新人教版初中数学八年级上册《第十二章全等三角形:三角形全等的判定和性质综合应用》赛课教学设计_0
- 格式:docx
- 大小:117.58 KB
- 文档页数:3
C 11CABA 1第十二章 §12.1 全等三角形教学目标(一)知识技能: 1、了解全等形及全等三角形的概念。
2、理解掌握全等三角形的性质。
3、能够准确辩认全等三角形的对应元素。
(二)过程与方法 : 1、在图形变换以用操作的过程中发展空间观念,培养几何直觉。
2、在观察发现生活中的全等形和实际操作中获得全等 三角形的体验。
(三)情感态度与价值观: 在探究和运用全等三角形性质的过程中感受到数学活动的乐趣。
教学重点: 全等三角形的性质.教学难点:找全等三角形的对应边、对应角.预习导航:什么是全等三角形?如何找全等三角形的对应边和对应角?全等三角形有哪些性质?教学过程(一)提出问题,创设情境 出示投影片 :1.问题:你能发现这两个图形有什么美妙 的关系吗?这两个图形是完全重合的.2.那同学们能举出现实生活中能够完全重合的图形的例子吗003F生:同一张底片洗出的同大小照片是能够完全重合的。
形状与大小都完全相同的两个图形就是全等形. 3.学生自己动手(同桌两名同学配合)取一张纸,将自己事先准备好的三角板按在纸上,画下图形,照图形裁下来,纸样与三角板形状、大小完全一样. 4.获取概念让学生用自己的语言叙述:全等形、全等三角形、对应顶点、对应角、 对应边,以及有关的数学符号.记作:△ABC ≌ △ A ’B ’C ’ 符号“ ≌ ”读作“全等于”甲DCABFE(注意强调书写时对应顶点字母写在对应的位置上)(二).新知探究利用投影片演示1.活动:将△ABC 沿直线BC 平移得△DEF ;将△ABC 沿BC 翻折180 得到△DBC ; 将△ABC 旋转180°得△AED .2. 议一议:各图中的两个三角形全等吗? 启示:一个图形经过平移、翻折、旋转后,位置变化了,•但形状、大小都没有改变,所以平移、翻折、旋转前后的图形全等,这也是我们通过运动的方法寻求全等的一种策略. 3. 观察与思考:寻找甲图中两三角形的对应元素,它们的对应边有什么关系?对应角呢? (引导学生从全等三角形可以完全重合出发找等量关系)得到全等三角形的性质:全等三角形的对应边相等. 全等三角形的对应角相等.(三)例题讲解[例1]如图,△OCA ≌△OBD ,C 和B ,A 和D 是对应顶点,•说出这两个三角形中相等的边和角.1. 分析:△OCA ≌△OBD ,说明这两个三角形可以重合,•思考通过怎样变换可以使两三角形重合?将△OCA 翻折可以使△OCA 与△OBD 重合.因为C 和B 、A 和D 是对应顶点,•所以C 和B 重合,A 和D 重合.∠C=∠B ;∠A=∠D ;∠AOC=∠DOB .AC=DB ;OA=OD ;OC=OB .2. 总结:两个全等的三角形经过一定的转换可以重合.一般是平移、翻转、旋转的方法.[例2]如图,已知△ABE ≌△ACD ,∠ADE=∠AED ,∠B=∠C ,•指出其他的对应边和对应角.1. 分析:对应边和对应角只能从两个三角形中找,所以需将△ABE 和△ACD 从复杂的图形中分离出来.2小结:找对应边和对应角的常用方法有:DCABODCABE 乙DCAB 丙DCABE(1)有公共边的,公共边是对应边.(2)有公共角的,公共角是对应角.(3)有对顶角的,对顶角是对应角一对最长的边是对应边,一对最短的边是对应边.(4)一对最大的角是对应角,一对最小的角是对应角(5)全等三角形对应角所对的边是对应边;两个对应角所夹的边也是对应边.(6)全等三角形对应边所对的角是对应角;两条对应边所夹的角是对应角(四)课堂练习1、填空点O是平行四边形ABCD的对角线的交点,△AOB绕O旋转180°,可以与△______重合,这说明△AOB≌△______.这两个三角形的对应边是AO与_____,OB与_____,BA与______;对应角是∠AOB与________,∠OBA与________,∠BAO与________.2、判断题1)全等三角形的对应边相等,对应角相等。
