=∠∠∠∠.∴=22ABD CAN EAF α∠∠==∠.②当点D 在点B 右侧时,如图:由①得:2ABD EAF ∠=∠又∵180ABD ABM +=︒∠∠∴2180ABM EAF +=︒∠∠∵150ABM EAF ∠+∠︒=∴18015030EAF =︒-︒=︒∠当点D 在点B 左侧,E 在B 右侧时,如图:∵AF 为CAD ∠的角平分线 ∴12DAF CAD =∠∠ ∵12l l∴AED NAE =∠∠,CAN ABE =∠∠∵DAE AED NAE ==∠∠∠∴11()22DAE DAE NAE DAN =+=∠∠∠∠ ∴11()(360)22EAF DAF DAE CAD DAN CAN =+=+=︒-∠∠∠∠∠∠ 11802ABE =︒-∠ ∵180ABE ABM +=︒∠∠∴11180(180)9022EAF ABM ABM =︒-︒-=︒+∠∠∠ 又∵150EAF ABM +=︒∠∠∴1190(150)16522EAF EAF EAF =︒+⨯︒-=︒-∠∠∠ ∴110EAF =︒∠当点D 和F 在点B 左侧时,设在2l 上有一点G 在点B 的右侧如图:此时仍有12DAE DAN =∠∠,12DAF CAD =∠∠ ∴11(360)1802211180(180)9022EAF DAE DAF CAN ABG ABM ABM =+=︒-=︒-=︒-︒-=︒+∠∠∠∠∠∠∠ ∴110EAF =︒∠综合所述:30EAF ∠=︒或110︒【点睛】本题主要考查了平行线的性质,角平分线的定义,角的等量代换等,灵活运用平行线的性质和角平分线定义等量代换出角的关系是解题的关键.10.(1)见解析;(2)∠CGA=45°;(3)∠FCP=2∠ACP 或∠FCP+2∠ACP=180°.【分析】(1)有垂直定义可得∠MAB+∠KCN=90°,然后根据同角的余角相等可得∠KAN=∠K解析:(1)见解析;(2)∠CGA=45°;(3)∠FCP =2∠ACP 或∠FCP +2∠ACP=180°.【分析】(1)有垂直定义可得∠MAB+∠KCN =90°,然后根据同角的余角相等可得∠KAN=∠KCF ,从而判断两直线平行;(2)设∠KAN=∠KCF=α,过点G 作GH ∥EF ,结合角平分线的定义和平行线的判定及性质求解;(3)分CP 交射线AQ 及射线AQ 的反向延长线两种情况结合角的和差关系分类讨论求解.【详解】解:(1)∵AB ⊥AK∴∠BAC=90°∴∠MAB+∠KAN =90°∵∠MAB+∠KCF =90°∴∠KAN=∠KCF∴EF ∥MN(2)设∠KAN=∠KCF=α则∠BAN=∠BAC+∠KAN=90°+α∠KCB=180°-∠KCF=180°-α∵AG 平分∠NAB ,CG 平分∠ECK∴∠GAN=12∠BAN=45°+12α,∠KCG=12∠KCB=90°-12α∴∠FCG=∠KCG+∠KCF=90°+12α过点G 作GH ∥EF∴∠HGC=∠FCG=90°+12α又∵MN ∥EF∴MN ∥GH∴∠HGA=∠GAN=45°+12α∴∠CGA=∠HGC -∠HGA=(90°+12α)-(45°+12α)=45°(3)①当CP 交射线AQ 于点T∵180CTA TAC ACP ∠+∠+∠=︒∴180CTA QAB BAC ACP ∠+∠+∠+∠=︒又∵=60,90CTA BAC ∠︒∠=︒∴30QAB ACP ∠+∠=︒由(1)可得:EF ∥MN∴FCA MAC ∠=∠∵FCP FCA ACP ∠=∠+∠∴FCP MAC ACP ∠=∠+∠∵MAC MAQ QAB BAC ∠=∠+∠+∠,2MAQ QAB ∠=∠∴()390=330901803MAC QAB ACP ACP ∠=∠+︒︒-∠+︒=︒-∠∴1803FCP ACP ACP ∠=︒-∠+∠即∠FCP +2∠ACP=180°②当CP 交射线AQ 的反向延长线于点T ,延长BA 交CP 于点GFCP FCA ACP ∠=∠-∠,由EF ∥MN 得MAC FCA ∠=∠∴FCP MAC ACP ∠=∠-∠又∵TAG QAB ∠=∠,180BAC CAG ∠+∠=︒,90BAC ∠=︒∴18090CAG BAC ∠=︒-∠=︒90CAT CAG TAG QAB ∠=∠-∠=︒-∠∵180CAT CTA ACP ∠+∠+∠=︒,60CTA ∠=︒∴120CAT ACP ∠+∠=︒∴90120QAB ACP ︒-∠+∠=︒∴30QAB ACP ∠=∠-︒由①可得390MAC QAB ∠=∠+︒∴()=330903MAC ACP ACP ∠∠-︒+︒=∠∴32FCP MAC ACP ACP ACP ACP ∠=∠-∠=∠-∠=∠综上,∠FCP =2∠ACP 或∠FCP +2∠ACP=180°.【点睛】本题考查平行线的判定和性质以及角的和差关系,准确理解题意,正确推理计算是解题关键.三、解答题11.[习题回顾]证明见解析;[变式思考] 相等,证明见解析;[探究延伸] ∠M+∠CFE=90°,证明见解析.【分析】[习题回顾]根据同角的余角相等可证明∠B=∠ACD ,再根据三角形的外角的性质即可解析:[习题回顾]证明见解析;[变式思考] 相等,证明见解析;[探究延伸]∠M+∠CFE=90°,证明见解析.【分析】[习题回顾]根据同角的余角相等可证明∠B=∠ACD ,再根据三角形的外角的性质即可证明;[变式思考]根据角平分线的定义和对顶角相等可得∠CAE=∠DAF 、再根据直角三角形的性质和等角的余角相等即可得出CFE ∠=CEF ∠;[探究延伸]根据角平分线的定义可得∠EAN=90°,根据直角三角形两锐角互余可得∠M+∠CEF=90°,再根据三角形外角的性质可得∠CEF=∠CFE ,由此可证∠M+∠CFE=90°.【详解】[习题回顾]证明:∵∠ACB=90°,CD 是高,∴∠B+∠CAB=90°,∠ACD+∠CAB=90°,∴∠B=∠ACD ,∵AE 是角平分线,∴∠CAF=∠DAF ,∵∠CFE=∠CAF+∠ACD ,∠CEF=∠DAF+∠B ,∴∠CEF=∠CFE ;[变式思考]相等,理由如下:证明:∵AF为∠BAG的角平分线,∴∠GAF=∠DAF,∵∠CAE=∠GAF,∴∠CAE=∠DAF,∵CD为AB边上的高,∠ACB=90°,∴∠ADC=90°,∴∠ADF=∠ACE=90°,∴∠DAF+∠F=90°,∠E+∠CAE=90°,∴∠CEF=∠CFE;[探究延伸]∠M+∠CFE=90°,证明:∵C、A、G三点共线 AE、AN为角平分线,∴∠EAN=90°,又∵∠GAN=∠CAM,∴∠M+∠CEF=90°,∵∠CEF=∠EAB+∠B,∠CFE=∠EAC+∠ACD,∠ACD=∠B,∴∠CEF=∠CFE,∴∠M+∠CFE=90°.【点睛】本题考查三角形的外角的性质,直角三角形两锐角互余,角平分线的有关证明,等角或同角的余角相等.在本题中用的比较多的是利用等角或同角的余角相等证明角相等和三角形一个外角等于与它不相邻的两个内角之和,理解并掌握是解决此题的关键.12.(1)∠EPB=170°;(2)①当交点P在直线b的下方时:∠EPB=20°,②当交点P在直线a,b之间时:∠EPB=160°,③当交点P在直线a的上方时:∠EPB=∠1﹣50°=20°;(3)①当解析:(1)∠EPB=170°;(2)①当交点P在直线b的下方时:∠EPB=20°,②当交点P在直线a,b之间时:∠EPB=160°,③当交点P在直线a的上方时:∠EPB=∠1﹣50°=20°;(3)①当交点P在直线a,b之间时:∠EPB=180°﹣|n°﹣50°|;②当交点P在直线a上方或直线b下方时:∠EPB=|n°﹣50°|.【分析】(1)利用外角和角平分线的性质直接可求解;(2)分三种情况讨论:①当交点P在直线b的下方时;②当交点P在直线a,b之间时;③当交点P在直线a的上方时;分别画出图形求解;(3)结合(2)的探究,分两种情况得到结论:①当交点P在直线a,b之间时;②当交点P在直线a上方或直线b下方时;【详解】解:(1)∵BD平分∠ABC,∴∠ABD=∠DBC=1∠ABC=50°,2∵∠EPB是△PFB的外角,∴∠EPB=∠PFB+∠PBF=∠1+(180°﹣50°)=170°;(2)①当交点P在直线b的下方时:∠EPB=∠1﹣50°=20°;②当交点P在直线a,b之间时:∠EPB=50°+(180°﹣∠1)=160°;③当交点P在直线a的上方时:∠EPB=∠1﹣50°=20°;(3)①当交点P在直线a,b之间时:∠EPB=180°﹣|n°﹣50°|;②当交点P在直线a上方或直线b下方时:∠EPB=|n°﹣50°|;【点睛】考查知识点:平行线的性质;三角形外角性质.