《数学》高中基础模块(下册)试卷5及参考答案
- 格式:doc
- 大小:95.50 KB
- 文档页数:4
中职数学基础模块上下册1-10章全册单元检测试题及参考答案(人教版)目录中职数学第一章《集合》单元检测 (1)第一章《集合》参考答案 (4)中职数学第二章《不等式》单元检测 (5)第二章《不等式》参考答案 (8)中职数学第三章《函数》单元检测 (9)第三章《函数》参考答案 (12)中职数学第四章单元检测《指数函数与对数函数》 (13)第四章《指数函数与对数函数》参考答案 (16)中职数学第五章《三角函数》单元检测 (17)第五章《三角函数》参考答案 (20)中职数学第六章《数列》单元检测 (21)第六章《数列》参考答案 (23)中职数学第七章《平面向量》单元检测试题 (24)第七章《平面向量》参考答案 (26)中职数学第八章《直线和圆的方程》单元检测 (27)第八章《直线和圆的方程》参考答案 (29)中职数学第九章《立体几何》单元检测 (30)第九章《立体几何》参考答案 (33)中职数学第十章《概率与统计初步》单元检测 (35)第十章《概率与统计初步》参考答案 (38)中职数学第一章《集合》单元检测(满分100分,时间:90分钟)一.选择题(3分*10=30分)1.用列举法表示“方程0652=+-x x 的所有解”构成的集合是( )A.{2}B.φC.{3}D.{2,3}2.用列举法表示“大于2且小于9的偶数的全体”构成的集合是( )A.φB.{4,6,8}C. {3,5,7}D. {3,4,5,6,7,8} 3.I={0,1,2,3,4},M={0,1,2,3},N={0,3,4},=)(N C M I ( )A.{2,4}B.{1,2}C.{0,1}D.{0,1,2,3} 4.已知集合A={1,2,3,4},B={3,4,5},则A ∪B( )A.{1,2,3,4,5}B.{2,3,4}C.{1,2,3,4}D.{1,2,4,5} 5.已知集合A={2,3,4},B={0,1,2,3,4},则A ∪B=( )A. {0,3,4}B.{0,1,2,3,4}C.{2,3}D.{1,2} 6.已知集合{}{}40,2<<=>=x x B x x A ,则=B A ( )A.{}42<<x xB.{}20<<x xC.{}0>x xD.{}4>x x7.设甲是乙的充分不必要条件,乙是丙的充要条件,丁是丙的必要非充分条件,则甲是丁的 ( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要8.设集合{}{}1,1,1,0,1-=-=N M ,则( )A .N M ⊆ B.N M ⊂ C .N M = D.M N ⊂ 9.已知A={x |3-3x>0}则下列各式正确的是( )A.A ∈3B.A ∈1C.A ∈0D.A ∉-1 10.下列四个集合中,不同于其它三个的是( )A.}2|{=y yB.}2{=xC.{2}D.{x |0)2(2=-x }二.填空题(4分*8=32分)13.已知集合A={1,2,3},集合B={-2,2},则=B A _________________ 14.若集合A={x |31≤≤x },B={x |x>2},则=B A _____________ 15.已知集合}3,2{},31|{-=≤≤∈=B x N x A ,则=B A _____________ 16.已知集合U={1,3,5,7},A={1,5},则=A C U _____________17.已知全集U={1,2,3,4,5},且A={2,3,4},B={1,2}则=)(B C A U ___ 18.集合A={0,a },B={1,2a },若}4,2,1,0{=B A ,则a=________三.解答题(共6题,共计38分)19.(8分)集合A 满足条件A ⊆{a , b , c },试写出所有这样的集合A 。