2018年秋八年级数学上册第十二章《全等三角形》12.2 三角形全等的判定12.2.4 直角三角形全等的判定教案(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年秋八年级数学上册第十二章《全等三角形》12.2 三角形全等的判定12.2.4 直角三角形全等的判定教案(新版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年秋八年级数学上册第十二章《全等三角形》12.2 三角形全等的判定12.2.4 直角三角形全等的判定教案(新版)新人教版的全部内容。
第4课时直角三角形全等的判定◇教学目标◇【知识与技能】掌握直角三角形全等的条件:“斜边、直角边”.能运用全等三角形的条件,解决简单的推理证明问题.【过程与方法】经历探究直角三角形全等条件的过程,体会一般与特殊的辩证关系.【情感、态度与价值观】通过画图、探究、归纳、交流,发展学生的实践能力和创新精神.◇教学重难点◇【教学重点】运用直角三角形全等的条件解决一些实际问题。
【教学难点】解决简单的推理证明问题。
◇教学过程◇一、情境导入小明去公园玩,在公园看到了如下两个长度相同的滑梯,左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,小明说只要测量出左边滑梯AB的长度就可以知道右边滑梯有多高了,小明的说法正确吗?二、合作探究探究点1直角三角形全等的判定典例1如图,用三角尺可按下面的方法画角平分线:在∠AOB的两边上,分别取OM=ON,再分别过点M,N作OA,OB的垂线,交点为P,画射线OP,通过证明△OMP≌△ONP,可以说明OP 是∠AOB的角平分线,那么△OMP≌△ONP的依据是()A.SSS B。
12.2 三角形全等的判定1.三角形全等的判定方法一:边边边(SSS) (1)边边边:三边..对应相等的两个三角形全等(可以简写成“边边边”或“SSS ”). 这个判定方法告诉我们:当三角形的三边确定后,其形状、大小也就随之确定,这就是三角形的稳定性...,它在实际生活中应用非常广泛. (2)书写格式:①先写出所要判定的两个三角形;②列出条件:用大括号将两个三角形中相等的边分别写出; ③得出结论:两个三角形全等.如下图,在△ABC 和△A ′B ′C ′中,∵⎩⎪⎨⎪⎧AB =A ′B ′,BC =B ′C ′,AC =A ′C ′,∴△ABC ≌△A ′B ′C ′(SSS).警误区 书写判定两个三角形全等的条件 在书写全等的过程中,等号左边表示同一个三角形的量,等号右边表示另一个三角形的量.如上图,等号左边表示△ABC 的量,等号右边表示△A ′B ′C ′的量.符号“∵”表示“因为”,“∴”表示“所以”,在以后的推理中,这样书写简捷、方便.要注意它们的区别.(3)作一个角等于已知角. 已知:∠AOB .求作:∠A ′O ′B ′,使∠A ′O ′B ′=∠AOB .作法:如上图所示,①以点O 为圆心,任意长为半径画弧,分别交OA ,OB 于点C ,D ; ②画一条射线O ′A ′,以点O ′为圆心,OC 长为半径画弧,交O ′A ′于点C ′; ③以点C ′为圆心,CD 长为半径画弧,与上一步中所画的弧交于点D ′; ④过点D ′画射线O ′B ′,则∠A ′O ′B ′=∠AOB . 【例1】 如图所示,已知AB =DC ,AC =DB ,求证:△ABC ≌△DCB .分析:已知两边对应相等,由图形可知BC 为两个三角形的公共边,所以△ABC ≌△DCB (SSS).证明:在△ABC 和△DCB 中,∵⎩⎪⎨⎪⎧AB =DC ,BC =CB (公共边),AC =DB ,∴△ABC ≌△DCB (SSS).2.三角形全等的判定方法二:边角边(SAS)(1)边角边:两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS ”).(2)书写格式:如下图,在△ABC 和△A ′B ′C ′中,∴⎩⎪⎨⎪⎧AB =A ′B ′,∠A =∠A ′,AC =A ′C ′,∴△ABC ≌△A ′B ′C ′(SAS).警误区 不能用“SSA ”判定三角形全等有两边及其一边的对角对应相等的两个三角形不一定全等,即不能用“SSA ”作为三角形全等的判定.如图,在△ABC 和△ABD 中,AB=AB ,AC=AD 两条边对应相等,并且边AC ,AD 所对的角∠B=∠B ,很显然,△ABC 和△ABD 不全等.