2019高考物理一轮复习专题49带电粒子在匀强磁场中的圆周运动问题学案
- 格式:docx
- 大小:749.43 KB
- 文档页数:18
难点之九:带电粒子在磁场中的运动一、难点突破策略(一)明确带电粒子在磁场中的受力特点1. 产生洛伦兹力的条件:①电荷对磁场有相对运动.磁场对与其相对静止的电荷不会产生洛伦兹力作用.②电荷的运动速度方向与磁场方向不平行. 2. 洛伦兹力大小:当电荷运动方向与磁场方向平行时,洛伦兹力f=0;当电荷运动方向与磁场方向垂直时,洛伦兹力最大,f=qυB ;当电荷运动方向与磁场方向有夹角θ时,洛伦兹力f= qυB ·sin θ3. 洛伦兹力的方向:洛伦兹力方向用左手定则判断 4. 洛伦兹力不做功.(二)明确带电粒子在匀强磁场中的运动规律带电粒子在只受洛伦兹力作用的条件下:1. 若带电粒子沿磁场方向射入磁场,即粒子速度方向与磁场方向平行,θ=0°或180°时,带电粒子粒子在磁场中以速度υ做匀速直线运动.2. 若带电粒子的速度方向与匀强磁场方向垂直,即θ=90°时,带电粒子在匀强磁场中以入射速度υ做匀速圆周运动.①向心力由洛伦兹力提供:R v mqvB 2=②轨道半径公式:qBmvR =③周期:qB m 2v R 2T π=π=,可见T 只与q m有关,与v 、R 无关。
(三)充分运用数学知识(尤其是几何中的圆知识,切线、弦、相交、相切、磁场的圆、轨迹的圆)构建粒子运动的物理学模型,归纳带电粒子在磁场中的题目类型,总结得出求解此类问题的一般方法与规律。
1. “带电粒子在匀强磁场中的圆周运动”的基本型问题(1)定圆心、定半径、定转过的圆心角是解决这类问题的前提。
确定半径和给定的几何量之间的关系是解题的基础,有时需要建立运动时间t 和转过的圆心角α之间的关系(T 2t T 360t πα=α=或)作为辅助。
圆心的确定,通常有以下两种方法。
① 已知入射方向和出射方向时,可通过入射点和出射点作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图9-1中P 为入射点,M 为出射点)。
2带电粒子在匀强磁场中的运动一、带电粒子在匀强磁场中的运动1.运动轨迹带电粒子(不计重力)以一定的速度v进入磁感应强度为B的匀强磁场时:(1)当v∥B时,带电粒子将做匀速直线运动。
(2)当v⊥B时,带电粒子将做匀速圆周运动。
2.带电粒子在匀强磁场中做匀速圆周运动(1)运动条件:不计重力的带电粒子沿着与磁场垂直的方向进入匀强磁场。
(2)洛伦兹力作用:提供带电粒子做圆周运动的向心力,即q v B=m v2 r。
(3)基本公式①半径:r=m vqB;②周期:T=2πmqB。
带电粒子在磁场中做匀速圆周运动的周期与粒子运动速率和半径无关。
3.洛伦兹力的作用效果洛伦兹力只改变带电粒子速度的方向,不改变带电粒子速度的大小,或者说洛伦兹力不对带电粒子做功,不改变粒子的能量。
二、质谱仪1.原理图:如图1所示。
图12.加速:带电粒子进入质谱仪的加速电场,由动能定理得qU=12m v2。
3.偏转:带电粒子进入质谱仪的偏转磁场做匀速圆周运动,洛伦兹力提供向心力:q v B=m v2 r。
4.结论:r=1B2mUq。
测出粒子的轨迹半径r,可算出粒子的质量m或比荷qm。
5.应用:可以测定带电粒子的质量和分析同位素。
三、回旋加速器1.构造图:如图2所示。
图22.核心部件:两个半圆金属D形盒。
3.原理:高频交流电源的周期与带电粒子在D形盒中的运动周期相同,粒子每经过一次加速,其轨道半径就大一些,粒子做圆周运动的周期不变。
4.最大动能:由q v B=m v2R和E=12m v2得E=q2B2R22m(R为D形盒的半径),即粒子在回旋加速器中获得的最大动能与q、m、B、R有关,与加速电压无关。
思考判断(1)利用质谱仪可以测定带电粒子的质量和分析同位素。
(√)(2)回旋加速器的半径越大,带电粒子获得的最大动能就越大。
(√)(3)回旋加速器的加速电压越高,带电粒子获得的最终动能越大。
(×)(4)利用回旋加速器加速带电粒子时,要提高加速粒子的最终能量,应尽可能增大磁感应强度B和D形盒的半径R。
高考物理带电粒子在磁场中的运动解题技巧和训练方法及练习题(含答案)含解析一、带电粒子在磁场中的运动专项训练1.如图,区域I 内有与水平方向成45°角的匀强电场1E ,区域宽度为1d ,区域Ⅱ内有正交的有界匀强磁场B 和匀强电场2E ,区域宽度为2d ,磁场方向垂直纸面向里,电场方向竖直向下.一质量为m 、电量大小为q 的微粒在区域I 左边界的P 点,由静止释放后水平向右做直线运动,进入区域Ⅱ后做匀速圆周运动,从区域Ⅱ右边界上的Q 点穿出,其速度方向改变了30,重力加速度为g ,求:(1)区域I 和区域Ⅱ内匀强电场的电场强度12E E 、的大小. (2)区域Ⅱ内匀强磁场的磁感应强度B 的大小. (3)微粒从P 运动到Q 的时间有多长.