模块综合测评(时间:120分钟,满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在△ABC中,角A,B,C的对边分别为a,b,c,已知C=,a=2,b=1,则c等于( )A. B. C. D.1答案:B2.下列结论正确的是( )A.若ac>bc,则a>bB.若a8>b8,则a>bC.若a>b,c<0,则ac<bcD.若,则a>b答案:C3.等差数列{a n}的前n项和为S n,若a2+a7+a12=30,则S13的值是( )A.130B.65C.70D.75解析:a2+a7+a12=(a2+a12)+a7=2a7+a7=3a7=30,所以a7=10.所以S13==13a7=130.答案:A4.已知△ABC中,sin A∶sin B∶sin C=3∶2∶4,那么cos B的值为( )A. B.- C.- D.答案:A5.已知等比数列{a n}中,a4=7,a6=21,则a8等于( )A.35B.63C.21D.±21答案:B6.已知△ABC中,a=4,b=4,A=30°,则角B的度数等于( )A.30°B.30°或150°C.60°D.60°或120°答案:D7.若集合A={x||2x-1|<3},B=,则A∩B是( )A.B.{x|2<x<3}C.D.答案:D8.设变量x,y满足约束条件则目标函数z=2x+3y的最小值为( )A.6B.7C.8D.23答案:B9.若a>1,则a+的最小值是( )A.2B.aC.D.3答案:D10.设{a n}是由正数组成的等比数列,S n为其前n项和.已知a2a4=1,S3=7,则S5等于( )A. B. C. D.答案:B11.在R上定义运算☉:a☉b=ab+2a+b,则满足x☉(x-2)<0的实数x的取值范围为( )A.(0,2)B.(-2,1)C.(-∞,-2)∪(1,+∞)D.(-1,2)答案:B12.某汽车运输公司刚买了一批豪华大客车投入营运,据市场分析每辆客车营运的总利润y(单位:10万元)与营运年数x(x∈N)为二次函数关系,如右图.当每辆客车营运的年平均利润最大时,营运年数为( )A.3B.4C.5D.6答案:C二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中的横线上)13.已知数列{a n}的前n项和为S n,且S n=3n,则a2 013= .解析:a2 013=S2 013-S2 012=3×2 013-3×2 012=3.答案:314.已知点P(x,y)的坐标满足条件点O为坐标原点,那么|PO|的最小值等于,最大值等于.答案:15.已知不等式x2+ax+4<0的解集为⌀,则a的取值范围是.解析:由题意得Δ=a2-16≤0,解得-4≤a≤4.答案:[-4,4]16.已知数列{a n}满足a1=t,a n+1-a n+2=0(t∈N*,n∈N*).记数列{a n}的前n项和的最大值为f(t),则f(t)= .答案:三、解答题(本大题共6小题,共74分.解答时应写出文字说明、证明过程或演算步骤)17.(12分)设等差数列{a n}满足a3=5,a10=-9.(1)求{a n}的通项公式;(2)求{a n}的前n项和S n及使得S n最大的序号n的值.解:(1)由a n=a1+(n-1)d及a3=5,a10=-9,得解得所以数列{a n}的通项公式为a n=11-2n.(2)由(1)知,S n=na1+d=10n-n2.因为S n=-(n-5)2+25,所以当n=5时,S n取得最大值.18.(12分)假设某市2011年新建住房400万平方米,其中有250万平方米是中、低价房.预计在今后的若干年内,该市每年新建住房中,中、低价房的面积均比上一年增加50万平方米,那么到哪一年底,该市历年所建中、低价房的累计面积(以2011年为累计的第一年)将开始不少于4 750万平方米?解:设中、低价房的面积形成数列{a n},由题意知,{a n}是等差数列,其中a1=250,d=50,则S n=250n+×50=25n2+225n令25n2+225n≥4 750,即n2+9n-190≥0,而n是正整数,则n≥10.所以到2020年年底该市历年所建中、低价房的累计面积将开始不少于4 750万平方米.19.(12分)海面上相距10海里的A,B两船,B船在A船的北偏东45°方向上.两船同时接到指令同时驶向C岛,C岛在B船的南偏东75°方向上,行驶了80分钟后两船同时到达C岛,经测算,A船行驶了10海里,求B船的速度.解:如图所示,在△ABC中,AB=10,AC=10,∠ABC=120°.由余弦定理,得AC2=BA2+BC2-2BA·BC·cos 120°,即700=100+BC2+10BC,得BC=20.设B船速度为v,行驶时间为(小时),路程为BC=20海里,则有v==15(海里/时),即B船的速度为15海里/时.20.(12分)在△ABC中,角A,B,C的对边分别为a,b,c,且满足.(1)求角A的大小;(2)若a=2,求△ABC面积的最大值.解:(1)因为,所以(2c-b)·cos A=a·cos B.由正弦定理,得(2sin C-sin B)·cos A=sin A·cos B,整理得2sin C·cos A-sin B·cos A=sin A·cos B.