根据动点P的位置,分类画图,结合图形求解是解决本题的关键.数形结合思想的运用是解题的突破口.13.【现象解释】见解析;【尝试探究】BEC 70;【深入思考】2.【分析】[现象解释]根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用∠2+∠3=90°得出∠1+∠2+∠解析:【现象解释】见解析;【尝试探究】∠BEC = 70︒;【深入思考】β= 2α.【分析】[现象解释]根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用∠2+∠3=90°得出∠1+∠2+∠3+∠4=180°,即可得出∠DCB+∠ABC=180°,即可证得AB∥CD;[尝试探究]根据三角形内角和定理求得∠2+∠3=125°,根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用平角的定义得出∠1+∠2+∠EBC+∠3+∠4+∠BCE=360°,即可得出∠EBC+BCE=360°-250°=110°,根据三角形内角和定理即可得出∠BEC=180°-110°=70°;[深入思考]利用平角的定义得出∠ABC=180°-2∠2,∠BCD=180°-2∠3,利用外角的性质∠BED=∠ABC-∠BCD=(180°-2∠2)-(180°-2∠3)=2(∠3-∠2)=β,而∠BOC=∠3-∠2=α,即可证得β=2α.【详解】[现象解释]如图2,∵OM⊥ON,∴∠CON=90°,∴∠2+∠3=90°∵∠1=∠2,∠3=∠4,∴∠1+∠2+∠3+∠4=180°,∴∠DCB+∠ABC=180°,∴AB∥CD;【尝试探究】如图3,在△OBC中,∵∠COB=55°,∴∠2+∠3=125°,∵∠1=∠2,∠3=∠4,∴∠1+∠2+∠3+∠4=250°,∵∠1+∠2+∠EBC+∠3+∠4+∠BCE=360°,∴∠EBC+BCE=360°-250°=110°,∴∠BEC=180°-110°=70°;【深入思考】如图4,β=2α,理由如下:∵∠1=∠2,∠3=∠4,∴∠ABC=180°-2∠2,∠BCD=180°-2∠3,∴∠BED=∠ABC-∠BCD=(180°-2∠2)-(180°-2∠3)=2(∠3-∠2)=β,∵∠BOC=∠3-∠2=α,∴β=2α.【点睛】本题考查了平行线的判定,三角形外角的性质以及三角形内角和定理,熟练掌握三角形的性质是解题的关键.14.(1)60°;(2)15°;(3)30°或15°【分析】(1)利用两直线平行,同旁内角互补,得出,即可得出结论;(2)先利用三角形的内角和定理求出,即可得出结论;(3)分和两种情况求解即可得解析:(1)60°;(2)15°;(3)30°或15°【分析】(1)利用两直线平行,同旁内角互补,得出90CAN ∠=︒,即可得出结论;(2)先利用三角形的内角和定理求出AFD ∠,即可得出结论;(3)分90DAF ∠=︒和90AFD ∠=︒两种情况求解即可得出结论.【详解】解:(1)//MN GH ,180ACB NAC ∴∠+∠=︒,90ACB ∠=︒,90CAN ∴∠=︒,30BAC ∠=︒,9060BAN BAC ∴∠=︒-∠=︒;(2)由(1)知,60BAN ∠=︒,45EDF ∠=︒,18075AFD BAN EDF ∴∠=︒-∠-∠=︒,90DFE ∠=︒,15AFE DFE AFD ∴∠=∠-∠=︒;(3)当90DAF ∠=︒时,如图3,由(1)知,60BAN ∠=︒,30FAN DAF BAN ∴∠=∠-∠=︒;当90AFD ∠=︒时,如图4,90DFE ∠=︒,∴点A ,E 重合,45EDF ∠=︒,45DAF ∴∠=︒,由(1)知,60BAN ∠=︒,15FAN BAN DAF ∴∠=∠-∠=︒,即当以A 、D 、F 为顶点的三角形是直角三角形时,FAN ∠度数为30或15︒.【点睛】此题是三角形综合题,主要考查了平行线的性质,三角形的内角和定理,角的和差的计算,求出60BAN ∠=︒是解本题的关键.15.(1)互相平行;(2)35,20;(3)见解析;(4)不变,【分析】(1)根据平行线的判定定理即可得到结论;(2)根据角平分线的定义和平行线的性质即可得到结论;(3)根据角平分线的定义和平行解析:(1)互相平行;(2)35,20;(3)见解析;(4)不变,12【分析】(1)根据平行线的判定定理即可得到结论;(2)根据角平分线的定义和平行线的性质即可得到结论;(3)根据角平分线的定义和平行线的性质即可得到结论;(4)根据角平分线的定义,平行线的性质,三角形外角的性质即可得到结论.【详解】解:(1)直线l2⊥l1,l3⊥l1,∴l2∥l3,即l2与l3的位置关系是互相平行,故答案为:互相平行;(2)∵CE平分∠BCD,∴∠BCE=∠DCE=1BCD,2∵∠BCD=70°,∴∠DCE=35°,∵l2∥l3,∴∠CED=∠DCE=35°,∵l2⊥l1,∴∠CAD=90°,∴∠ADC=90°﹣70°=20°;故答案为:35,20;(3)∵CF平分∠BCD,∴∠BCF=∠DCF,∵l2⊥l1,∴∠CAD=90°,∴∠BCF+∠AGC=90°,∵CD⊥BD,∴∠DCF+∠CFD=90°,∴∠AGC=∠CFD,∵∠AGC=∠DGF,∴∠DGF=∠DFG;(4)∠N:∠BCD的值不会变化,等于1;理由如下:2∵l2∥l3,∴∠BED=∠EBH,∵∠DBE=∠DEB,∴∠DBE=∠EBH,∴∠DBH=2∠DBE,∵∠BCD+∠BDC=∠DBH,∴∠BCD+∠BDC=2∠DBE,∵∠N+∠BDN=∠DBE,∴∠BCD+∠BDC=2∠N+2∠BDN,∵DN平分∠BDC,∴∠BDC=2∠BDN,∴∠BCD=2∠N,∴∠N:∠BCD=1.2【点睛】本题考查了三角形的综合题,三角形的内角和定理,三角形外角的性质,平行线的判定和性质,角平分线的定义,正确的识别图形进行推理是解题的关键.。
2014-2015学年湖北省武汉市武珞路中学七年级(下)期末数学试卷一、选择题(10题,每题只有一个正确答案,共30分)1.(3分)(2015秋•崇安区期末)16的算术平方根是()A.4 B.﹣4 C.±4 D.±82.(3分)(2015春•武汉校级期末)如图,直线AB、CD、EF相交于O,则∠1+∠2+∠3的度数等于()A.90°B.150°C.180°D.210°3.(3分)(2011•德宏州)在平面直角坐标系中,点M(﹣2,3)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.(3分)(2015春•武汉校级期末)如图,图中与∠C是同旁内角的角有几个()A.1 B.2 C.3 D.45.(3分)(2015春•武汉校级期末)下列实数中,是无理数的是()A.3.14159265 B. C.D.6.(3分)(2015春•武汉校级期末)下列各式计算正确的是()A.2﹣3=B.|﹣1.7|=1.7﹣C.=±D.=﹣17.(3分)(2015春•西藏校级期末)如图,点E在AC的延长线上,下列条件中能判断AB∥CD 的是()A.∠3=∠4 B.∠A=∠DCE C.∠D=∠DCE D.∠D+∠ACD=180°8.(3分)(2015春•武汉校级期末)下列说法正确的是()A.若ab=0,则点P(a,b)表示原点B.点(1,﹣a2)在第四象限C.已知点A(2,3)与点B(2,﹣3),则直线AB平行x轴D.坐标轴上的点不属于任何象限9.(3分)(2015春•武汉校级期末)如图,在平面直角坐标系上有点A(1,0),点A第一次向右跳动至A1(﹣1,1),第二次向左跳动至A2(2,1),第三次向右跳动至A3(﹣2,2),第四次向左跳动至A4(3,2)…依照此规律跳动下去,点A第100次跳动至A100的坐标()A.(50,49)B.(51,50)C.(﹣50,49)D.(100,99)10.