1.3线段的垂直平分线(1) 北师大版 八年级 数学 下
- 格式:ppt
- 大小:3.26 MB
- 文档页数:17
2024北师大版数学八年级下册1.3.1《线段垂直平分线的性质定理及其逆定理》教案一. 教材分析《线段垂直平分线的性质定理及其逆定理》是北师大版数学八年级下册第1章第3节的内容。
本节课主要学习了线段垂直平分线的性质定理及其逆定理,这两个定理是几何中的重要知识,对于学生理解和掌握几何图形的性质具有重要意义。
教材通过生动的实例引入定理,并通过证明和应用让学生深入理解定理的含义。
二. 学情分析学生在学习本节课之前,已经学习了线段的中垂线、垂线的性质等知识,对于垂直平分线的概念有一定的了解。
但是,对于定理的证明和应用还需要进一步的引导和培养。
因此,在教学过程中,需要关注学生的认知水平,引导学生通过观察、思考、证明和应用等方式,逐步理解和掌握定理。
三. 教学目标1.理解线段垂直平分线的性质定理及其逆定理。
2.学会运用性质定理及其逆定理解决实际问题。
3.培养学生的逻辑思维能力和空间想象能力。
四. 教学重难点1.性质定理及其逆定理的理解和证明。
2.性质定理及其逆定理在实际问题中的应用。
五. 教学方法采用问题驱动法、合作学习法和引导发现法进行教学。
通过设置问题,引导学生观察、思考、证明和应用,激发学生的学习兴趣,培养学生的自主学习能力。
六. 教学准备1.教学PPT。
2.几何模型和教具。
3.练习题。
七. 教学过程1.导入(5分钟)通过一个实际问题引入本节课的主题:如何找到一个线段的中点,使得从这个中点向线段的两个端点引垂线,垂线的长度相等?引导学生思考和讨论,激发学生的学习兴趣。
2.呈现(10分钟)教师通过PPT呈现线段垂直平分线的性质定理及其逆定理,让学生初步了解定理的内容。
然后,通过几何模型和教具,引导学生观察、思考和证明定理。
3.操练(10分钟)学生分组合作,运用性质定理及其逆定理解决实际问题。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)教师通过PPT展示一些练习题,让学生独立完成。
然后,学生进行讲解和讨论,巩固对性质定理及其逆定理的理解和应用。
注意:要证明一条线为一个线段的垂直平分线,应证明两个点到这条线段的距离相等且这两个点都在要求证的直线上才可以证明通常来说,垂直平分线会与全等三角形来使用。
垂直平分线的性质:线段垂直平分线上的点到这条线段的两个端点的距离相等。
巧记方法:点到线段两端距离相等。
可以通过全等三角形证明。
垂直平分线的尺规作法方法之一:(用圆规作图)1、在线段的中心找到这条线段的中点通过这个点做这条线段的垂线段。
2、分别以线段的两个端点为圆心,以大于线段的二分之一长度为半径画弧线。
得到两个交点(两交点交与线段的同侧)。
3、连接这两个交点。
原理:等腰三角形的高垂直平分底边。
方法之二:1、连接这两个交点。
原理:两点成一线。
等腰三角形的性质:1、三线合一 ( 等腰三角形底边上的高、底边上的中线、顶角平分线相互重合。
)2、等角对等边(如果一个三角形,有两个内角相等,那么它一定有两条边相等。
)3、等边对等角(在同一三角形中,如果两个角相等,即对应的边也相等。
)垂直平分线的判定①利用定义.②到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.(即线段垂直平分线可以看成到线段两端点距离相等的点的集合)例1.如图,已知:在△ABC中,∠C=90°∠A=30°,BD平分∠ABC交AC于D.求证:D在AB的垂直平分线上.分析:根据线段垂直平分线的逆定理,欲证D在AB的垂直平分线上,只需证明BD=DA即可.证明:∵∠C=90,°∠A=30°(已知),∴∠ABC=60°(Rt△的两个锐角互余)又∵BD平分∠ABC(已知)∴∠DBA=1/2∠ABC=30°=∠A∴BD=AD(等角对等边)∴D在AB的垂直平分线上(和一条线段两个端点距离相等的点,在这条线段的垂直平分线上).例2.如图,已知:在△AB C中,AB=AC,∠BAC=120°,AB的垂直平分线交AB于E,交BC于F。