(3)注意:①在“边角边”这个判定方法中,包含了边和角两种元素,且角是两边的夹角,而不是其中一边的对角.②为了避免“SAS ”与“SSA ”(两边不夹角)混淆,在应用该方法时,要观察图形确定三个条件,按“边→角→边”的顺序排列,并按此顺序书写.【例2】 如图,两个透明三角形纸片叠放到桌面上,已知∠ACE =∠FCB ,AC =EC ,BC =FC ,则△ABC 与△EFC 全等吗?请说明理由.解:△ABC ≌△EFC .理由:∵∠ACE =∠FCB ,∴∠ACE +∠ECB =∠FCB +∠ECB , 即∠ACB =∠ECF .在△ABC 和△EFC 中, ∵⎩⎪⎨⎪⎧AC =EC ,∠ACB =∠ECF ,BC =FC ,∴△ABC ≌△EFC (SAS).3.三角形全等的判定方法三、四:角边角(ASA)及角角边(AAS) (1)角边角:①内容:两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA ”).②书写格式:如图,在△ABC 和△A ′B ′C ′中,∵⎩⎪⎨⎪⎧∠A =∠A ′,AB =A ′B ′,∠B =∠B ′,∴△ABC ≌△A ′B ′C ′(ASA).(2)角角边:①内容:两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS ”).②书写格式:如下图,在△ABC 和△A ′B ′C ′中,∵⎩⎪⎨⎪⎧∠A =∠A ′,∠B =∠B ′,BC =B ′C ′,∴△ABC ≌△A ′B ′C ′(AAS).(3)“角边角”与“角角边”的关系:由三角形的内角和定理知,只要两个三角形的两个角对应相等,则其第三个角也对应相等,所以两角及一边对应相等的两个三角形一定全等.无论这一边是“对边”还是“夹边”,只要对应相等即可判定两个三角形全等.(4)注意:①在运用“ASA ”时,要从图形上确定是按“角→边→角”的顺序排列条件; ②在运用“AAS ”时,要从图形上确定是按“角→角→边”的顺序排列条件. 警误区 不能用“AAA ”判定三角形全等有三个角对应相等的两个三角形不一定全等,即不能用“AAA ”作为三角形全等的判定.如下图,在△ABC 和△A ′B ′C ′中,∠A =∠A ′,∠B =∠B ′,∠C =∠C ′,很显然,△ABC 和△A ′B ′C ′不全等.【例3】 (一题多证)已知,如图,D 是△ABC 的边AB 上一点,AB ∥FC ,DF 交AC 于点E ,DE =EF .求证:AE =CE .证法一:∵AB ∥FC , ∴∠ADE =∠F .在△ADE 和△CFE 中, ∵⎩⎪⎨⎪⎧∠ADE =∠F ,DE =FE ,∠AED =∠CEF ,∴△ADE ≌△CFE (ASA).∴AE =CE . 证法二:∵AB ∥FC ,∴∠A =∠ECF ,∠ADE =∠F .在△ADE 和△CFE 中,∵⎩⎪⎨⎪⎧∠A =∠ECF ,∠ADE =∠F ,DE =FE ,∴△ADE ≌△CFE (AAS).∴AE =CE .4.直角三角形全等的判定方法:斜边、直角边(HL)(1)内容:斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL ”).(2)书写格式:如下图,在Rt △ABC 和Rt △A ′B ′C ′中, ∵⎩⎪⎨⎪⎧AB =A ′B ′,BC =B ′C ′, ∴Rt △ABC ≌Rt △A ′B ′C ′(HL).警误区 “HL ”适用的前提条件 (1)“HL ”只适合直角三角形全等的判定,不适合...一般三角形全等的判定;(2)直角三角形全等的判定既可以用“SSS ”“SAS ”“ASA ”和“AAS ”,又可以用“HL ”.【例4】 如图,AD ⊥CD ,AB ⊥CB ,垂足分别是D ,B ,且AD =AB ,求证:AC 平分∠DCB .证明:∵AD ⊥CD ,AB ⊥CB , ∴∠D 与∠B 都是直角. 在Rt △ADC 和Rt △ABC 中, ∵⎩⎪⎨⎪⎧AD =AB ,AC =AC , ∴Rt △ADC ≌Rt △ABC (HL).∴∠ACD =∠ACB ,即AC 平分∠DCB .5.判定两个三角形全等的常用思路判定两个三角形全等的方法有:“SSS ”“SAS ”“ASA ”“AAS ”“HL ”这五种,其中“HL ”只适合于直角三角形.