【答案】(1)12mg E =2mgE q =122m gd 121626d d gd gd π+ 【解析】 【详解】(1)微粒在区域I 内水平向右做直线运动,则在竖直方向上有:1sin45qE mg ︒= 求得:12mgE =微粒在区域II 内做匀速圆周运动,则重力和电场力平衡,有:2mg qE = 求得:2mgE q=(2)粒子进入磁场区域时满足:2111cos452qE d mv ︒=2v qvB m R=根据几何关系,分析可知:222sin30d R d ==︒整理得:122m gd B =(3)微粒从P 到Q 的时间包括在区域I 内的运动时间t 1和在区域II 内的运动时间t 2,并满足:211112a t d =1tan45mg ma ︒=2302360Rt vπ︒=⨯︒ 经整理得:112121222612126gd d d d t t t gd g gd ππ+=+=+⨯=2.如图所示,半径r =0.06m 的半圆形无场区的圆心在坐标原点O 处,半径R =0.1m ,磁感应强度大小B =0.075T 的圆形有界磁场区的圆心坐标为(0,0.08m ),平行金属板MN 的极板长L =0.3m 、间距d =0.1m ,极板间所加电压U =6.4x102V ,其中N 极板收集到的粒子全部中和吸收.一位于O 处的粒子源向第一、二象限均匀地发射速度为v 的带正电粒子,经圆形磁场偏转后,从第一象限出射的粒子速度方向均沿x 轴正方向,已知粒子在磁场中的运动半径R 0=0.08m ,若粒子重力不计、比荷qm=108C/kg 、不计粒子间的相互作用力及电场的边缘效应.sin53°=0.8,cos53°=0.6. (1)求粒子的发射速度v 的大小;(2)若粒子在O 点入射方向与x 轴负方向夹角为37°,求它打出磁场时的坐标: (3)N 板收集到的粒子占所有发射粒子的比例η.【答案】(1)6×105m/s ;(2)(0,0.18m );(3)29% 【解析】 【详解】(1)由洛伦兹力充当向心力,即qvB =m 2v R可得:v =6×105m/s ;(2)若粒子在O 点入射方向与x 轴负方向夹角为37°,作出速度方向的垂线与y 轴交于一点Q ,根据几何关系可得PQ=0.0637cos =0.08m ,即Q 为轨迹圆心的位置; Q 到圆上y 轴最高点的距离为0.18m-0.0637sin =0.08m ,故粒子刚好从圆上y 轴最高点离开; 故它打出磁场时的坐标为(0,0.18m );(3)如上图所示,令恰能从下极板右端出射的粒子坐标为y,由带电粒子在电场中偏转的规律得:y=12at2…①a=qEm=qUmd…②t=Lv …③由①②③解得:y=0.08m设此粒子射入时与x轴的夹角为α,则由几何知识得:y=r sinα+R0-R0cosα可知tanα=43,即α=53°比例η=53180×100%=29%3.如图甲所示,在直角坐标系0≤x≤L区域内有沿y轴正方向的匀强电场,右侧有一个以点(3L,0)为圆心、半径为L的圆形区域,圆形区域与x轴的交点分别为M、N.现有一质量为m、带电量为e的电子,从y轴上的A点以速度v0沿x轴正方向射入电场,飞出电场后从M点进入圆形区域,此时速度方向与x轴正方向的夹角为30°.不考虑电子所受的重力.(1)求电子进入圆形区域时的速度大小和匀强电场场强E的大小;(2)若在圆形区域内加一个垂直纸面向里的匀强磁场,使电子穿出圆形区域时速度方向垂直于x轴.求所加磁场磁感应强度B的大小和电子刚穿出圆形区域时的位置坐标;(3)若在电子刚进入圆形区域时,在圆形区域内加上图乙所示变化的磁场(以垂直于纸面向外为磁场正方向),最后电子从N点处飞出,速度方向与进入磁场时的速度方向相同.请写出磁感应强度B0的大小、磁场变化周期T各应满足的关系表达式.【答案】(1)(2)(3)(n=1,2,3…)(n=1,2,3…)【解析】(1)电子在电场中作类平抛运动,射出电场时,速度分解图如图1中所示.由速度关系可得:解得:由速度关系得:v y=v0tanθ=v0在竖直方向:而水平方向:解得:(2)根据题意作图如图1所示,电子做匀速圆周运动的半径R=L根据牛顿第二定律:解得:根据几何关系得电子穿出圆形区域时位置坐标为(,-)(3)电子在在磁场中最简单的情景如图2所示.在磁场变化的前三分之一个周期内,电子的偏转角为60°,设电子运动的轨道半径为r,运动的T0,粒子在x轴方向上的位移恰好等于r1;在磁场变化的后三分之二个周期内,因磁感应强度减半,电子运动周期T′=2T0,故粒子的偏转角度仍为60°,电子运动的轨道半径变为2r,粒子在x轴方向上的位移恰好等于2r.综合上述分析,则电子能到达N点且速度符合要求的空间条件是:3rn=2L(n=1,2,3…)而:解得:(n=1,2,3…)应满足的时间条件为: (T0+T′)=T而:解得(n=1,2,3…)点睛:本题的靓点在于第三问,综合题目要求及带电粒子运动的半径和周期关系,则符合要求的粒子轨迹必定是粒子先在正B0中偏转60°,而后又在− B0中再次偏转60°,经过n次这样的循环后恰恰从N点穿出.