1.3线段的垂直平分线一、知识点梳理1.线段垂直平分线性质定理:①线段垂直平分线垂直平分某条线段②线段垂直平分线上的点到这条线段的两个端点的距离相等2.线段垂直平分线判定定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上3.作图要求:掌握尺规作图做已知线段的垂直平分线4.三角形外心:三角形三条边垂直平分线的交点二、经典题型总结题型一:利用线段垂直平分线的性质求线段长题型二:利用三角形的垂直平分线的性质求角度题型三:利用线段垂直平分线解决与周长有关问题题型四:利用作线段垂直平分线解决实际问题题型五:线段垂直平分线的判定定理的应用三、解题技巧点睛1.若题目中出现“求一点到某几个点的距离相等”则可以想到运用垂直平分线的性质画出中垂线2.三角形外心也是三角形外接圆的圆心,锐角三角形的外心在三角形的内部,直角三角形的外心在三角形的斜边中点,钝角三角形的外心在三角形的外部3.求两条线短的最短距离,通常是想到过一个已知点做已知直线的对称点,连接对称点与另一个已知点的连线即为最短距离。
4.灵活运用垂直平分线逆定理解决题目四、易错点分析在运用线段垂直平分线计算周长的时候容易出现错误五、典型例题分析题型一:利用线段垂直平分线的性质求线段长例题:在△ABC中,AC=5,AB的垂直平分线DE交AB、AC于点E、D.(1)若△BCD的周长为8,求BC之长. (2)若BC=4,求△BCD的周长.题型二:利用三角形的垂直平分线的性质求角度例题:如图,在等腰三角形ABC中,AB=AC,DE垂直平分AB,已知∠ADE=40°,则∠DBC=___∘.题型三:利用线段垂直平分线解决与周长有关问题例题:如图,在直角中,∠BAC=90∘,AB=8 ,AC=6 ,DE 是AB 边的垂直平分线,垂足为D ,交BC 于点E ,连接AE ,则△ACE 的周长为________.题型四:利用作线段垂直平分线解决实际问题例题:如图,某城市规划局为了方便居民的生活,计划在三个住宅小区A,B,C 之间修建一个购物中心,试问:该购物中心应建于何处,才能使得它到三个小区的距离相等?题型五:线段垂直平分线的判定定理的应用如图,在△ABC中,∠C=90°,∠A=30°,BD平分∠ABC交AC于点D,求证:点D在AB的垂直平分线上.六、中考真题再现(2019.长沙.9题)如图,Rt△ABC中,∠C=90°,∠B=30°,分别以点A和点B为圆心,大于12AB的长为半径作弧,两弧相交于M、N两点,作直线MN,交BC于点D,连接AD,则∠CAD的度数是A.20° B.30° C.45° D.60°(2019.江苏.15题)如图,在△ABC中,BC的垂直平分线MN交AB于点D,CD 平分∠ACB.若AD=2,BD=3,则AC的长.七、习题巩固训练1.如图所示,在△ABC中,AB=AC,∠A=50°,AB的垂直平分线交AB于D,交AC于E,连接BE,则∠EBC的度数是()A.15°B.20°C.65°D.100°2.如图,在△ABE中,∠A=105°,AE的垂直平分线MN交BE于点C,且AB+BC=BE,则∠B的度数是()A.45°B.60°C.50°D.55°3.如图,在等腰中,,,的平分线与AB的垂直平分线交于点O、点C沿EF折叠后与点O重合,则的度数是A. B. C. D.4.如图,△ABC中,AB=5,AC=6,BC=4,边AB的垂直平分线交AC于点D,则△BDC的周长是______.5.如图,线段AB的垂直平分线与BC的垂直平分线的交点P恰好在AC上,且AC=10cm,则B点到P点的距离为______.6.