所以2sin C·cos A=sin (A+B)=sin C.在△ABC中,0<C<π,所以sin C≠0.所以cos A=,又0<A<π,故A=.(2)由(1)得A=,又a=2,则cos A=,整理得b2+c2=bc+20.由基本不等式,得b2+c2≥2bc,则bc+20≥2bc,所以bc≤20,当且仅当b=c时等号成立,故三角形的面积S=bc sin A=bc sin bc≤×20=5.所以三角形面积的最大值为5.21.(12分)已知等差数列{a n}满足a2=0,a6+a8=-10.(1)求数列{a n}的通项公式;(2)求数列的前n项和.解:(1)设等差数列{a n}的公差为d,由已知条件可得解得故数列{a n}的通项公式为a n=2-n.(2)设数列的前n项和为S n,即S n=a1++…+,∴S1=a1=1,+…+.当n>1时,=a1++…+=1-=1-∴S n=.当n=1时,S1=1也符合该公式.综上可知,数列的前n项和S n=.22.(14分)电视台为某个广告公司特约播放两套片集.其中片集甲播映时间为20分钟,广告时间为1分钟,收视观众为60万;片集乙播映时间为10分钟,广告时间为1分钟,收视观众为20万.广告公司规定每周至少有6分钟广告,而电视台每周只能为该公司提供不多于86分钟的节目时间.电视台每周应播映两套片集各多少次,才能获得最高的收视率?解:设片集甲播放x集,片集乙播放y集,则有要使收视率最高,则只要z=60x+20y最大即可.由得M(2,4).由图可知,当x=2,y=4时,z=60x+20y取得最大值200万.故电视台每周片集甲和片集乙各播映2集和4集,其收视率最高.。
《数学》高中基础模块(下册)试卷5及参考答案一、选择题(每小题5分,共50分)1.过点)(7,1-M 且与直线4x+2y-15=0平行的直线方程是( )A.2x+y-5=0B.2x+y-1=0C.x-2y-5=0D.x-2y+1=02.直线(a-1)x+3y+12=0与直线x+(a+1)y+a=0互相垂直,则a 等于 ( )A.-2或21-B.1C.21-D.-2 3.已知直线1l 的方程为x+3y+C=0,直线2l 的方程为2x-By+4=0,若两直线的交点在x 轴上,则C 的值为 ( )A.2B.-2C.2或-2D.与B 有关4.已知A(4,-1) , B(1,3), 则AB 两点的距离为 ( ) A.7 B.5 C. 23 D.135.已知点A (2,1),B (-518,519),则线段AB 的垂直平分线方程是 ( ) A.2x-y-4=0 B.x+y-3=0 C.2x-y=0 D.2x-y+4=06.若圆0m 42x 22=+-++y x y 过点(2,0),则m 的值为 ( )A.2B.8±C.2±D.8-7.圆0542x 22=--++y x y 与直线y=-1的位置关系为 ( )A.相离B.相切C.相交但不经过圆心D.相交且经过圆心8.圆922=+y x 上的点到直线3x-4y-20=0距离的最大值为 ( )A..7 B 1 C.1-52或7 D.1-52或19.下列说法正确的是A.线段AB 在平面α内,直线AB 不一定在平面α内B.如果两个平面有三个公共点,这两个平面一定重合C.四边形一定是平面图形D.梯形一定是平面图形10.已知DEF ABC ∠∠与为空间的两个角,AB//DE,BC//EF.若︒=∠105DEF ,那么ABC ∠= ( )A.︒105B.︒75或︒105C.︒45或︒105D.︒75二、填空题.(本大题共8空,每空5分,共40分)1.点P(x,-y)关于y 轴的对称点是 。
第五章指数函数与对数函数5.1实数指数幂习题答案练习5.1.11.(1);(21(31(412.(1)1410;(2)1272⎛⎫⎪⎝⎭;(3)545.6;(4)45a-.3.(1)2.280; (2)0.488; (3)0.577.练习5.1.21.(1)52a;(2)25a.2.(1)23125; (2)433.3.(1)16a; (2)2969ab.4.(1)0.033; (2)21.702.习题5.1A组1.(1) 1; (2)18-;(3)4181x;(4)3x.2.(1)12310⎛⎫⎪⎝⎭; (2)431.5;(3;(4.3.(1)0.5; (2)116332;(3)433;(4)6.4.(1)3122a b-;(2)21343a b-.5.(1)0.354; (2)2.359; (3)39.905; (4)64.000. B组1.