先从半径关系求出磁感应强度的大小,再从周期关系求出交变磁场周期的大小.4.电子扩束装置由电子加速器、偏转电场和偏转磁场组成.偏转电场的极板由相距为d的两块水平平行放置的导体板组成,如图甲所示.大量电子由静止开始,经加速电场加速后,连续不断地沿平行板的方向从两板正中间OO’射入偏转电场.当两板不带电时,这些电子通过两板之间的时间为2t0;:当在两板间加最大值为U0、周期为2t0的电压(如图乙所示)时,所有电子均能从两板间通过,然后进入竖直宽度足够大的匀强酸场中,最后打在竖直放置的荧光屏上.已知磁场的水平宽度为L,电子的质量为m、电荷量为e,其重力不计.(1)求电子离开偏转电场时的位置到OO’的最远位置和最近位置之间的距离(2)要使所有电子都能垂直打在荧光屏上,①求匀强磁场的磁感应强度B②求垂直打在荧光屏上的电子束的宽度△y【答案】(1)2010U e y t dm ∆= (2)①00U t B dL =②2010U e y y t dm∆=∆= 【解析】 【详解】(1)由题意可知,从0、2t 0、4t 0、……等时刻进入偏转电场的电子离开偏转电场时的位置到OO ′的距离最大,在这种情况下,电子的最大距离为:2222000max 00000311222y U e U e U e y at v t t t t dm dm dm=+=+= 从t 0、3t 0、……等时刻进入偏转电场的电子离开偏转电场时的位置到OO ′的距离最小,在这种情况下,电子的最小距离为:220min 001122U e y at t dm== 最远位置和最近位置之间的距离:1max min y y y ∆=-,2010U e y t dm∆=(2)①设电子从偏转电场中射出时的偏向角为θ,由于电子要垂直打在荧光屏上,所以电子在磁场中运动半径应为:sin L R θ=设电子离开偏转电场时的速度为v 1,垂直偏转极板的速度为v y ,则电子离开偏转电场时的偏向角为θ,1sin y v v θ=,式中00y U ev t dm= 又:1mv R Be =解得:00U tB dL=②由于各个时刻从偏转电场中射出的电子的速度大小相等,方向相同,因此电子进入磁场后做圆周运动的半径也相同,都能垂直打在荧光屏上.由第(1)问知电子离开偏转电场时的位置到OO ′的最大距离和最小距离的差值为△y 1, 所以垂直打在荧光屏上的电子束的宽度为:2010U e y y t dm∆=∆=5.如图所示,在第一象限内存在匀强电场,电场方向与x 轴成45°角斜向左下,在第四象限内有一匀强磁场区域,该区域是由一个半径为R 的半圆和一个长为2R 、宽为2R的矩形组成,磁场的方向垂直纸面向里.一质量为m 、电荷量为+q 的粒子(重力忽略不计)以速度v 从Q(0,3R)点垂直电场方向射入电场,恰在P(R ,0)点进入磁场区域.(1)求电场强度大小及粒子经过P点时的速度大小和方向;(2)为使粒子从AC边界射出磁场,磁感应强度应满足什么条件;(3)为使粒子射出磁场区域后不会进入电场区域,磁场的磁感应强度应不大于多少?【答案】(1)22mvE=;2v,速度方向沿y轴负方向(2)82225mv mvBqR qR≤≤(3)()22713mvqR-【解析】【分析】【详解】(1)在电场中,粒子沿初速度方向做匀速运动132cos4522cos45RL R R=-︒=︒1L vt=沿电场力方向做匀加速运动,加速度为a22sin452L R R=︒=2212L at=qEam=设粒子出电场时沿初速度和沿电场力方向分运动的速度大小分别为1v、2v,合速度v'1v v =、2v at =,2tan v vθ=联立可得224mv E qR=进入磁场的速度22122v v v v =+='45θ=︒,速度方向沿y 轴负方向(2)由左手定则判定,粒子向右偏转,当粒子从A 点射出时,运动半径12Rr =由211mv qv B r =''得122mvB qR=当粒子从C 点射出时,由勾股定理得()222222R R r r ⎛⎫-+= ⎪⎝⎭解得258r R =由222mv qv B r =''得2825mvB qR=根据粒子在磁场中运动半径随磁场减弱而增大,可以判断,当82225mv mvB qR qR≤≤时,粒子从AC 边界射出(3)为使粒子不再回到电场区域,需粒子在CD 区域穿出磁场,设出磁场时速度方向平行于x 轴,其半径为3r ,由几何关系得222332R r r R ⎛⎫+-= ⎪⎝⎭解得()3714R r =由233mv qv B r =''得)322713mv B qR= 磁感应强度小于3B ,运转半径更大,出磁场时速度方向偏向x 轴下方,便不会回到电场中6.如图所示,在竖直平面内建立直角坐标系,y 轴沿竖直方向.