如图,△ABC的外角∠ACD的平分线CP与内角∠ABC的平分线BP交于点P,若∠BPC=40°,则∠CAP=__________.7.如图,AD和EF分别是△ABC中BC与AB垂直平分线,且BE+CE=20cm,则AB=.8.如图,△ABC中,D是AB的中点,DE⊥AB,∠ACE+∠BCE=180°,EF⊥AC交AC于F,AC=12,BC=8,则AF=.9.在Rt△ABC中,∠A=40°,∠B=90°,AC的垂直平分线MN分别与AB,AC交于点D,E,则∠BCD的度数为10.如图,等腰三角形ABC的底边BC长为6,面积是18,腰AC的垂直平分线EF分别交AC,AB于E,F点,若点D为BC边的中点,点M为线段EF 上一动点,则的周长的最小值为______.11.如图,某校两个班的学生分别在C,D两处参加植树活动,现要在道路AO,OB的交叉区域内设一个茶水供应点M,使点M到两条路的距离相等,且MD=MC,这个茶水供应点应建在何处?12.如图所示,Rt△ABC中,∠C=90°,AC=4,BC=3.(1)根据要求用尺规作图:作斜边AB边上的高CD,垂足为D;(2)求CD的长.13.如图在△ABC中,∠ACB=90°,BC=3,AC=4,AB的垂直平分线DE(垂足为D)交BC的延长线于点E,求线段CE的长.14.如图所示,∠BAC=∠ABD,AC=BD,点O是AD,BC的交点,E是AB的中点.求证:OE 是线段AB的垂直平分线.15.如图,在△ABC中,AC边的垂直平分线DM交AC于D,BC边的垂直平分线EN交BC于E,DM与EN相交于点F,若∠MFN=70°,求∠MCN的度数.16.两个城镇A,B与一条公路CD,一条河流CE的位置如图所示,某人要修建一避暑山庄,要求该山庄到A,B的距离必须相等,到CD和CE的距离也必须相等,且在∠DCE的内部,请画出该山庄的位置P.(不要求写作法,保留作图痕迹.)17.尺规作图:某学校正在进行校园环境的改造工程设计,准备在校内一块四边形花坛内栽上一棵桂花树.如图,要求桂花树的位置(视为点P),到花坛的两边AB、BC的距离相等,并且点P到点A、D的距离也相等.请用尺规作图作出栽种桂花树的位置点P(不写作法,保留作图痕迹).18.铁路上A,B两站(视为直线上的两点)相距50km,C,D为两村庄(视为两个点),DA⊥AB于点A,CB⊥AB于点B(如图).已知DA=20km,CB=10km,现在要在铁路AB上建一个土特产收购站E,使得C,D两村庄到收购站E的直线距离相等,请你设计出收购站的位置,并计算出收购站E到A站的距离.19.已知甲村和乙村靠近公路a、b,为了发展经济,甲乙两村准备合建一个工厂,经协商,工厂必须满足以下要求:(1)到两村的距离相等;(2)到两条公路的距离相等.你能帮忙确定工厂的位置吗?20.已知:如图,直线l1,l2,l3表示三条相互交叉的公路,现要建一个塔台,若要求它到三条公路的距离都相等,试问:(1)可选择的地点有几处?(2)你能画出塔台的位置吗?21.如图,在△ABC中,∠ACB=90°,点D,E在AB上,且AF垂直平分CD,BG垂直平分CE(1)求∠ECD的度数;(2)若∠ACB为α,则∠ECD的度数能否用含α的式子来表示.22.已知:如图,∠BAC的角平分线与BC的垂直平分线DG交于点D,DE⊥AB,DF ⊥AC,垂足分别为E,F.①求证:BE=CF;②若AF=6,BC=7,求△ABC的周长.23.如图,OE,OF分别是△ABC中AB,AC边的中垂线(即垂直平分线),∠OBC、∠OCB的平分线相交于点I,试判定OI与BC的位置关系,并给出证明.24.如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.。
2024北师大版数学八年级下册1.3.1《线段垂直平分线的性质定理及其逆定理》教学设计一. 教材分析《线段垂直平分线的性质定理及其逆定理》是北师大版数学八年级下册第1章第3节的内容。