(1)4325;(2)109100.2.(1)0.212; (2)8.825.C 组约48.4%.提示:P=(12)6 0005 730≈0.484.5.2指数函数习题答案练习5.21.(1)2.531.8 1.8< ; (2)470.50.5-<.2.(1) ()(),00,-∞+∞; (2)R .习题5.2A 组1.(1) > ; (2)> ; (3)>.2.(1) ()(),11,-∞+∞ ;(2)R .3.(1)2.531.9 1.9<;(2)0.10.20.80.8--<.4.略.5.a=3.B 组1.()1,11,2⎛⎫+∞ ⎪⎝⎭.2.19 . 提示:由()1327f =得13a =,()211239f ⎛⎫== ⎪⎝⎭. 3.(1)(,3⎤-∞⎦ ; (2))()1,22,⎡+∞⎣.4.256.提示:15分钟1次,2小时分裂8次,则82256y ==(个).C 组1.约161 km 2. 提示:()5100110%161+≈(km 2).2.约512元. 提示:()31000120%512-≈(元).5.3对数习题答案练习5.3.11.(1)2log 164=; (2)0.5log 0.1253=; (3)log 518=x.2.(1)0.1-1=10; (2)348127=; (3)415625-= . 3.(1)4; (2)1; (3)0; (4)1.4.(1)0.653; (2)2.485; (3)-0.106.练习5.3.21.(1)1lg 3x ;(2)lg lg lg x y z ++; (3)111lg lg lg 243x y z +-.2.(1)19. 提示:7522log 4log 272519+=⨯+=; (2)2. 提示:2ln 2e =111lg lg lg 243x y z +-. 3.32a b + .提示:()2311133ln 108ln 232ln 23ln 3ln 2ln 322222a b =⨯=+=+=+.习题5.3A 组1.(1)2log 7x = ; (2)116 ; (3)22.2.(1)13lg lg 2x y +; (2)3lg 3lg 3lg x y z +-; (3)4lg 2lg y x - . 3.(1)-3 ; (2)-4 ; (3)13.4.0.805.B 组1.(1)7. 提示:3434333log 33log 3log 3347⨯=+=+=.(2)12 ;(3)2. 2. 5. 提示:()lg 31a a -=,(3)10a a -=,2a =-(舍)或5a =. 3.(1)a+b. 提示:lg 23lg 2lg 3a b ⨯=+=+.(2)b-a. 提示:lg 3lg 2b a -=-.4.0. 提示:()2lg 5lg 210+-=.C 组约2 100多年前.提示:125730log 0.7672193t =≈,所以马王堆古墓约是2 100多年前的遗址.5.4对数函数习题答案练习5.41.(1) (),2-∞;(2)()0,1(1,)+∞ ; (3)2,3⎛⎫-∞ ⎪⎝⎭ ; (4))1,⎡+∞⎣. 2.(1)lg7<lg7.1; (2)0.1lg 5<0.1lg 3; (3)23log 0.5>23log 0.6 ; (4)ln 0.1<ln 0.2.习题5.4A 组1.(1) 1,2⎛⎫-∞ ⎪⎝⎭ ; (2)()0,1;(3)(1,2⎤⎦; (4)()1,+∞. 2. 1. 提示:()99lg 1001f =-=2-1=1.3.()(),03,-∞+∞ .4.(1)22log 5log 9< ; (2)1133log 0.4log 0.7>;(3)56log 6log 5> ; (4)0.55log 0.6log 0.7>.5.()2,+∞.6.()4,+∞.B 组1.(1)()(),11,-∞-+∞ ; (2)(1,2⎤⎦; (3)()()2,33,+∞.2.b>a>c.3.a<b.C 组正常. 提示:()8lg 4.010lg 48lg 108lg 480.6027.398pH -=-⨯=--=-≈-=.5.5指数函数与对数函数的应用习题答案练习5.51.约1 697.11万吨.提示:()515001 2.5%1697.11+≈.2.约18.87万元.提示:()2010018%18.87-≈.3.约5年.提示:()100110%60x-=.4.2059年.提示:()7510.7%100x+=.习题5.5A 组1.13年.提示:()1000120%10000x+≥.2.()()3001 2.5%xy xN +=+∈ .3.171.91.