在x = L 到x =2L 之间存在竖直向上的匀强电场和垂直坐标平面向里的匀强磁场,一个比荷(qm)为k 的带电微粒从坐标原点以一定初速度沿+x 方向抛出,进入电场和磁场后恰好在竖直平面内做匀速圆周运动,离开电场和磁场后,带电微粒恰好沿+x 方向通过x 轴上x =3L 的位置,已知匀强磁场的磁感应强度为B ,重力加速度为g .求:(1)电场强度的大小; (2)带电微粒的初速度;(3)带电微粒做圆周运动的圆心坐标.【答案】(1)g k (2)2gkB(3)2222232(,)28g k B L L k B g -【解析】 【分析】 【详解】(1)由于粒子在复合场中做匀速圆周运动,则:mg =qE ,又=qk m解得g E k=(2)由几何关系:2R cos θ=L ,粒子做圆周运动的向心力等于洛伦兹力:2v qvB m r= ;由cos y v vθ=在进入复合场之前做平抛运动:y gt =v0L v t =解得02g v kB=(3)由212h gt =其中2kBL t g = ,则带电微粒做圆周运动的圆心坐标:'32O x L =; 222'222sin 8O g k B L y h R k B g θ=-+=-7.如图,第一象限内存在沿y 轴负方向的匀强电场,电场强度大小为E ,第二、三、四象限存在方向垂直xOy 平面向外的匀强磁场,其中第二象限的磁感应强度大小为B ,第三、四象限磁感应强度大小相等,一带正电的粒子,从P (-d ,0)点沿与x 轴正方向成α=60°角平行xOy 平面入射,经第二象限后恰好由y 轴上的Q 点(图中未画出)垂直y 轴进入第一象限,之后经第四、三象限重新回到P 点,回到P 点时速度方向与入射方时相同,不计粒子重力,求:(1)粒子从P 点入射时的速度v 0; (2)第三、四象限磁感应强度的大小B /; 【答案】(1)3EB(2)2.4B 【解析】试题分析:(1)粒子从P 点射入磁场中做匀速圆周运动,画出轨迹如图,设粒子在第二象限圆周运动的半径为r ,由几何知识得: 2360d d dr sin sin α===︒ 根据200mv qv B r =得023qBdv =粒子在第一象限中做类平抛运动,则有21602qE r cost m -︒=(); 00y v qEt tan v mv α==联立解得03Ev B=(2)设粒子在第一象限类平抛运动的水平位移和竖直位移分别为x 和y ,根据粒子在第三、四象限圆周运动的对称性可知粒子刚进入第四象限时速度与x 轴正方向的夹角等于α.则有:x=v 0t , 2y v y t =得0322y v y tan x v α===由几何知识可得 y=r-rcosα= 132r = 则得23x d =所以粒子在第三、四象限圆周运动的半径为125323d d R sin α⎛⎫+ ⎪⎝⎭==粒子进入第三、四象限运动的速度00432v qBdv v cos α===根据2'v qvB m R=得:B′=2.4B考点:带电粒子在电场及磁场中的运动8.如图所示,在不考虑万有引力的空间里,有两条相互垂直的分界线MN 、PQ ,其交点为O .MN 一侧有电场强度为E 的匀强电场(垂直于MN ),另一侧有匀强磁场(垂直纸面向里).宇航员(视为质点)固定在PQ 线上距O 点为h 的A 点处,身边有多个质量均为m、电量不等的带负电小球.他先后以相同速度v0、沿平行于MN方向抛出各小球.其中第1个小球恰能通过MN上的C点第一次进入磁场,通过O点第一次离开磁场,OC=2h.求:(1)第1个小球的带电量大小;(2)磁场的磁感强度的大小B;(3)磁场的磁感强度是否有某值,使后面抛出的每个小球从不同位置进入磁场后都能回到宇航员的手中?如有,则磁感强度应调为多大.【答案】(1)20 12mvqEh=;(2)2EBv=;(3)存在,EBv'=【解析】【详解】(1)设第1球的电量为1q,研究A到C的运动:2112q Eh tm=2h v t=解得:212mvqEh=;(2)研究第1球从A到C的运动:12yq Ev hm=解得:0yv v=tan1yvvθ==,45oθ=,2v v=;研究第1球从C作圆周运动到达O的运动,设磁感应强度为B由2 1v q vBmR=得1mvRq B=由几何关系得:22sinR hθ=解得:2EBv=;(3)后面抛出的小球电量为q,磁感应强度B'①小球作平抛运动过程2hmx v t vqE==2yqEv hm=②小球穿过磁场一次能够自行回到A,满足要求:sinR xθ=,变形得:sinmvxqBθ'=解得:EBv'=.9.如图所示,在直角坐标系xOy平面内有两个同心圆,圆心在坐标原点O,小圆内部(I区)和两圆之间的环形区域(Ⅱ区)存在方向均垂直xOy平面向里的匀强磁场(图中未画出),I、Ⅱ区域磁场磁感应强度大小分别为B、2B。