(3分)(2015春•武汉校级期末)下列命题是真命题的是()①a,b为实数,若a2=b2,则=②的平方根是±4③三角形ABC中,∠C=90°,则点到直线的距离是线段BC④建立一个平面直角坐标,点A(﹣2,4),点B(3,4),画直线AB,若点C在直线AB 上,且AC=4,则C点坐标(1,4),(﹣6,4)A.0 B.1 C.2 D.3二、填空题(6题,每小题3分)11.(3分)(2015春•武汉校级期末)教室里座位整齐摆放,若小华坐在第四排第6行,用有效数对(4,6)表示,则(2,4)表示的含义是.12.(3分)(2015春•武汉校级期末)计算=.13.(3分)(2015春•武汉校级期末)在平面直角坐标系中,点C在x轴的上方,y轴的右侧,距离每个坐标轴都是2个单位长度,则C点的坐标为.14.(3分)(2012•番禺区校级模拟)如图,数轴上A、B两点对应的实数分别是1和,若点A关于B点的对称点为点C,则点C所对应的实数为.15.(3分)(2015春•武汉校级期末)直线AB与CD交于O,OE⊥CD,OF⊥AB,∠DOF=65°,则∠BOE的度数.16.(3分)(2015春•武汉校级期末)平面直角坐标系中,A(﹣3,1),B(﹣1,4),直线AB交x轴于C点,则C点坐标为.三、解答题17.(6分)(2015春•武汉校级期末)求值:(1)已知(x﹣1)2=4,求x的值;(2).18.(6分)(2015春•武汉校级期末)如图,P是∠ABC内一点,(1)画图:①过点P作BC的垂线,垂足为点D,过点P作AB的垂线,垂足为H②过点P作BC的平行线交AB于E,过点P作AB的平行线交BC于F(2)∠B与∠EPF有何数量关系?(不需要说明理由)19.(6分)(2015秋•连云港期末)如图,建立平面直角坐标系,正方形ABFG和正方形CDEF中,使点B、C的坐标分别为(﹣4,0)和(0,0)(1)写出A,D,E,F的坐标;(2)求正方形CDEF的面积.20.(7分)(2015春•武汉校级期末)如图,直线AB,CD,EF被直线GH所截,∠1=70°,∠2=110°,∠3=70°,求证AB∥CD证明:∵∠1=70°∠3=70°∴∠3=∠1∴∥∵∠2=110°,∠3=70°(已知)∴+=180°(等式的性质)∴∥.∴AB∥CD.21.(6分)(2015春•武汉校级期末)小丽想用一块面积为800cm2的正方形纸片,沿着边的方向裁出一块面积为600cm2长方形纸片,使它的长宽之比为4:3,她不知道是否裁得出来,正在发愁,小明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片.”你同意小明的说法吗?小丽能用这块纸片裁出符合要求的纸片吗?22.(6分)(2015春•武汉校级期末)已知点O(0,0),B(2,3),点A在坐标轴上,且S△AOB=6.(1)求满足条件的点A的坐标;(2)点C(﹣3,1),过O点直线l把三角形BOC分成面积相等的两部分,交BC于D,则D的坐标为.23.(7分)(2015春•武汉校级期末)如图:AF∥DE,B为AF上的一点,∠ABC=60°交ED于C,CM平分∠BCE,∠MCN=90°,(1)∠DCN的度数;(2)若∠CBF的平分线交CN于N,求证:BN∥CM.24.(8分)(2015春•武汉校级期末)如图:在平面直角坐标系中,A(a,0),D(6,4),将线段AD平移到BC,使B(0,b),且a,b满足|2﹣a|+=0(1)求A点、B点的坐标;(2)设点M(﹣3,n)且三角形ABM的面积为16,求n的值;(3)若∠DAO=150°,设点P是x轴上的一动点(不与点A重合),问∠APC与∠PCB存在什么具体的数量关系?写出你的证明结论并证明.2014-2015学年湖北省武汉市武珞路中学七年级(下)期末数学试卷参考答案与试题解析一、选择题(10题,每题只有一个正确答案,共30分)1.(3分)(2015秋•崇安区期末)16的算术平方根是()A.4 B.﹣4 C.±4 D.±8【解答】解:∵42=16,∴16的算术平方根为4,即=4,故选A2.(3分)(2015春•武汉校级期末)如图,直线AB、CD、EF相交于O,则∠1+∠2+∠3的度数等于()A.90°B.150°C.180°D.210°【解答】解:如图,∠4=∠1,∵∠2+∠3+∠4=180°,∴∠1+∠2+∠3=180°.故选C.3.(3分)(2011•德宏州)在平面直角坐标系中,点M(﹣2,3)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【解答】解:∵﹣2<0,3>0,∴(﹣2,3)在第二象限,故选B.4.(3分)(2015春•武汉校级期末)如图,图中与∠C是同旁内角的角有几个()A.1 B.2 C.3 D.4【解答】解:由图形可知:∠C的同旁内角有∠CAB,∠CAE,∠CBA,共有3个,故选:C.5.(3分)(2015春•武汉校级期末)下列实数中,是无理数的是()A.3.14159265 B. C.D.【解答】解:A、3.1415926是有限小数是有理数,选项错误.B、=6,是整数,是有理数,选项错误;C、是无理数,选项正确;D、是分数,是有理数,选项错误;故选C.6.(3分)(2015春•武汉校级期末)下列各式计算正确的是()A.2﹣3=B.|﹣1.7|=1.7﹣C.=±D.=﹣1【解答】解:∵2﹣3=﹣,∴选项A不正确;∵|﹣1.7|=﹣1.7,∴选项B不正确;∵,∴选项C不正确;∵,∴选项D正确.故选:D.7.(3分)(2015春•西藏校级期末)如图,点E在AC的延长线上,下列条件中能判断AB∥CD 的是()A.∠3=∠4 B.∠A=∠DCE C.∠D=∠DCE D.∠D+∠ACD=180°【解答】解:当∠3=∠4时,BD∥AE;当∠A=∠DCE时,AB∥DC;当∠D=∠DCE时,BD∥AE;当∠D+∠ACD=180°时,BD∥AE.故选B.8.(3分)(2015春•武汉校级期末)下列说法正确的是()A.若ab=0,则点P(a,b)表示原点B.点(1,﹣a2)在第四象限C.已知点A(2,3)与点B(2,﹣3),则直线AB平行x轴D.坐标轴上的点不属于任何象限【解答】解:A、a=0,b≠0时,点P(a,b)在y轴上,a≠0,b=0时,点P(a,b)在x轴上,a=b=0时,点P(a,b)表示原点,故本选项错误;B、a=0时,点(1,﹣a2)在x轴上,a≠0时,点(1,﹣a2)在第四象限,故本选项错误;C、∵点A(2,3)与点B(2,﹣3)的横坐标相同,∴直线AB平行y轴,故本选项错误;D、坐标轴上的点不属于任何象限正确,故本选项正确.故选D.9.(3分)(2015春•武汉校级期末)如图,在平面直角坐标系上有点A(1,0),点A第一次向右跳动至A1(﹣1,1),第二次向左跳动至A2(2,1),第三次向右跳动至A3(﹣2,2),第四次向左跳动至A4(3,2)…依照此规律跳动下去,点A第100次跳动至A100的坐标()A.(50,49)B.(51,50)C.(﹣50,49)D.(100,99)【解答】解:观察发现,第2次跳动至点的坐标是(2,1),第4次跳动至点的坐标是(3,2),第6次跳动至点的坐标是(4,3),第8次跳动至点的坐标是(5,4),…第2n次跳动至点的坐标是(n+1,n),∴第100次跳动至点的坐标是(51,50).故选B.10.(3分)(2015春•武汉校级期末)下列命题是真命题的是()①a,b为实数,若a2=b2,则=②的平方根是±4③三角形ABC中,∠C=90°,则点到直线的距离是线段BC④建立一个平面直角坐标,点A(﹣2,4),点B(3,4),画直线AB,若点C在直线AB 上,且AC=4,则C点坐标(1,4),(﹣6,4)A.0 B.1 C.2 D.3【解答】解:a,b为实数,若a2=b2,则a=b或a=﹣b,所以①错误;的平方根是±2,所以②错误;三角形ABC中,∠C=90°,则点B到直线AC的距离是线段BC的长,所以③错误;建立一个平面直角坐标,点A(﹣2,4),点B(3,4),画直线AB,若点C在直线AB上,且AC=4,则C点坐标(2,4),(﹣6,4),所以④错误.故选A.二、填空题(6题,每小题3分)11.(3分)(2015春•武汉校级期末)教室里座位整齐摆放,若小华坐在第四排第6行,用有效数对(4,6)表示,则(2,4)表示的含义是第二排第4行.【解答】解:∵小华坐在第四排第6行,用有效数对(4,6)表示,∴(2,4)表示的含义是:第二排第4行.