在具体运用过程中,要认真分析已知条件,挖掘题中隐含条件,有目的地选择三角形全等的条件,一般可按下面的思路进行:(1)已知两边⎩⎪⎨⎪⎧找第三边→SSS ,找夹角→SAS ,找直角→HL.(2)已知一边一角⎩⎪⎨⎪⎧边为角的对边→找任一角→AAS ,边为角的邻边⎩⎪⎨⎪⎧ 找角的另一邻边→SAS ,找边邻着的另一角→ASA ,找边的对角→AAS.(3)已知两角 ⎩⎪⎨⎪⎧找夹边→ASA ,找任一边→AAS. 6.全等三角形判定和性质的综合运用全等三角形的性质是对应角相等、对应边相等,全等三角形的判定是“SAS ”“ASA ”“AAS ”“SSS ”“HL ”.在说明线段相等或角相等时,常常需要综合运用全等三角形的性质和判定.说明两条线段或两个角相等时,可考虑两条线段或两个角所在的两个三角形是否全等,若由已知条件不能直接说明这两个三角形全等时,可以由已知条件先推出其他的三角形全等,再由全等三角形的性质得到一些线段或角相等,为说明前面的三角形全等提供条件.【例5】 如图,已知∠E =∠F =90°,∠1=∠2,AC =AB ,求证:△AEB ≌△AFC.分析:已知∠E =∠F =90°,AC =AB ,即已知一边及一角,并且这边是角的对边,根据判定两个三角形全等的常用思路再找另一角即可,由∠1=∠2,可得∠EAB =∠FAC ,再根据全等的判定方法AAS 可证△AEB ≌△AFC .证明:∵∠1=∠2,∴∠1+∠BAC =∠2+∠BAC , 即∠EAB =∠FAC .在△AEB 和△AFC 中,∵⎩⎪⎨⎪⎧∠E =∠F ,∠EAB =∠FAC ,AB =AC ,∴△AEB ≌△AFC (AAS).【例6】 如图1,已知AB ∥CD ,OA =OD ,AE =DF ,求证:EB ∥CF.图1证明:如图2,∵AB ∥CD ,∴∠4=∠3. 在△OAB 和△ODC 中,∵⎩⎪⎨⎪⎧∠4=∠3,OA =OD ,∠2=∠1,图2∴△OAB ≌△ODC (ASA).∴OB =OC . 又∵AE =DF ,OA =OD ,∴OA +AE =OD +DF ,即OE =OF . 在△BOE 和△COF 中,∵⎩⎪⎨⎪⎧OB =OC ,∠2=∠1,OE =OF ,∴△BOE ≌△COF (SAS). ∴∠E =∠F .∴EB ∥CF .7.全等三角形判定中的探究性问题动态探究型问题一般是指几何图形的运动,包括点动(点在线上运动)、线动(线的平移、对称、旋转)、面动〔平面几何图形的平移、对称(翻折)、旋转〕.这类问题具有灵活性、多变性,常融入三角形,综合运用三角形全等知识.但万物皆有源,几何以点为源泉,无数个点可以形成各种图形,所以图形的运动其实是无数个点的运动.点动带动图形动,图形动引起点的位置发生变化,相辅相成,变化无穷,但万变不离其宗,解决问题要抓住一些关键点即可.对于运动变化过程中的探索性问题的求解,应动中取静,先取某一特定时刻物体的状况进行探究,获得结论,再由特殊推知其一般结论,并运用几何知识(全等三角形的判定)加以证明.【例7】 (科学探究题)如图,在△ABC 中,AB =AC =10 cm ,BC =8 cm ,点D 为AB 的中点.如果点P 在线段BC 上以3 cm/s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.(1)若点Q 的运动速度与点P 的运动速度相等,经过1 s 后,△BPD 与△CQP 是否全等,请说明理由;(2)若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使△BPD 与△CQP 全等?解:(1)∵t =1 s ,∴BP =CQ =3×1=3(cm). ∵AB =10 cm ,点D 为AB 的中点,∴BD =5 cm. 又∵PC =BC -BP ,BC =8 cm , ∴PC =8-3=5(cm). ∴PC =BD .又∵AB =AC ,∴∠B =∠C . ∴△BPD ≌△CQP .(2)∵v P ≠v Q ,∴BP ≠CQ .又∵△BP D 与△CQP 全等,∠B =∠C , 则BP =PC =4 cm ,CQ =BD =5 cm ,∴点P ,点Q 运动的时间t =BP 3=43(s).∴v Q=CQt=543=154(cm/s).。