提示:2023年GDP 为()390017%1102.54+≈.B 组1.2030年 .提示:设第n 年年底该企业的产值可以达到260万元,则()202013017.5%260n -+=.2.300只. 提示:由题知当x=1时y=100,得a=100;当x=7时82100log 300y ==.3.约147万件.C 组略.复习题5A 组一、1.C . 2. B. 3.D. 4.A. 5.C. 6.C. 7.D. 8. D.9.B. 10.B. 11.C. 12.B. 13.A. 14.A. 15.B.二、16.347-.17.-3.18. 4.5.19.-4.20.51log 2<125-<125.三、21. 19.22. 略.23.(1)1; (2)-2.24.(1)23-; (2). 25.(1)(),1-∞; (2)R . 26. 34.87万元.B 组1. (1)()(),01,-∞+∞ ; (2)()0,100.2. )4,⎡+∞⎣ .3.1,2⎛⎤-∞ ⎥⎝⎦ . 4.13,44⎡⎤⎢⎥⎣⎦.5.(1)()()*1xy a r xN =+∈;(2)1 117.68元.提示:()510001 2.25%1117.68+≈.6.0,120⎡⎤⎣⎦.提示:因1211010lg IL -=,令1I =得12110lg 10120L ==,令1210I -=得110lg 10L ==.所以人听觉的声强级范围为0,120⎡⎤⎣⎦.第六章 直线和圆的方程6.1两点间的距离公式和线段的中点坐标公式习题答案练习6.11.M (-2,4);N(1,1); P(2,-2); Q(-1,-2).2.(1)AB =线段AB 的中点坐标(11,122);(2)5CD =,线段CD 的中点坐标(15,12);(3)5PQ =,线段PQ 的中点坐标(0,12).3.(1)中点D 的坐标(1,1);(2)中线AD .4.AB b =-,线段AB 的中点坐标(3333,22a b a b++). 习题6.1A 组1.(1)AB =(2)5AB =,BC =AC =;(3)线段AB 的中点坐标(1,-1);(4)AB =线段AB 的中点坐标(111,122-).2.点P (2+)或P (2-).3.2PQ a=,线段PQ 的中点坐标(0,b ).4.点P 2的坐标为(6,1).5.2,AB AC BC ==,根据直角三角形判定定理,可知三角形是直角三角形.B 组1. m=4,n=1.2.点B 的坐标(-4,5).3.顶点C 的坐标(0,0,.4.顶点A (6,5),顶点B (-2,3),顶点C (-4,-1).C 组略.6.2直线的方程习题答案练习6.2.11.2.(1)斜率为-1,倾斜角为4;(2)斜率为3;(3)斜率为56π.3.实数a =4.实数m=-1.练习6.2.21.(1)1,4π;(23π;(3)2,3. 2.点A (2,3)在直线122y x =+上,点B (4,2)不在直线122y x =+上.3.(1)34(1)y x -=-;(2)55(2)y x +=-;(3)y x -=.4.(1)24y x =-+;(2)3y =+;(3)112y x =+;(4)1y x =-.5.4y -=;4y =+.练习6.2.31.132y x =--.2.(1)2,230x y -+=;(2)23-,2340x y ++=.3.(1)A=0,B ≠0,C ≠0; (2)B=0,A ≠0,C ≠0.4.(1)37130x y +-=;(2)30y +=.5.30x y -+=,X 轴上的截距为-3,Y 轴上的截距为3.习题6.2A 组1.(1)3-;(2)1,4π. 2.(1)210x y -+=;(2)3y =-;(3)430x y -+=. 3.(1)23,43;(2)1,3;(3)5,-12. 4.(1)A ≠0,B ≠0,C=0;(2)A=0,B ≠0,C=0;(3)A ≠0,B=0,C=0. 5.420x y +-=或420x y ++=.B 组1.实数52m =-.2.实数m=3,n=-8.3.(1)330x y +-=;(2)770x y -+=.4.(1)AB 边斜率为14,AC 边所在直线的斜率为1,BC 边所在直线的斜率为12-,AB 边所在直线的方程为470x y -+=;AC 边所在直线的方程为10x y -+=;BC 边所在直线的方程为2100x y +-=.