故答案为:第二排第4行.12.(3分)(2015春•武汉校级期末)计算=.【解答】解:,故答案为:.13.(3分)(2015春•武汉校级期末)在平面直角坐标系中,点C在x轴的上方,y轴的右侧,距离每个坐标轴都是2个单位长度,则C点的坐标为(2,2).【解答】解:∵点C在x轴的上方,y轴的右侧,∴点C在第一象限,∵点C距离每个坐标轴都是2个单位长度,∴点C的坐标为(2,2).故答案为:(2,2).14.(3分)(2012•番禺区校级模拟)如图,数轴上A、B两点对应的实数分别是1和,若点A关于B点的对称点为点C,则点C所对应的实数为2﹣1.【解答】解:设点C所对应的实数是x.则有x﹣=﹣1,解得x=2﹣1.故答案为:2﹣1.15.(3分)(2015春•武汉校级期末)直线AB与CD交于O,OE⊥CD,OF⊥AB,∠DOF=65°,则∠BOE的度数65°或115°.【解答】解:(1)如图1,,∵直线OE⊥CD,∴∠EOD=90°,∵∠DOF=65°,∴∠EOF=90°﹣65°=25°,又∵直线OF⊥AB,∴∠BOF=90°,∴∠BOE=90°﹣25°=65°.(2)如图2,,∵直线OE⊥CD,∴∠EOD=90°,∵∠DOF=65°,∴∠EOF=90°﹣65°=25°,又∵直线OF⊥AB,∴∠BOF=90°,∴∠BOE=90°+25°=115°.综上,可得∠BOE的度数是65°或115°.故答案为:65°或115°.16.(3分)(2015春•武汉校级期末)平面直角坐标系中,A(﹣3,1),B(﹣1,4),直线AB交x轴于C点,则C点坐标为(﹣,0).【解答】解:设直线AB的解析式为y=kx+b(k≠0),∵A(﹣3,1),B(﹣1,4),∴,解得.∴直线AB的解析式为y=x+,∴令y=0,则x=﹣,∴C(﹣,0).故答案为:(﹣,0).三、解答题17.(6分)(2015春•武汉校级期末)求值:(1)已知(x﹣1)2=4,求x的值;(2).【解答】解:(1)∵(x﹣1)2=4,∴x﹣1=2或x﹣1=﹣2,解得x=3或x=﹣1,即x的值是3或﹣1.(2)==18.(6分)(2015春•武汉校级期末)如图,P是∠ABC内一点,(1)画图:①过点P作BC的垂线,垂足为点D,过点P作AB的垂线,垂足为H②过点P作BC的平行线交AB于E,过点P作AB的平行线交BC于F (2)∠B与∠EPF有何数量关系?(不需要说明理由)【解答】解:(1)①如图所示:PD,PH即为所求;②如图所示:PE,PF即为所求;(2)∠B=∠EPF,理由:∵PF∥AB,PE∥BC,∴四边形EBFP是平行四边形,∴∠B=∠EPF.19.(6分)(2015秋•连云港期末)如图,建立平面直角坐标系,正方形ABFG和正方形CDEF中,使点B、C的坐标分别为(﹣4,0)和(0,0)(1)写出A,D,E,F的坐标;(2)求正方形CDEF的面积.【解答】解:(1)如图:A(﹣6,3),D(2,1),E(1,3),F(﹣1,2);(2)因为CD=,所以正方形CDEF的面积=5.20.(7分)(2015春•武汉校级期末)如图,直线AB,CD,EF被直线GH所截,∠1=70°,∠2=110°,∠3=70°,求证AB∥CD证明:∵∠1=70°∠3=70°∴∠3=∠1(等量代换)∴AB∥EF∵∠2=110°,∠3=70°(已知)∴∠2+∠3=180°(等式的性质)∴CD∥EF.∴AB∥CD(平行于同一直线的两直线平行).【解答】证明:∵∠1=70°∠3=70°∴∠3=∠1(等量代换),∴AB∥EF,∴∠2+∠3=180°,∴CD∥EF,∴AB∥CD(平行于同一直线的两直线平行),故答案为:(等量代换),AB,EF,∠2,∠3,CD,EF,(平行于同一直线的两直线平行).21.(6分)(2015春•武汉校级期末)小丽想用一块面积为800cm2的正方形纸片,沿着边的方向裁出一块面积为600cm2长方形纸片,使它的长宽之比为4:3,她不知道是否裁得出来,正在发愁,小明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片.”你同意小明的说法吗?小丽能用这块纸片裁出符合要求的纸片吗?【解答】解:同意小明的说法,面积为800cm2的正方形纸片的边长为:=20,600÷20=15,20:15=4:3,即小丽能用这块纸片裁出符合要求的纸片.22.(6分)(2015春•武汉校级期末)已知点O(0,0),B(2,3),点A在坐标轴上,且S△AOB=6.(1)求满足条件的点A的坐标;(2)点C(﹣3,1),过O点直线l把三角形BOC分成面积相等的两部分,交BC于D,则D的坐标为(﹣,).【解答】解:(1)∵点O(0,0),B(2,3),点A在坐标轴上,且S△AOB=6.∴点A的坐标为(0,6)、(0,﹣6)、(4,0)、(﹣4,0);(2)∵B(2,3),C(﹣3,1),∴BC=,∵过O点直线l把三角形BOC分成面积相等的两部分,交BC于D,∴D的坐标为(﹣,),故答案为:(﹣,).23.(7分)(2015春•武汉校级期末)如图:AF∥DE,B为AF上的一点,∠ABC=60°交ED于C,CM平分∠BCE,∠MCN=90°,(1)∠DCN的度数;(2)若∠CBF的平分线交CN于N,求证:BN∥CM.【解答】解:(1)∵AF∥DE,∠ABC=60°,∴∠BCE=180°﹣60°=120°,∠BCD=∠ABC=60°,∵CM平分∠BCE,∴∠MCB=60°,∵∠MCN=90°,∴∠BCN=90°﹣60°=30°,∴∠DCN=60°﹣30°=30°;(2)作∠FBC的角平分线BN,交CN于N,∵∠ABC=60°,∴∠FBC=120°,∵BN平分∠FBC,∴∠NBC=60°,∵∠BCM=60°,∴∠NBC=∠BCM,∴BN∥CM.24.(8分)(2015春•武汉校级期末)如图:在平面直角坐标系中,A(a,0),D(6,4),将线段AD平移到BC,使B(0,b),且a,b满足|2﹣a|+=0(1)求A点、B点的坐标;(2)设点M(﹣3,n)且三角形ABM的面积为16,求n的值;(3)若∠DAO=150°,设点P是x轴上的一动点(不与点A重合),问∠APC与∠PCB存在什么具体的数量关系?写出你的证明结论并证明.【解答】解:(1)∵a,b满足|2﹣a|+=0,∴2﹣a=0,6+b=0,∴a=2,b=﹣6,∴A(2,0),B(0,﹣6);(2)由(1)得A(2,0),B(0,﹣6),∴OA=2,OB=6,∴AB==2,∵三角形ABM的面积为16,∴点M到直线AB的距离为:,∴直线AB的解析式为:y=3x﹣6,根据点到直线的距离得:=,解得:n=1或n=﹣31;(3)①当点P在点A的右侧如图1,连接PC,延长BC交x轴于E,∵AD平移到BC,∴AD∥BC,∵∠DAO=150°,∴∠DAE=30°,∵∠AEC=30°,∴∠PCE=∠APC﹣30°,∵∠PCB+∠PCE=∠PCB+∠APC﹣30°=180°,∴∠PCB+∠APC=210°;②当点P在点A的左侧如图2,连接PC,延长DA交PC于F,∵∠DAO=150°,∴∠PAF=30°,∵AD∥BC,∴∠AFC=∠PCB,∵∠AFC=∠APC+30°,∴∠PCB﹣∠APC=30°.参与本试卷答题和审题的老师有:sks;王学峰;张其铎;1286697702;zhjh;放飞梦想;gsls;星期八;wd1899;sd2011;sdwdmahongye;CJX;1987483819;zcx(排名不分先后)菁优网2016年5月26日。