第十二章 --全等三角形一、基本概念1.全等的图形必须满足:(1)形状相同的图形;(2)大小相等的图形;(3)能够完全重合的三角形叫做全等三角形2.全等三角形的表示两个三角形全等用“≌”符号表示;例如:△ABC与△DEF全等,那么我们可以表示为:△ABC≌△DEF。
3.全等三角形的基本性质(1)全等三角形对应边相等;(2)全等三角形对应角相等4.全等三角形的判定方法(1)三边分别相等的两个三角形全等(可以简写成“边边边”或“SSS”)例:在如图所示的三角形中,AB=AC,AD是△ABC的中线,求证△ABD≌△ACD.AB D C(2)两边和它们的夹角分别相等的两个三角形全等(可以简写成“边角边”或“SAS”)例:如图,有一池塘,要测池塘两端A,B的距离,可先在平地上取一点C不经过池塘可以直接到达点A和B。
连接AC并延长到点D,使CD=CA.连接BC并延长到E,使CE=CB.连接DE,那么量出DE的长就是A,B的距离。
为什么?(3)两角和它们的夹边分别相等的两个三角形全等(可以简写成“角边角”或“ASA”)例:如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C。
求证AD=AE.AD EB C(4)两角分别相等且其中一组等角的对边相等的两个三角形全等(可以简写成“角角边”或“AAS”).例:在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF.求证△ABC≌△DEF(5)斜边和一条直角边分别相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”)例:如图,AC⊥BC,BD⊥AD,垂足分别为C,D,AC=BD.求证BC=AD.5.角平分线的性质及判定性质:角平分线上的点到角两边的距离相等判定:到一个角的两边距离相等的点在这个角的平分线上。
二、灵活运用定理1.判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等,因此在寻找全等的条件时,总是先寻找相等的可能性。
(1)已知条件中有两角对应相等,可找:①夹边相等(ASA)②任一组等角的对边相等(AAS)(2)已知条件中有两边对应相等,可找①夹角相等(SAS)②第三组边也相等(SSS)(3)已知条件中有一边一角对应相等,可找①任一组角相等(AAS或ASA)②夹等角的另一组边相等(SAS)三、常见考法(1)利用全等三角形的性质:①证明线段(或角)相等;②证明两条线段的和差等于另一条线段;③证明面积相等(2)利用判定公理来证明两个三角形全等练习题1.(2015•莆田)如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的()A.AB=CD B.EC=BF C.∠A=∠D D.AB=BC2.(2015•茂名)如图,OC是∠AOB的平分线,P是OC上一点,PD⊥OA于点D,PD=6,则点P到边OB的距离为()A.6 B.5 C.4 D.33.(2015•贵阳)如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加的一个条件是()A.∠A=∠C B.∠D=∠B C.AD∥BC D.DF∥BE 4.(2015•青岛)如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE⊥AB,垂足为E,DE=1,则BC=()A.B.2 C.3 D.+25.(2015•启东市模拟)如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E.BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④AB=DE,AC=DF,∠B=∠E.其中,能使△ABC≌△DEF的条件共有()A.1组B.2组C.3组D.4组6.(2015•杭州模拟)用直尺和圆规作已知角的平分线的示意图如右,则说明∠CAD=∠DAB 的依据是()A.SSS B.SAS C.ASA D.AAS 7.(2015•滕州市校级模拟)如图,在下列条件中,不能证明△ABD≌△ACD的是()A.BD=DC,AB=AC B.