江苏省建湖县高三物理一轮复习带电粒子在匀强磁场中的运动(1)-匀速圆周运动导学案(无答案)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(江苏省建湖县高三物理一轮复习带电粒子在匀强磁场中的运动(1)-匀速圆周运动导学案(无答案))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为江苏省建湖县高三物理一轮复习带电粒子在匀强磁场中的运动(1)-匀速圆周运动导学案(无答案)的全部内容。
带电粒子在匀强磁场中的运动(1)---匀速圆周运动【学习目标】1.通过实验,知道带电粒子沿着与磁场垂直的方向进入匀强磁场后做匀速圆周运动。
2.会推导带电粒子在匀强磁场中做匀速圆周运动的半径公式和周期公式,并会用这些公式分析问题。
【重点难点】1。
带电粒子在匀强磁场中做匀速圆周运动的半径和周期公式,并能用来分析有关问题。
2。
带电粒子在匀强磁场中的受力分析及运动径迹。
【课前预学】带电粒子在匀强磁场中的两种常见的运动情况(不计重力)1.匀速直线运动:带电粒子的速度方向与磁场方向平行(相同或相反),此时带电粒子所受洛伦兹力为零,带电粒子将以速度v做匀速直线运动.2.匀速圆周运动:带电粒子以垂直于磁场的速度进入磁场时,根据左定则粒子所受的洛伦兹力既垂直于_____方向、又垂直于________方向,即洛伦兹力垂直于速度方向、磁感应强度方向所构成的平面,没有任何力驱使粒子离开洛伦兹力和速度构成的平面.又因为洛伦兹力对带电粒子不做功,根据动能定理,粒子的动能不变,即速度大小不变,洛伦兹力仅在不断改变粒子的速度____,粒子做半径公式为___________,周期为___________的匀速圆周运动。
配餐作业(二十六) 磁场对运动电荷的作用A 组·基础巩固题1.如图表示洛伦兹力演示仪,用于观察运动电子在磁场中的运动,在实验过程中下列选项错误的是( )A .不加磁场时电子束的径迹是直线B .加磁场并调整磁感应强度,电子束径迹可形成一个圆周C .保持磁感应强度不变,增大出射电子的速度,电子束圆周的半径减小D .保持出射电子的速度不变,增大磁感应强度,电子束圆周的半径减小解析 不加磁场时电子不受力,电子束的径迹是直线,故A 项正确;加磁场使磁场的方向与电子初速度的方向垂直,并调整磁感应强度电子束径迹可形成一个圆周,故B 项正确;电子受到的洛伦兹力提供向心力,则qvB =mv 2r 所以r =mv qB,保持磁感应强度不变,增大出射电子的速度,电子束圆周的半径增大,故C 项错误;保持出射电子的速度不变,增大磁感应强度,电子束圆周的半径减小,故D 项正确。
答案 C2.(多选)带电油滴以水平速度v 0垂直进入磁场,恰做匀速直线运动,如图所示,若油滴质量为m ,磁感应强度为B ,则下述说法正确的是( )A .油滴必带正电荷,电荷量为mg v 0B B .油滴必带正电荷,比荷q m =g v 0BC .油滴必带负电荷,电荷量为mg v 0BD .油滴带什么电荷都可以,只要满足q =mg v 0B 解析 油滴水平向右匀速运动,其所受洛伦兹力必向上与重力平衡,故带正电,其电荷量q =mg v 0B ,油滴的比荷为q m =g Bv 0,A 、B 项正确。
答案 AB3.如图所示,在第Ⅰ象限内有垂直纸面向里的匀强磁场,一对正、负电子分别以相同速率沿与x 轴成30°角的方向从原点射入磁场,则正、负电子在磁场中运动的时间之比为( )A .1∶2B .2∶1C .1∶ 3D .1∶1解析 正、负电子在磁场中运动轨迹如图所示,正电子做匀速圆周运动在磁场中的部分对应圆心角为120°,负电子圆周部分所对应圆心角为60°,故时间之比为2∶1。
2012届高三物理一轮复习导学案九、磁场(5)带电粒子在电磁场中的运动【目标】1、掌握带电粒子在电、磁场中的受力特点和运动规律;2、会用力学有关规律分析和解决带电粒子在复合场中的运动问题。
【导入】一、电场力和洛仑兹力的比较1、在电场中的电荷,不管其运动与否,均始终受到电场力作用;而磁场仅仅对运动着的,且速度与磁场方向不平行的电荷有洛仑兹力作用.2、电场力大小与电荷运动速度无关;而洛仑兹力大小与电荷运动速度有关.3、电场力的方向与电场的方向或相同、或相反;而洛仑兹力的方向始终既和磁场方向垂直,又和速度方向垂直.4、电场力既可以改变电荷运动的速度方向,也可以改变电荷运动速度的大小;而洛仑兹力只能改变电荷运动速度的方向,不能改变其速度的大小.5、电场力可以对电荷做功,且电场力做功与路径无关,能改变电荷的动能.洛仑兹力不对电荷作功,不改变电荷的动能.二、解决带电粒子在电磁场中运动问题的方法带电粒子在复合场中的运动分析方法和力学问题的分析方法基本相同,不同之处是多了电场力和洛仑兹力。