2014-2015学年度第二学期期终考试七年级数学试卷第Ⅰ卷(选择题,共36分)一、选择题(每小题3分,共36分)1. 要反映武汉某一周每天的最高气温的变化趋势,宜采用A.条形统计图.B.扇形统计图.C.折线统计图.D.频数分布直方图. 2.下列调查适合全面调查的是A .了解武汉市民消费水平.B .了解全班同学每周体育锻炼的时间C .了解武汉市中学生的眼睛视力情况.D .了解一批节能灯的使用寿命情况. 3.下列各组数中互为相反数的是A. -2与2.B. -2与3-8.C. -2与21-. D. -2与()2-2. 4.下列无理数中,在﹣2与1之间的是A .﹣5B . ﹣3C .3D .55.如图,能判定EB ∥AC 的条件是 A .∠C =∠ABEB. ∠A =∠EBD C .∠C =∠ABCD. ∠A =∠ABE6.若m <n ,则下列不等式中,正确的是A. m -4>n -4B.5m >5nC. -3m <-3nD. 2m +1<2n +1 7.不等式的解集在数轴上表示正确的是 A .B .C .D .8.方程5x +2y =﹣9与下列方程构成的方程组的解为⎪⎩⎪⎨⎧=-=212y x 的是A .x +2y =1B . 3x +2y =﹣8C . 5x +4y =﹣3D . 3x ﹣4y =﹣89.直角坐标系中点P(a+2,a -2)不可能所在的象限是A. 第一象限B. 第二象限C. 第三象限D. 第四象限第5题图10.解方程组⎩⎨⎧-=-=+246y cx by ax 时,小强正确解得⎩⎨⎧==22y x ,而小刚只看错了C ,解得⎩⎨⎧=-=42y x ,则当x = -1时,ax 2+bx +c 的值是A.6B.2C.0D.-811.若关于x 的不等式mx -n >0的解集是51x<,则关于x 的不等式(m +n )x >n -m 的解集是A .32-x< B .32>x C .32->x D .32x< 12.在平面直角坐标系中,小明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位…依此类推,第n 步的走法是:当n 能被3整除时,则向上走1个单位;当n 被3除,余数为1时,则向右走1个单位;当n 被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是( ) A . (66,34)B . (67,33)C . (100,33)D . (99,34)第Ⅱ卷(非选择题 共84分)二、填空题(每小题3分,共18分) 13.若42=x ,则x 的值为 . 14.64的立方根是 .15. 已知a ,b ,c 为平面内三条不同直线,若a ⊥b ,c ⊥b ,则a 与c的位置关系是 .16.如图所示的是某年参加国际教育评估的15个国家学生的数学平均成绩的统计图,则平均成绩大于或等于60的国家个数是 . 17.已知关于x 的不等式组⎩⎨⎧≥5-2x>10x-a 整数解只有四个,则实数a 的取值范围是 .18.已知方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,则方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解是 .三、解答题(共8小题,共66分) 19.(本题满分8分)解下列方程组(1)⎩⎨⎧2x-y=13x+y=4(2)⎩⎨⎧5x-6y=333x+4y=16第14题图20.(本题满分8分)解不等式(组),并在数轴上表示它的解集(1)373+>-x x (2)⎪⎩⎪⎨⎧-≥+->+215244762x x x x21.(本题满分8分)如图,AB ∥DC ,AC 和BD 相交于点O , E 是CD 上一点,F 是OD 上一点,且∠1=∠A . (1)求证FE ∥OC ;(2)若∠B OC 比∠DFE 大20°,求∠OFE 的度数.22.(本题满分8分)某校学生会为了解该校同学对乒乓球、羽毛球、排球、篮球和足球五种球类运动项目的喜爱情况(每位同学必须且只能从中选择一项),随机选取了若干名同学进行抽样调查,并将调查结果绘制成了如图(1),图(2)所示的不完整的统计图. (1)参加调查的同学一共有______名,图(2)中乒乓球所占的百分比为 ; (2)在图(1)中补全条形统计图(标上相应数据);(3)若该校共有2400名同学,请估计该校同学中喜欢羽毛球运动的人数.23.(本题满分8分)如图直角坐标系中,A (-2,1),B (-3,-2),平移线段AB ,使B 点的对应点刚好与坐标原点O 重合.(1)在图中画出平移后的对应线段O A 1; (2)若线段AB 上有点M (a ,b ),用a,b 表示平移后的对应点1M 的坐标是 ; (3)求出线段AB 在平移过程中扫过的面积.第21题图 图(1)图(2)第22题图24.(本题满分10分)小林在某商店购买商品A 、B 共三次. 只有一次购买时,商品A 、B 同时打折;其余两次均按标价购买. 三次购买商品A 、B 的数量和费用如下表: 购买商品A 的数量(个) 购买商品B 的数量(个) 购买总费用(元) 第一次购物 6 5 1140 第二次购物 3 7 1110 第三次购物 7 8 1113 (1)小林以折扣价购买商品A 、B 是第 次购物; (2)求出商品A 、B 的标价;(3)若商品A 、B 的折扣相同,问商店是打几折出售这两种商品的?25.(本题满分10分)某工厂用如图甲所示的长方形和正方形纸板,做成如图乙所示的竖式与横式两种长方体形状的无盖纸盒.(1)现有正方形纸板162张,长方形纸板340张.若要做两种纸盒共l00个,有哪几种生产方案?(2)若有正方形纸板162张,长方形纸板a 张,做成上述两种纸盒,纸板恰好用完.已知290<a <306.求a 的值.26.(本题满分6分) 对非负实数x “四舍五入”到个位的值记为[]x . 即当n 为非负整数时,若21x<n-21n-≤,则[]x =n . 如:[][]=43.5 =3,3.4,…根据以上材料,解决下列问题:(1)填空①若[]=3x ,则x 应满足的条件: ; ②若[]=33x+1,则x 应满足的条件: ; (2)求满足[]x-135=x 的所有非负实数x 的值.第25题图 图甲 图乙七年级数学参考答案及评分标准一、选择题(共12小题,每小题3分,共36分)二、填空题(共6小题,每小题3分,共18分)13, 2± ; 14. 2; 15.平行; 16.12;17.-3<a ≤2;18.⎩⎨⎧==105y x三、解答下列各题(本大题共9小题,共72分)19.解:(1)⎩⎨⎧==11y x …………………………………4分(2)⎪⎩⎪⎨⎧-==216y x ………………………8分20. (1)x >5数轴表示略 …………5分 (2)解①得 x <2;②得 x ≥-3 ………………………8分∴ 不等式组的解集为-3≤x <2 数轴表示略21. (1)证明: ∵AB ∥DC ∴∠C=∠A ∵∠1=∠A ∴∠1=∠C ∴FE ∥OC(2)∵FE ∥O ∴∠F OC+∠OFE =180° ∵∠F OC+∠BOC =180°, ∠DFE +∠OFE =180° ∴∠B OC+∠DFE =180° ∵∠B OC-∠DFE =20° 解得∠DFE=80° ∴∠OFE=100° 22.(1)200;20﹪(2)图略 排球20人,足球50人 (3)20024×2400=288(人) 答:23.(1)略…6分 (2)(a+3,a+2)(3)21324.(1)三(2)设商品A 的标价为x 元,商品B 的标价为y 元, 根据题意,得,解得:.答:商品A 的标价为90元,商品B 的标价为120元; (3)设商店是打a 折出售这两种商品, 由题意得,(7×90+8×120)×=1113,解得:a=7.答:商店是打7折出售这两种商品的. 25. 解:(1)设生产竖式纸盒x 个,则生产横式纸盒(100-x )个.由题意得⎩⎨⎧≤-+≤-+340)100(34162)100(2x x x x 解得4038≤≤x答,共有三种生产方案,方案一:生产竖式纸盒38个,横式纸盒62个; 方案二:生产竖式纸盒39个,横式纸盒61个; 方案三:生产竖式纸盒40个,横式纸盒60个.(2)设生产竖式纸盒x 个,则生产横式纸盒y 个.由题意得⎩⎨⎧=+=+ay x y x 341622 解得y=5648a- ∵290<a <306,∴ 342<648-a<358∵y 是整数,∴648-a=345,350,355.此时⎪⎩⎪⎨⎧===7120293y x a ;⎪⎩⎪⎨⎧===7022298y x a ;⎪⎩⎪⎨⎧===6924303y x a∴a=303,298,293.26题:⑴①27x<25≤;② 65x<21≤ ⑵设x-135=m,m 为整数,则x =53m+3∴ []=m 53m+3=x ⎥⎦⎤⎢⎣⎡, ∴21<m+53m+321m-≤ ∴411<m 41≤, ∵m 为整数,∴m =1,或m =2,∴59或x=56x=。