本节课主要介绍线段垂直平分线的性质定理及其逆定理,通过证明线段垂直平分线上的点到线段两端点的距离相等,以及线段垂直平分线垂直平分线段这两个性质,让学生理解线段垂直平分线的重要性和应用。
同时,通过逆定理的证明,让学生掌握如何判断一条直线是线段的垂直平分线。
二. 学情分析学生在学习本节课之前,已经掌握了线段、射线、直线的基本概念,以及全等三角形的性质和判定。
但线段垂直平分线的性质定理及其逆定理较为抽象,需要学生具备一定的逻辑思维能力和空间想象能力。
因此,在教学过程中,需要关注学生的认知水平,通过生动形象的比喻和具体例子,帮助学生理解和掌握。
三. 教学目标1.理解线段垂直平分线的性质定理及其逆定理。
2.学会运用线段垂直平分线的性质定理及其逆定理解决实际问题。
3.培养学生的逻辑思维能力和空间想象能力。
四. 教学重难点1.线段垂直平分线的性质定理及其逆定理的证明。
2.如何运用线段垂直平分线的性质定理及其逆定理解决实际问题。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过设置问题,引导学生思考和探索;通过具体案例,让学生理解线段垂直平分线的性质定理及其逆定理;通过小组合作学习,培养学生之间的交流和合作能力。
六. 教学准备1.PPT课件。
2.尺子、圆规、直尺等作图工具。
3.练习题。
七. 教学过程1.导入(5分钟)通过一个实际问题引入:在平面直角坐标系中,点A(2,3)和点B(6,7)之间有一条线段,求线段的垂直平分线方程。
让学生思考如何解决这个问题,从而引出本节课的主题。
2.呈现(15分钟)讲解线段垂直平分线的性质定理及其逆定理。
通过PPT课件和板书,呈现定理的证明过程,让学生理解定理的含义。
同时,给出一些例子,让学生学会运用定理解决实际问题。
北师大版数学八年级下册1.3《线段的垂直平分线》(第1课时)教案一. 教材分析《线段的垂直平分线》是北师大版数学八年级下册第1.3节的内容,本节课主要让学生掌握线段的垂直平分线的性质,以及如何运用这些性质解决实际问题。
教材通过引入线段的垂直平分线,让学生进一步理解线段的中点性质,并为后续学习圆的性质打下基础。
二. 学情分析学生在学习本节课之前,已经掌握了线段的性质、中点的性质以及射线的性质。
但他们对线段的垂直平分线的概念可能比较陌生,因此需要通过实例和练习来逐渐理解和掌握。
此外,学生可能对如何运用线段的垂直平分线解决实际问题感到困惑,需要教师的引导和启发。
三. 教学目标1.理解线段的垂直平分线的概念,掌握其性质。
2.学会运用线段的垂直平分线解决实际问题。
3.培养学生的空间想象能力和逻辑思维能力。
四. 教学重难点1.线段的垂直平分线的概念及其性质。
2.如何运用线段的垂直平分线解决实际问题。
五. 教学方法1.采用问题驱动法,引导学生通过观察、思考、讨论来发现和总结线段的垂直平分线的性质。
2.用实例和练习来巩固所学知识,提高学生的应用能力。
3.采用小组合作学习,培养学生的团队精神和沟通能力。
六. 教学准备1.准备相关的教学素材,如线段、直尺、圆规等。
2.制作PPT,展示线段的垂直平分线的性质和应用。
3.准备一些练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用PPT展示一些生活中的实例,如剪刀的切割、线段的折叠等,引导学生思考:这些实例中是否存在一种特殊的线段,使得它同时垂直于原线段并平分原线段?2.呈现(10分钟)讲解线段的垂直平分线的定义和性质,如:线段的垂直平分线垂直于原线段,并且平分原线段;线段的垂直平分线上的点到线段两端点的距离相等。
3.操练(10分钟)让学生分组讨论,运用线段的垂直平分线的性质解决一些实际问题,如:已知线段AB,求线段AB的垂直平分线方程。
4.巩固(10分钟)让学生独立完成一些练习题,巩固对线段的垂直平分线的理解和掌握。