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CAD D.∠B=∠C,BD=DC8.(2015•奉贤区二模)如图,已知AD是△ABC的边BC上的高,下列能使△ABD≌△ACD的条件是()A.∠B=45°B.∠BAC=90°C.BD=AC D.AB=AC 9.(2015•西安模拟)如图所示,AB∥EF∥CD,∠ABC=90°,AB=DC,那么图中的全等三角形有()A.4对B.3对C.2对D.1对10.(2015春•泰山区期末)如图,△A BC≌△AEF,AB=AE,∠B=∠E,则对于结论①AC=AF,②∠FAB=∠EAB,③EF=BC,④∠EAB=∠FAC,其中正确结论的个数是()A.1个B.2个C.3个D.4个二.填空题(共10小题)11.(2015春•沙坪坝区期末)如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为.12.(2015春•张家港市期末)如图,已知Rt△ABC≌Rt△ABCDEC,连结AD,若∠1=20°,则∠B的度数是.13.(2015春•苏州校级期末)如图,△ABO≌△CDO,点B在CD上,AO∥CD,∠BOD=30°,则∠A=°.14.(2015春•万州区期末)如图,已知△ABC≌△ADE,D是∠BAC的平分线上一点,且∠BAC=60°,则∠CAE=.15.(2015•黔东南州)如图,在四边形ABCD中,AB∥CD,连接BD.请添加一个适当的条件,使△ABD≌△CDB.(只需写一个)16.(2014秋•曹县期末)如图,已知AB⊥CD,垂足为B,BC=BE,若直接应用“HL”判定△ABC≌△DBE,则需要添加的一个条件是.17.(2015•盐亭县模拟)如图,已知等边△ABC中,BD=CE,AD与BE相交于点P,则∠APE 的度数是度.18.(2014秋•腾冲县校级期末)如图,有两个长度相同的滑梯(即BC=EF),左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,则∠ABC+∠DFE=度.19.(2015•聊城)如图,在△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线.若AB=6,则点D到AB的距离是.20.如图,在△A BC中,CD平分∠ACB交AB于点D,DE⊥AC交于点E,DF⊥BC于点F,且BC=4,DE=2,则△BCD的面积是.三.解答题(共7小题)21.如图,CD⊥AB于点D,BE⊥AC于点E,△ABE≌△ACD,∠C=42°,AB=9,AD=6,G为AB 延长线上一点.(1)求∠EBG的度数.(2)求CE的长.22.已知:如图,在△ABC中,AB=AC,AD是BC边上的中线,AE∥BC,CE⊥AE,垂足为E.(1)求证:△ABD≌△CAE;(2)连接DE,线段DE与AB之间有怎样的位置和数量关系请证明你的结论.23.如图,△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE.求证:(1)△AEF≌△CEB;(2)AF=2CD.24.如图:在△ABC中,∠C=90° AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF;说明:(1)CF=EB.(2)AB=AF+2EB.25.如图,为了测量一池塘的宽AB,在岸边找到一点C,连接AC,在AC的延长线上找一点D,使得DC=AC,连接BC,在BC的延长线上找一点E,使得EC=BC,测出DE=60m,试问池塘的宽AB为多少请说明理由.练习题参考答案一.选择题(共10小题)1.A 2.A 3.B 4.C 5.C 6.A 7.D 8.D 9.B 10.C 二.填空题(共10小题)11.4 12.70°13.30 14.30°15.AB=CD 16.AC=DE 17.60 18.90 19. 20.4三.解答题(共7小题)21.解:(1)∵△ABE≌△ACD,∴∠EBA=∠C=42°,∴∠EBG=180°﹣42°=138°;(2)∵△ABE≌△ACD,∴AC=AB=9,AE=AD=6,∴CE=AC﹣AE=9﹣6=3.22.