1.力和运动的观点:在正确分析受力情况的前提下,根据粒子的受力情况和初始状态,利用F=ma的瞬时性,分析其运动情况,寻找解题的突破口.2.利用功和能的观点:在很多情况中带电粒子在复合场中的运动是任意曲线运动,同时根据场力做功的特点,处理这类问题往往利用动能定理,能量守恒比较方便.【导研】[例1](淮、宿、徐、连08—09学年度高三年级第一学期期末调研考试)两块平行金属板MN、PQ水平放置,两板间距为d、板长为l,在紧靠平行板右侧的正三角形区域内存在着垂直纸面的匀强磁场,三角形底边BC与PQ在同一水平线上,顶点A与MN在同一水平线上,如图所示.一个质量为m、电量为+q的粒子沿两板中心线以初速度v0水平射入,若在两板间加某一恒定电压,粒子离开电场后垂直AB边从D点进入磁场,BD=AB/4,并垂直AC边射出(不计粒子的重力).求:(1)两极板间电压;(2)三角形区域内磁感应强度;(3)若两板间不加电压,三角形区域内的磁场方向垂直纸面向外.要使粒子进入磁场区域后能从AB边射出,试求所加磁场的磁感应强度最小值.[例2] (南通市2009届高三第二次调研测试)14.(16分)如图所示的平行板器件中,存在相互垂直的匀强磁场和匀强电场,磁场的磁感应强度B1=0.40T,方向垂直纸面向里,电场强度E=2.0×105V/m,PQ为板间中线.紧靠平行板右侧边缘xOy坐标系的第一象限内,有垂直纸面向外的匀强磁场,磁感应强度B 2=0.25T ,磁场边界AO 和y 轴的夹角∠AOy =45°.一束带电量q =8.0×10-19C 的正离子从P 点射入平行板间,沿中线PQ 做直线运动,穿出平行板后从y 轴上坐标为(0,0.2m )的Q 点垂直y 轴射入磁场区,离子通过x 轴时的速度方向与x 轴正方向夹角在45°~90°之间.则:(1)离子运动的速度为多大?(2)离子的质量应在什么范围内?(3)现只改变AOy 区域内磁场的磁感应强度大小,使离子都不能打到x 轴上,磁感应强度大小B 2´应满足什么条件?[例3](江苏省启东中学2008届高三第三次月考物理试题)如图(甲)所示,两平行金属板间接有如图(乙)所示的随时间t 变化的电压u ,两板间电场可看作是均匀的,且两板外无电场,极板长L =0.2m ,板间距离d =0.2m ,在金属板右侧有一边界为MN 的区域足够大的匀强磁场,MN 与两板中线OO′垂直,磁感应强度B =5×10-3T ,方向垂直纸面向里。
2016高考物理一轮复习 专题8.3 带电粒子在匀强磁场中的运动教学案 新人教版【重点知识梳理】一、带电粒子在混合场中的运动 1.速度选择器正交的匀强磁场和匀强电场组成速度选择器。
带电粒子必须以唯一确定的速度(包括大小、方向)才能匀速(或者说沿直线)通过速度选择器。
否则将发生偏转。
这个速度的大小可以由洛伦兹力和电场力的平衡得出:qvB=Eq ,B Ev =。
在本图中,速度方向必须向右。
(1)这个结论与离子带何种电荷、电荷多少都无关。
(2)若速度小于这一速度,电场力将大于洛伦兹力,带电粒子向电场力方向偏转,电场力做正功,动能将增大,洛伦兹力也将增大,粒子的轨迹既不是抛物线,也不是圆,而是一条复杂曲线;若大于这一速度,将向洛伦兹力方向偏转,电场力将做负功,动能将减小,洛伦兹力也将减小,轨迹是一条复杂曲线。
2.回旋加速器回旋加速器是高考考查的的重点内容之一,但很多同学往往对这类问题似是而非,认识不深,甚至束手无策、,因此在学习过程中,尤其是高三复习过程中应引起重视。
(1)有关物理学史知识和回旋加速器的基本结构和原理1932年美国物理学家应用了带电粒子在磁场中运动的特点发明了回旋加速器,其原理如图所示。
A 0处带正电的粒子源发出带正电的粒子以速度v 0垂直进入匀强磁场,在磁场中匀速转动半个周期,到达A 1时,在A 1 A 1/处造成向上的电场,粒子被加速,速率由v 0增加到v 1,然后粒子以v 1在磁场中匀速转动半个周期,到达A 2/时,在A 2/A 2处造成向下的电场,粒子又一次被加速,速率由v 1增加到v 2,如此继续下去,每当粒子经过AA /的交界面时都是它被加速,从而速度不断地增加。
带电粒子在磁场中作匀速圆周运动的周期为qB T mπ2=,为达到不断加速的目的,只要在A A /上加上周期也为T 的交变电压就可以了。
即T 电=qB T mπ2=实际应用中,回旋加速是用两个D 形金属盒做外壳,两个D 形金属盒分别充当交流电源的两极,同时金属盒对带电粒子可起到静电屏蔽作用,金属盒可以屏蔽外界电场,盒内电场很弱,这样才能保证粒子在盒内只受磁场力作用而做匀速圆周运动。
突破49 带电粒子在匀强磁场中的圆周运动问题1.两种方法定圆心(1)已知入射方向和出射方向时,可通过入射点和出射点作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心。
如图甲所示,图中P 为入射点,M 为出射点。
(2)已知入射方向和出射点的位置时,可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨道的圆心。
如图乙所示,P 为入射点,M 为出射点。