汉阳区2013-2014学年度第二学期期末考试七年级数学试卷第Ⅰ卷(选择题,共30分)一、选择题(每小题3分,共30分)1、在实数0,3,2,2-中,最大的是( ) A 、0 B 、3 C 、2 D 、2-2、下列四组值中不是方程12=-y x 的解的是( )A 、⎪⎩⎪⎨⎧-==21y x B 、⎩⎨⎧==11y x C 、⎩⎨⎧==01y x D 、⎩⎨⎧-=-=11y x 3、“今有鸡兔同笼,上有三十无头,下有九十四足,问鸡兔各几何?”设鸡为x 只,兔为y 只,则所列方程正确的是( )A 、⎩⎨⎧=+=+94235y x y xB 、⎩⎨⎧=+=+942435y x y xC 、⎩⎨⎧=+=+944235y x y xD 、⎩⎨⎧=+=+942235y x y x4、下列调查中,适合用全面调查方式的是( )A 、了解一批炮弹的杀伤半径B 、了解武汉电视台某栏目的收视率C 、了解长江中鱼的种类D 、了解某班学生对“武汉精神”的知晓率5、直角三角板与两条平行线a ,b 的位置关系如图,已知∠1=55°,则∠2=( ) A 、35° B 、45° C 、55° D 、125°6、若点P (a ,1-a )在第一象限,则a 的取值范围是( ) A 、a<0 B 、a<1 C 、a>1 D 、0<a<17、下列说法:①3.14159是无理数;②-3是-24的立方根;③10在两个连续整数a 和b 之间,那么a+b=5;④若实数m 的平方根是3a-1和3a-11,则m=2,其中正确的说法有( )个。
A 、1B 、2C 、3D 、48、若a>b ,则下列不等式不一定成立的是( )A 、a+m>b+mB 、)1()1(22+>+m b m a C 、b a 22-<- D 、22b a >9、小明和爸爸妈妈三人玩跷跷板,三人的体重一共为150千克,爸爸坐在跷跷板的一端,体重只有妈妈一半的小明和妈妈一同坐在跷跷板的另一端,这时爸爸那端仍然着地.那么小明的体重应小于( )千克A 、24B 、25C 、49D 、5010、对点(x ,y )的一次操作变换记为P (x ,y),定义其变换法则如下:),(),(1y x y x y x p -+=;且规定),((),(11y x p p y x p n n -=,(n为大于1的整数),如)4,2()1,3()2,1(()2,1(),1,3()2,1(11121=-==-=p p p p p 。
湖北省武汉市武珞路中学2015年七年级(下)期末数学试卷一、选择题(10题,每题只有一个正确答案,共30分)1.16的算术平方根是()A.4 B.﹣4 C.±4 D.±82.如图,直线AB、CD、EF相交于O,则∠1+∠2+∠3的度数等于()A.90° B.150° C.180° D.210°3.在平面直角坐标系中,点M(﹣2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限4.如图,图中与∠C是同旁内角的角有几个()A.1 B. 2 C. 3 D. 45.下列实数中,是无理数的是()A.3.14159265 B.C.D.6.下列各式计算正确的是()A.2﹣3=B.|﹣1.7|=1.7﹣C.=±D.=﹣17.如图,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠4 B.∠A=∠DCE C.∠D=∠DCE D.∠D+∠ACD=180°8.下列说法正确的是()A.若ab=0,则点P(a,b)表示原点B.点(1,﹣a2)在第四象限C.已知点A与点B,则直线AB平行x轴D.坐标轴上的点不属于任何象限9.如图,在平面直角坐标系上有点A(1,0),点A第一次向右跳动至A1(﹣1,1),第二次向左跳动至A2,第三次向右跳动至A3(﹣2,2),第四次向左跳动至A4(3,2)…依照此规律跳动下去,点A第100次跳动至A100的坐标()A.(50,49)B.(51,50)C.(﹣50,49)D.(100,99)10.下列命题是真命题的是()①a,b为实数,若a2=b2,则=②的平方根是±4③三角形ABC中,∠C=90°,则点到直线的距离是线段BC④建立一个平面直角坐标,点A(﹣2,4),点B(3,4),画直线AB,若点C在直线AB上,且AC=4,则C点坐标(1,4),(﹣6,4)A.0 B. 1 C. 2 D. 3二、填空题(6题,每小题3分)11.教室里座位整齐摆放,若小华坐在第四排第6行,用有效数对(4,6)表示,则表示的含义是.12.计算=.13.在平面直角坐标系中,点C在x轴的上方,y轴的右侧,距离每个坐标轴都是2个单位长度,则C点的坐标为.14.如图,数轴上A、B两点对应的实数分别是1和,若点A关于B点的对称点为点C,则点C 所对应的实数为.15.直线AB与CD交于O,OE⊥CD,OF⊥AB,∠DOF=65°,则∠BOE的度数.16.平面直角坐标系中,A(﹣3,1),B(﹣1,4),直线AB交x轴于C点,则C点坐标为.三、解答题17.求值:(1)已知(x﹣1)2=4,求x的值;.18.如图,P是∠ABC内一点,(1)画图:①过点P作BC的垂线,垂足为点D,过点P作AB的垂线,垂足为H②过点P作BC的平行线交AB于E,过点P作AB的平行线交BC于F∠B与∠EPF有何数量关系?(不需要说明理由)19.如图,建立平面直角坐标系,正方形ABFG和正方形CDEF中,使点B、C的坐标分别为(﹣4,0)和(0,0)(1)写出A,D,E,F的坐标;求正方形CDEF的面积.20.如图,直线AB,CD,EF被直线GH所截,∠1=70°,∠2=110°,∠3=70°,求证AB∥CD证明:∵∠1=70°∠3=70°∴∠3=∠1∴∥∵∠2=110°,∠3=70°(已知)∴+=180°(等式的性质)∴∥.∴AB∥CD.21.小丽想用一块面积为800cm2的正方形纸片,沿着边的方向裁出一块面积为600cm2长方形纸片,使它的长宽之比为4:3,她不知道是否裁得出来,正在发愁,小明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片.”你同意小明的说法吗?小丽能用这块纸片裁出符合要求的纸片吗?22.已知点O(0,0),B,点A在坐标轴上,且S△AOB=6.(1)求满足条件的点A的坐标;点C(﹣3,1),过O点直线l把三角形BOC分成面积相等的两部分,交BC于D,则D的坐标为.23.如图:AF∥DE,B为AF上的一点,∠ABC=60°交ED于C,CM平分∠BCE,∠MCN=90°,(1)∠DCN的度数;若∠CBF的平分线交CN于N,求证:BN∥CM.24.如图:在平面直角坐标系中,A(a,0),D(6,4),将线段AD平移到BC,使B(0,b),且a,b满足|2﹣a|+=0(1)求A点、B点的坐标;设点M(﹣3,n)且三角形ABM的面积为16,求n的值;(3)若∠DAO=150°,设点P是x轴上的一动点(不与点A重合),问∠APC与∠PCB存在什么具体的数量关系?写出你的证明结论并证明.湖北省武汉市武珞路中学2015年七年级(下)期末数学试卷参考答案与试题解析一、选择题(10题,每题只有一个正确答案,共30分)1.16的算术平方根是()A.4 B.﹣4 C.±4 D.±8考点:算术平方根.专题:计算题.分析:利用算术平方根的定义计算即可得到结果.解答:解:∵42=16,∴16的算术平方根为4,即=4,故选A点评:此题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.2.如图,直线AB、CD、EF相交于O,则∠1+∠2+∠3的度数等于()A.90° B.150° C.180° D.210°考点:对顶角、邻补角.分析:根据对顶角相等可得∠4=∠1,再根据平角的定义解答.解答:解:如图,∠4=∠1,∵∠2+∠3+∠4=180°,∴∠1+∠2+∠3=180°.故选C.点评:本题考查了对顶角相等的性质,平角的定义,准确识图是解题的关键.3.在平面直角坐标系中,点M(﹣2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限考点:点的坐标.专题:计算题.分析:横坐标小于0,纵坐标大于0,则这点在第二象限.解答:解:∵﹣2<0,3>0,∴(﹣2,3)在第二象限,故选B.点评:本题考查了点的坐标,个象限内坐标的符号:第一象限:+,+;第二象限:﹣,+;第三象限:﹣,﹣;第四象限:+,﹣;是基础知识要熟练掌握.4.