证明:(1)∵AB=AC,∴∠B=∠ACD,∵AE∥BC,∴∠EAC=∠ACD,∴∠B=∠EAC,∵AD是BC边上的中线,∴AD⊥BC,∵CE⊥AE,∴∠ADC=∠CEA=90°在△ABD和△CAE中∴△ABD≌△CAE(AAS);(2)AB=DE,AB∥DE,如右图所示,∵AD⊥BC,AE∥BC,∴AD⊥AE,又∵CE⊥AE,∴四边形ADCE是矩形,∴AC=DE,∵AB=AC,∴AB=DE.∵AB=AC,∴BD=DC,∵四边形ADCE是矩形,∴AE∥CD,AE=DC,∴AE∥BD,AE=BD,∴四边形ABDE是平行四边形,∴AB∥DE且AB=DE.23.证明:(1)∵AD⊥BC,CE⊥AB,∴∠BCE+∠CFD=90°,∠BCE+∠B=90°,∴∠CFD=∠B,∵∠CFD=∠AFE,∴∠AFE=∠B在△AEF与△CEB中,,∴△AEF≌△CEB(AAS);(2)∵AB=AC,AD⊥BC,∴BC=2CD,∵△AEF≌△CEB,∴AF=BC,∴AF=2CD.24.证明:(1)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴DE=DC,∵在Rt△DCF和Rt△DEB中,,∴Rt△CDF≌Rt△EBD(HL).∴CF=EB;(2)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴CD=CE.在△ADC与△ADE中,∵∴△ADC≌△ADE(HL),∴AC=AE,∴AB=AE+BE=AC+EB=AF+CF+E B=AF+2EB.25.解:AB=60米.理由如下:∵在△ABC和△DEC中,,∴△ABC≌△DEC(SAS),∴AB=DE=60(米),则池塘的宽AB为60米.。
轴对称型
中考复习专题
6.2 全等三角形
复习目标:
1、掌握全等三角形的判定定理;
2、掌握全等三角形的性质定理;
3、掌握角平分线的性质定理。
课堂流程
一、知识点梳理
1、全等形、全等三角形及其相关概念。
2、全等三角形的性质:
全等三角形的对应边________, 对应角__________。
3、全等三角形的判定:
(1)三边对应相等的两个三角形全等(可以简写成“边边边”或“SSS ”).
(2)两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS ”). (3)两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA ”). (4) 两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS ”).
(5)有一条斜边和直角边对应相等的两个直角三角形全等(HL ) 4、角的平分线的性质:
角的平分线上的一点到角两边的距离相等。
5、常见的全等变换
平移型:
翻折轴对称型:
旋转型:
O
C
B
A
D
B
A
E
D
C
B
A O
D
C
B
A E
父字型
翻折型
轴对称型
蝶型
D
C B
A
F
E
D C
B
A
D
C
B
A
E
D
C
B
A
M
B
C
A
E D
大山型 :
组合型:(平移+旋转)
等边三角型:
二、例题解析 例1、已知:(如图)AB=CD ,AE ⊥BC ,DF ⊥BC
,CE=BF 。
求证:AB ∥CD
例2、两个全等的含30,60角的三角板ADE 和三角板ABC 如图所示放置,E ,A ,C 三点在一条直线上,连结BD ,取BD 的中点M ,连结ME ,MC ,试判断EMC △的形
E
D
B
A E
D
C
B
A
变式图1
C
变式图2
E
F
B
A
C
D
B
D
状,并说明理由.
小结反思:
1、本节课你的收获是:
2、本节课你还存在哪些问题:
课后练习:
1、 如图,点E, F 在BC 上,BE=CF, AB=DC, ∠B=∠C.求证: ∠A=∠D
2、 如图,△ABC ≌ ADE ∆,B ∠和D ∠是对应角,AB = AD 是对应边,写出另外两组对应边和对应角.
3、 如图,△ABD ≌ △EBD , △DBE ≌ △DCE , B , E , C 在一条直线上. (1) BD 是∠ABE 的平分线吗?为什么? (2) DE ⊥BC 吗?为什么?
(3) 点E 平分线段BC 吗?为什么?。