2.几何知识求半径方法一:由物理方程求:半径R =mv qB;方法二:由几何方程求:一般由数学知识(勾股定理、三角函数等)计算来确定.(1)直线边界(进出磁场具有对称性,如图所示)。
(2)平行边界(存在临界条件,如图所示)。
(3)圆形边界(沿径向射入必沿径向射出,如图所示)。
3. 运动时间的计算(1)直接根据公式t =s v 或t =αω求出运动时间t.(2)粒子在磁场中运动一周的时间为T ,当粒子运动的圆弧所对应的圆心角为α时,其运动时间可由下式表示:t =α2πT 或t =α360°T.【典例1】在如图所示的足够大匀强磁场中,两个带电粒子以相同方向垂直穿过虚线MN 所在的平面,一段时间后又再次同时穿过此平面,则可以确定的是( ).A .两粒子一定带有相同的电荷量B .两粒子一定带同种电荷C .两粒子一定有相同的比荷D .两粒子一定有相同的动能 【答案】 C【典例2】如图所示,一个质量为0.1 g 、电荷量为4510C -⨯的小滑块(可视为质点),放在倾角为α=30°的光滑绝缘斜面顶端,斜面置于B =0.5T 的匀强磁场中,磁场方向垂直纸面向里,小滑块由静止开始沿斜面滑下,小滑块运动一段距离l 后离开斜面,取210/g m s =。
则( )A. 小滑块带正电B. 小滑块带负电C. 1.2l m =D. 小滑块离开斜面的瞬时速率为2m/s 【答案】AC【解析】、由题意可知:小滑块受到的洛伦兹力垂直斜面向上。
根据左手定则可得:小滑块带正电,故A 正确,B 错误;由题意知,当滑块离开斜面时,则有: Bqv mgcos α=,解得: 23/mgcos v m s qBα==,故D 错误;在小球离开斜面之前,小球沿斜面的方向的合力始终等于重力的分力,所以一直做匀加速直线运动,即mgsina ma =,解得: 25/a gsin m s α==,由22v al =,解得: 21.22v l m gsin α==,故C 正确,故选AC 。
【典例3】 (多选) 如图所示,平面直角坐标系的第Ⅰ象限内有一匀强磁场垂直于纸面向里,磁感应强度为B.一质量为m 、电荷量为q 的粒子以速度v 从O 点沿着与y 轴夹角为30°的方向进入磁场,运动到A 点时速度方向与x 轴的正方向相同,不计粒子的重力,则( )A .该粒子带正电B .A 点与x 轴的距离为mv2qBC .粒子由O 到A 经历时间t =πm3qBD .运动过程中粒子的速度不变 【答案】 BC【典例4】在xOy 坐标系的Ⅰ、Ⅳ象限有垂直纸面向里的匀强磁场,在x 轴上A 点(L,0)同时以相同速率v 沿不同方向发出a 、b 两个相同带电粒子(粒子重力不计),其中a 沿平行+y 轴方向发射。
经磁场偏转后,两粒子均先后到达y 轴上的B 点(0,3L ),则两个粒子到达B 点的时间差为( )A.3πLvB.43πL 3vC.4πL3vD.8πL 3v【答案】 D【解析】 作出a 、b 两个粒子的运动的轨迹如图,对于a 的运动轨迹,由几何关系得:R 2=(R -L )2+(3L )2,解得R =2L ,a 的偏转角sin θ=3L 2L =32,所以θ=13π,同理可得b 的偏转角β=53π,a 在磁场中运动的时间t A =θR v =πR 3v =2πL3v ,b 在磁场中运动的时间:t B =βR v =5πR 3v =10πL 3v ,它们到达B 点的时间差:Δt =t B -t A =10πL 3v -2πL 3v =8πL3v,D 正确。
【典例5】如图所示,一个理想边界为PQ 、MN 的匀强磁场区域,磁场宽度为d ,方向垂直纸面向里。
一电子从O 点沿纸面垂直PQ 以速度v 0进入磁场。
若电子在磁场中运动的轨道半径为2d 。
O ′在MN 上,且OO ′与MN 垂直。
下列判断正确的是( )A.电子将向右偏转B.电子打在MN 上的点与O ′点的距离为dC.电子打在MN 上的点与O ′点的距离为3dD.电子在磁场中运动的时间为πd 3v 0【答案】 D【典例6】如图所示,竖直线MN ∥PQ ,MN 与PQ 间距离为a ,其间存在垂直纸面向里的匀强磁场,磁感应强度为B ,O 是MN 上一点,O 处有一粒子源,某时刻放出大量速率均为v (方向均垂直磁场方向)、比荷一定的带负电粒子(粒子重力及粒子间的相互作用力不计),已知沿图中与MN 成θ=60°角方向射出的粒子恰好垂直PQ 射出磁场,则粒子在磁场中运动的最长时间为( )A.πa3vB.23πa3vC.4πa3vD.2πav【答案】 C【典例7】两个质量相同、所带电荷量相等的带电粒子a、b,以不同的速率对准圆心O沿着AO方向射入圆形匀强磁场区域,其运动轨迹如图6所示。
若不计粒子的重力,则下列说法正确的是( )A.a粒子带正电,b粒子带负电B.a粒子在磁场中所受洛伦兹力较大C.b粒子的动能较大D.b粒子在磁场中运动时间较长【答案】 C【解析】由左手定则可知,a粒子带负电,b粒子带正电,A错误;由qvB=m v2r得r=mvqB,故运动的轨迹半径越大,对应的速率越大,所以b 粒子的速率较大,在磁场中所受洛伦兹力较大,B 错误;由E k =12mv 2可得b 粒子的动能较大,C 正确;由T =2πmqB知两者的周期相同,b 粒子运动的轨迹对应的圆心角小于a 粒子运动的轨迹对应的圆心角,所以b 粒子在磁场中运动时间较短,D 错误。