如图,图中与∠C是同旁内角的角有几个()A.1 B. 2 C. 3 D. 4考点:同位角、内错角、同旁内角.分析:根据两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角进行解答即可.解答:解:由图形可知:∠C的同旁内角有∠CAB,∠CAE,∠CBA,共有3个,故选:C.点评:本题考查了同旁内角的定义.注意在截线的同旁找同旁内角.要结合图形,熟记同旁内角的位置特点.5.下列实数中,是无理数的是()A.3.14159265 B.C.D.考点:无理数.分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解答:解:A、3.1415926是有限小数是有理数,选项错误.B、=6,是整数,是有理数,选项错误;C、是无理数,选项正确;D、是分数,是有理数,选项错误;故选C.点评:此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.6.下列各式计算正确的是()A.2﹣3=B.|﹣1.7|=1.7﹣C.=±D.=﹣1考点:实数的运算.分析:A:根据实数减法的运算方法判断即可.B:根据绝对值的非负性判断即可.C:根据一个数的算术平方根的求法判断即可.D:根据一个数的立方根的求法判断即可.解答:解:∵2﹣3=﹣,∴选项A不正确;∵|﹣1.7|=﹣1.7,∴选项B不正确;∵,∴选项C不正确;∵,∴选项D正确.故选:D.点评:此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到有的顺序进行.另外,有理数的运算律在实数范围内仍然适用.7.如图,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠4 B.∠A=∠DCE C.∠D=∠DCE D.∠D+∠ACD=180°考点:平行线的判定.分析:根据平行线的判定方法分别进行判断.解答:解:当∠3=∠4时,BD∥AE;当∠A=∠DCE时,AB∥DC;当∠D=∠DCE时,BD∥AE;当∠D+∠ACD=180°时,BD∥AE.故选B.点评:本题考查了平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.8.下列说法正确的是()A.若ab=0,则点P(a,b)表示原点B.点(1,﹣a2)在第四象限C.已知点A与点B,则直线AB平行x轴D.坐标轴上的点不属于任何象限考点:点的坐标.分析:根据各象限内点的坐标特征以及坐标轴上的点的坐标特征对各选项分析判断即可得解.解答:解:A、a=0,b≠0时,点P(a,b)在y轴上,a≠0,b=0时,点P(a,b)在x轴上,a=b=0时,点P(a,b)表示原点,故本选项错误;B、a=0时,点(1,﹣a2)在x轴上,a≠0时,点(1,﹣a2)在第四象限,故本选项错误;C、∵点A与点B的横坐标相同,∴直线AB平行y轴,故本选项错误;D、坐标轴上的点不属于任何象限正确,故本选项正确.故选D.点评:本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).9.如图,在平面直角坐标系上有点A(1,0),点A第一次向右跳动至A1(﹣1,1),第二次向左跳动至A2,第三次向右跳动至A3(﹣2,2),第四次向左跳动至A4(3,2)…依照此规律跳动下去,点A第100次跳动至A100的坐标()A.(50,49)B.(51,50)C.(﹣50,49)D.(100,99)考点:规律型:点的坐标.分析:根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,然后写出即可.解答:解:观察发现,第2次跳动至点的坐标是,第4次跳动至点的坐标是(3,2),第6次跳动至点的坐标是(4,3),第8次跳动至点的坐标是(5,4),…第2n次跳动至点的坐标是(n+1,n),∴第100次跳动至点的坐标是(51,50).故选B.点评:本题考查了坐标与图形的性质,以及图形的变化问题,结合图形得到偶数次跳动的点的横坐标与纵坐标的变化情况是解题的关键.10.下列命题是真命题的是()①a,b为实数,若a2=b2,则=②的平方根是±4③三角形ABC中,∠C=90°,则点到直线的距离是线段BC④建立一个平面直角坐标,点A(﹣2,4),点B(3,4),画直线AB,若点C在直线AB上,且AC=4,则C点坐标(1,4),(﹣6,4)A.0 B. 1 C.2 D. 3考点:命题与定理.分析:根据平方根的定义对①②进行判断;根据点到直线的距离的定义对③进行判断;根据坐标与图形性质可得C点坐标或(﹣6,4),则可对④进行判断.解答:解:a,b为实数,若a2=b2,则a=b或a=﹣b,所以①错误;的平方根是±2,所以②错误;三角形ABC中,∠C=90°,则点B到直线AC的距离是线段BC的长,所以③错误;建立一个平面直角坐标,点A(﹣2,4),点B(3,4),画直线AB,若点C在直线AB上,且AC=4,则C点坐标,(﹣6,4),所以④错误.故选A.点评:本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.二、填空题(6题,每小题3分)11.教室里座位整齐摆放,若小华坐在第四排第6行,用有效数对(4,6)表示,则表示的含义是第二排第4行.考点:坐标确定位置.分析:利用已知坐标中第一个数字为排,第二个数字为行,进而得出答案.解答:解:∵小华坐在第四排第6行,用有效数对(4,6)表示,∴表示的含义是:第二排第4行.故答案为:第二排第4行.点评:此题主要考查了坐标与图形的性质,正确理解已知中点的坐标意义是解题关键.12.计算=.考点:立方根.分析:根据立方根的定义,即可解答.解答:解:,故答案为:.点评:本题考查了立方根,解决本题的关键是熟记立方根的定义.13.在平面直角坐标系中,点C在x轴的上方,y轴的右侧,距离每个坐标轴都是2个单位长度,则C点的坐标为.考点:点的坐标.分析:先判断出点C在第一象限,再根据点到坐标轴的距离写出即可.解答:解:∵点C在x轴的上方,y轴的右侧,∴点C在第一象限,∵点C距离每个坐标轴都是2个单位长度,∴点C的坐标为.故答案为:.点评:本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).14.如图,数轴上A、B两点对应的实数分别是1和,若点A关于B点的对称点为点C,则点C 所对应的实数为2﹣1.考点:实数与数轴.专题:探究型.分析:设点C所对应的实数是x.根据中心对称的性质,即对称点到对称中心的距离相等,即可列方程求解即可.解答:解:设点C所对应的实数是x.则有x﹣=﹣1,解得x=2﹣1.故答案为:2﹣1.点评:本题考查的是数轴上两点间距离的定义,根据题意列出关于x的方程是解答此题的关键.15.直线AB与CD交于O,OE⊥CD,OF⊥AB,∠DOF=65°,则∠BOE的度数65°或115°.考点:垂线;对顶角、邻补角.分析:根据题意,分两种情况:(1)∠BOE是锐角时;∠BOE是钝角时;然后根据垂线的性质,分类讨论,求出∠BOE的度数是多少即可.解答:解:(1)如图1,,∵直线OE⊥CD,∴∠EOD=90°,∵∠DOF=65°,∴∠EOF=90°﹣65°=25°,又∵直线OF⊥AB,∴∠BOF=90°,∴∠BOE=90°﹣25°=65°.如图2,,∵直线OE⊥CD,∴∠EOD=90°,∵∠DOF=65°,∴∠EOF=90°﹣65°=25°,又∵直线OF⊥AB,∴∠BOF=90°,∴∠BOE=90°+25°=115°.综上,可得∠BOE的度数是65°或115°.故答案为:65°或115°.点评:(1)此题主要考查了垂线的性质和应用,要熟练掌握,解答此题的关键是要明确:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.此题还考查了对顶角和邻补角的特征和应用,要熟练掌握,解答此题的关键是要明确:①有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.②补角互补,即和为180°.16.平面直角坐标系中,A(﹣3,1),B(﹣1,4),直线AB交x轴于C点,则C点坐标为(﹣,0).考点:坐标与图形性质.分析:利用待定系数法求出直线AB的解析式,令y=0求出x的值即可得出C点的坐标.解答:解:设直线AB的解析式为y=kx+b(k≠0),∵A(﹣3,1),B(﹣1,4),∴,解得.∴直线AB的解析式为y=x+,∴令y=0,则x=﹣,∴C(﹣,0).故答案为:(﹣,0).点评:本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.三、解答题17.求值:(1)已知(x﹣1)2=4,求x的值;.考点:实数的运算;平方根.分析:(1)根据一个数的平方根的求法,可得x﹣1=2或x﹣1=﹣2,据此求出x的值是多少即可.根据乘法分配律,求出算式的值是多少即可.解答:解:(1)∵(x﹣1)2=4,∴x﹣1=2或x﹣1=﹣2,解得x=3或x=﹣1,即x的值是3或﹣1.==点评:(1)此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到有的顺序进行.另外,有理数的运算律在实数范围内仍然适用.此题还考查了平方根的性质和应用,要熟练掌握,解答此题的关键是要明确:一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.18.如图,P是∠ABC内一点,(1)画图:①过点P作BC的垂线,垂足为点D,过点P作AB的垂线,垂足为H②过点P作BC的平行线交AB于E,过点P作AB的平行线交BC于F∠B与∠EPF有何数量关系?(不需要说明理由)考点:作图—基本作图.分析:(1)①利用过一点作已知直线的垂线作法得出答案;②利用过一点作已知直线的平行线的作法得出答案;利用平行四边形的判定与性质得出答案.解答:解:(1)①如图所示:PD,PH即为所求;②如图所示:PE,PF即为所求;∠B=∠EPF,理由:∵PF∥AB,PE∥BC,∴四边形EBFP是平行四边形,∴∠B=∠EPF.点评:此题主要考查了基本作图以及平行四边形的判定与性质,正确掌握作图方法是解题关键.19.如图,建立平面直角坐标系,正方形ABFG和正方形CDEF中,使点B、C的坐标分别为(﹣4,0)和(0,0)(1)写出A,D,E,F的坐标;求正方形CDEF的面积.考点:坐标与图形性质.分析:(1)先利用点B和点C的坐标画出直角坐标系,然后根据点的坐标的意义即可得到点A、D、E、F的坐标;利用正方形的面积公式和勾股定理解答即可.解答:解:(1)如图:A(﹣6,3),D,E(1,3),F(﹣1,2);因为CD=,所以正方形CDEF的面积=5.点评:本题考查了坐标与图形性质:利用点的坐标求相应的线段长和判断线段与坐标轴的位置关系;记住坐标系中各特殊点的坐标特征.20.如图,直线AB,CD,EF被直线GH所截,∠1=70°,∠2=110°,∠3=70°,求证AB∥CD证明:∵∠1=70°∠3=70°∴∠3=∠1(等量代换)∴AB∥EF∵∠2=110°,∠3=70°(已知)∴∠2+∠3=180°(等式的性质)∴CD∥EF.∴AB∥CD(平行于同一直线的两直线平行).考点:平行线的判定与性质.专题:推理填空题.分析:求出∠3=∠1,推出AB∥EF,根据平行线的判定推出CD∥EF,即可得出答案.解答:证明:∵∠1=70°∠3=70°∴∠3=∠1(等量代换),∴AB∥EF,∴∠2+∠3=180°,∴CD∥EF,∴AB∥CD(平行于同一直线的两直线平行),故答案为:(等量代换),AB,EF,∠2,∠3,CD,EF,(平行于同一直线的两直线平行).点评:本题考查了平行线的判定的应用,能正确运用平行线的判定定理进行推理是解此题的关键.21.小丽想用一块面积为800cm2的正方形纸片,沿着边的方向裁出一块面积为600cm2长方形纸片,使它的长宽之比为4:3,她不知道是否裁得出来,正在发愁,小明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片.”你同意小明的说法吗?小丽能用这块纸片裁出符合要求的纸片吗?考点:算术平方根.分析:根据算术平方根的概念求出正方形的边长,根据长方形纸片的面积求出边长,计算比较得到答案.解答:解:同意小明的说法,面积为800cm2的正方形纸片的边长为:=20,600÷20=15,20:15=4:3,即小丽能用这块纸片裁出符合要求的纸片.点评:本题考查的是算术平方根的概念和二次根式的除法,正确运用算术平方根的概念求出正方形的边长是解题的关键.22.已知点O(0,0),B,点A在坐标轴上,且S△AOB=6.(1)求满足条件的点A的坐标;点C(﹣3,1),过O点直线l把三角形BOC分成面积相等的两部分,交BC于D,则D的坐标为(﹣,).考点:坐标与图形性质;三角形的面积.分析:(1)根据三角形的面积和点A在坐标轴上得出点A的几种情况下的坐标;先得出BC的长度,再利用三角形的中线把三角形分成面积相等的两部分,得出点D的坐标即可.解答:解:(1)∵点O(0,0),B,点A在坐标轴上,且S△AOB=6.∴点A的坐标为(0,6)、(0,﹣6)、(4,0)、(﹣4,0);∵B,C(﹣3,1),∴BC=,∵过O点直线l把三角形BOC分成面积相等的两部分,交BC于D,∴D的坐标为(﹣,),故答案为:(﹣,).点评:此题考查坐标与图形,关键是根据两点间的距离公式得出坐标.23.如图:AF∥DE,B为AF上的一点,∠ABC=60°交ED于C,CM平分∠BCE,∠MCN=90°,(1)∠DCN的度数;若∠CBF的平分线交CN于N,求证:BN∥CM.考点:平行线的判定与性质.分析:(1)根据平行线性质求出∠BCE=120°,∠BCD=∠ABC=60°,求出∠MCB=60°,∠BCN=30°,即可求出答案;作∠FBC的角平分线BN,交CN于N,求出∠NBC=∠BCM即可.解答:解:(1)∵AF∥DE,∠ABC=60°,∴∠BCE=180°﹣60°=120°,∠BCD=∠ABC=60°,∵CM平分∠BCE,∴∠MCB=60°,∵∠MCN=90°,∴∠BCN=90°﹣60°=30°,∴∠DCN=60°﹣30°=30°;作∠FBC的角平分线BN,交CN于N,∵∠ABC=60°,∴∠FBC=120°,∵BN平分∠FBC,∴∠NBC=60°,∵∠BCM=60°,∴∠NBC=∠BCM,∴BN∥CM.点评:本题考查了平行线的性质和判定,角平分线定义的应用,能运用平行线的判定和性质进行推理是解此题的关键.24.如图:在平面直角坐标系中,A(a,0),D(6,4),将线段AD平移到BC,使B(0,b),且a,b满足|2﹣a|+=0(1)求A点、B点的坐标;设点M(﹣3,n)且三角形ABM的面积为16,求n的值;(3)若∠DAO=150°,设点P是x轴上的一动点(不与点A重合),问∠APC与∠PCB存在什么具体的数量关系?写出你的证明结论并证明.考点:坐标与图形性质;三角形的面积;平移的性质.分析:(1)根据非负数的性质即可得到结果;根据勾股定理求得AB的长度,求出直线AB的解析式,然后根据点到直线的距离即可得到结果;(3)分两种情况:①当点P在点A的右侧如图1,连接PC,延长BC交x轴于E,②当点P在点A的左侧如图2,连接PC,延长DA交PC于F,根据平移的性质和外角的性质即可得到结论.解答:解:(1)∵a,b满足|2﹣a|+=0,∴2﹣a=0,6+b=0,∴a=2,b=﹣6,∴A,B(0,﹣6);由(1)得A,B(0,﹣6),∴OA=2,OB=6,∴AB==2,∵三角形ABM的面积为16,∴点M到直线AB的距离为:,∴直线AB的解析式为:y=3x﹣6,根据点到直线的距离得:=,解得:n=1或n=﹣31;(3)①当点P在点A的右侧如图1,连接PC,延长BC交x轴于E,∵AD平移到BC,∴AD∥BC,∵∠DAO=150°,∴∠DAE=30°,∵∠AEC=30°,∴∠PCE=∠APC﹣30°,∵∠PCB+∠PCE=∠PCB+∠APC﹣30°=180°,∴∠PCB+∠APC=210°;②当点P在点A的左侧如图2,连接PC,延长DA交PC于F,∵∠DAO=150°,∴∠PAF=30°,∵AD∥BC,∴∠AFC=∠PCB,∵∠AFC=∠APC+30°,∴∠PCB﹣∠APC=30°.点评:本题考查了坐标与图形的关系,平移的性质,三角形的面积,勾股定理,点到直线的距离公式,正确的画出图形是解题的关键.。