【典例8】如图所示,有一个正方形的匀强磁场区域abcd ,e 是ad 的中点,f 是cd 的中点,如果在a 点沿对角线方向以速度v 射入一带负电的带电粒子,恰好从e 点射出,则( )A .如果粒子的速度增大为原来的二倍,将从d 点射出B .如果粒子的速度增大为原来的三倍,将从f 点射出C .如果粒子的速度不变,磁场的磁感应强度B 增大为原来的二倍,也将从d 点射出D .只改变粒子的速度,使其分别从e 、d 、f 点射出时,从f 点射出所用的时间最短 【答案】 AD课后作业1.在阴极射线管中电子流方向由左向右,其上方放置一根通有如图所示电流的直导线,导线与阴极射线管平行,则电子将( )A .向上偏转 B.向下偏转 C .向纸里偏转 D.向纸外偏转【答案】B【解析】由题图可知,直导线电流的方向由左向右,根据安培定则,可判定直导线下方的磁场方向为垂直于纸面向里,而电子运动方向由左向右,由左手定则知(电子带负电荷,四指要指向电子运动方向的反方向),电子将向下偏转,故B 选项正确。
2.如图,ABCD 是一个正方形的匀强磁场区域,经相等加速电压加速后的甲、乙两种带电粒子分别从A 、D 射入磁场,均从C 点射出,则它们的速率之比v 甲∶v 乙和它们通过该磁场所用时间之比t 甲∶t 乙分别为( )A .1∶1 2∶1 B.1∶2 2∶1 C .2∶1 1∶2 D .1∶2 1∶1【答案】B带电粒子在电场中加速有qU =12mv 2,带电粒子在磁场中偏转有qvB =m v 2R ,联立解得v =2U BR ,即v ∝1R ,故v 甲v 乙=R 乙R 甲=12;甲粒子在磁场中偏转用时t 甲=πR 甲2v 甲,乙粒子在磁场中偏转用时t 乙=πR 乙v 乙,可得t 甲t 乙=R 甲v 乙2R 乙v 甲=21。
可知选项B 正确。
3.如图所示,在MNQP 中有一垂直纸面向里的匀强磁场。
质量和电荷量都相等的带电粒子a 、b 、c ,以不同的速率从O 点沿垂直于PQ 的方向射入磁场,图中实线是它们的运动轨迹。
已知O 是PQ 的中点,不计粒子重力。
下列说法中正确的是( )A .粒子a 带负电,粒子b 、c 带正电B .射入磁场时粒子a 的速率最小C .射出磁场时粒子b 的动能最小D .粒子c 在磁场中运动的时间最长 【答案】D4.半径为r 的圆形空间内,存在着垂直于纸面向里的匀强磁场,一个带电粒子(不计重力)从A 点以速度v 0垂直磁场方向朝着O 点射入磁场中,并从B 点射出.∠AOB =120°,如图所示,则该带电粒子在磁场中运动的时间为( )A. B. C. D.【答案】C5.如图所示,两个匀强磁场的方向相同,磁感应强度分别为B1、B2,虚线MN为理想边界。
现有一个质量为m、电荷量为e的电子以垂直于边界MN的速度v由P点沿垂直于磁场的方向射入磁感应强度为B1的匀强磁场中,其运动轨迹为图中虚线所示的心形图线。
则以下说法正确的是A. 电子的运动轨迹为P→D→M→C→N→E→PB. 电子运动一周回到P点所用的时间T=C. 电子运动一周回到P点所用的时间T=D. 两磁场的磁感应强度的大小关系为B1=2B2【答案】ABD【解析】(1)根据左手定则可知:电子从P点沿垂直于磁场的方向射入匀强磁场时,受到的洛伦兹力方向向上,所以电子的运行轨迹为P→D→M→C→N→E→P,故A正确;6.如图所示,有一宽度为的有界匀强磁场,一质量为,带电荷量为的粒子以速度垂直磁场左边界的进入磁场,从右边界离开时速度方向偏转角,则下列说法正确的是()A. 该粒子带正电B. 磁感应强度C. 粒子在磁场中做圆周运动的半径D. 粒子在磁场中运动的时间【答案】BD【解析】根据粒子运动的轨迹可知,粒子在磁场中向下偏转,根据左手定则可知,粒子应带负电,故A错误;由几何关系可知,Rsin30°=a,解得:R=2a,根据洛伦兹力充当向心力可知,Bqv=m,解得:,故B正确,C错误;粒子在磁场中转过的圆心角为30°,粒子在磁场中运动时间;故D正确。
故选BD。
7.电荷量分别为q和的两个带电粒子分别以速度和射入匀强磁场,两粒子的入射方向与磁场边界的夹角分别为和,磁场宽度为d,两粒子同时..到达B点,如图所示,则..由A点出发,同时A. a粒子带负电,b粒子带正电B. 两粒子的轨道半径之比::C. 两粒子的速度之比::2D. 两粒子的质量之比::2【答案】ABD【解析】a粒子是入射的,而b粒子是入射的,由于从B点射出,则a粒子受到的洛伦兹力方向沿b 粒子速度方向,而b粒子受到的洛伦兹力方向沿a粒子速度方向,由左手定则可知:a粒子带负电、b粒子带正电,故A正确;向直线的交点即为各自圆心。