(2)BC 边中线所在直线的斜率为12,AB 边中线所在直线的斜率不存在,AC 边中线所在直线的斜率为0,BC 边中线所在直线的方程为230x y -+=;AB 边中线所在直线的方程为3x =;AC 边中线所在直线的方程为3y =.C 组略.6.3两条直线的位置关系习题答案练习6.3.11. (1)平行;(2)重合;(3)重合;(4)平行.2.(1)12-;(2)20x y -+=;(3)360x y --=.3.x =1.练习6.3.21.(1)相交,交点坐标(194,3-);(2)相交,交点坐标(4,-5);(3)不相交. 2.(1)不垂直;(2)垂直;(3)不垂直;(4)垂直.3.20x y +-=.4.32120x y +-=.练习6.3.31.(1;(2)0;(3)5.2.m=-3或m=7.3.习题6.3A 组1.(1)相交;(2)平行,重合;(3)垂直.2.(1)平行;(2)垂直;(3)相交;(4)垂直.3.(1)相交,交点坐标(18,58);(2)不相交,平行;(3)相交,交点坐标(14,14); (4)相交,交点坐标(315-,435). 4.10x y -+=.390y ++-=.6.(1)95;(2)0;(3)25. 7.2.B 组1.实数32a =. 2.实数m=-2或m=12.3.实数m=4,n=2.6.4 圆习题答案练习6.4.11.(1)221x y +=;(2)22(1)9x y +-=;(3)22(3)4x y -+=;(4)22(2)(1)45x y -++=.2.(1)圆心坐标为(0,0)半径为4;(2)圆心坐标为(1,0)半径为2;(3)圆心坐标为(0,-3)半径为3;(4)圆心坐标为(2,1;(5)圆心坐标为(-1,3)半径为5.3.22(1)(3)25x y ++-=.练习6.4.21.(1)圆心坐标为(2,0)半径为2;(2)圆心坐标为(0,-2)半径为3;(3)圆心坐标为(3,-1)半径为4;(4)圆心坐标为(-1,32.2284160x y x y +-++=.3.是圆的方程,圆心坐标为(2,-1),.习题6.41.(1)22(3)(1)16x y -++=,226260x y x y +-+-=;(2)(-1,3.2.(1)(-3,2;(2)(2,0),2.3.22(3)(9x y -+-=.4.226670x y x y +-+-=.5.是圆的方程,圆心坐标为(4,-1),半径为1.B 组1.2220x y x y +--=.2.0a =或8a =.3.K <34,圆心坐标为(8,2),半径为√68−2k .C 组略.6.5直线与圆的位置关系习题答案练习6.51.(1)2;(2)1.2.(1)1,不存在;(2)2,不存在,0;(3)1,0.3.(1)相切;(2)相离;(3)相交.4.y =2,x =3.5.8.习题6.5A 组1.1,2,0.2.224640x y x y +-++=.3.(1)相切;(2)相交;(3)相交.4.当1b =时,直线与圆相切;当11b <当1b >或1b <-.5.4x -3y -25=0,34250x y +-=.B 组1.22(3)(4)8x y -+-=.2.当6k =±时,直线与圆相切;当6k <-6k >+时,直线与圆相交;当66k -<<+时,直线与圆相离.切线方程为(620x y +-+=和(620x y --+=.4.k <1或k >13.C 组略.6.6直线与圆的方程应用举例习题答案练习6.61.(12,03-). 2.x 2+(y -20.19)2=12.992.3.建立直角坐标系,A (-10,0),B (10,0)D (-5,0),E (5,0).设圆的方程为222()()x a y b r -+-=,得a =0,b =-10.5,r =14.5,将D 点横坐标-5代入方程得3.1y =,因为3 m<3.1 m ,因此船可以通过.习题6.6A 组1.M (4,0).2.3240x y ++=.3. 第二根支柱的长度约为4.49 m.B 组1.10x y --=.2.入射光线所在的直线方程为12510x y +-=,反射光线所在的直线方程为12510x y --=.3.(1)会有触礁可能;(2)可以避免触礁.C 组略.复习题6A 组一、1.B. 2.D. 3.B. 4.C. 5.B. 6.B. 7.D. 8.B.二、9.5.10.-1.11.(0,0).12.0.13.2.三、14(1)(-2,-1);(210y -+=.15.(1)20x y +-=;(2)22(2)2x y -+=.16.x 2+(y -1)2=1.17.(1)(1,2),2;(2)34y x =,0x =. 18.2. 19.是圆的方程,圆心坐标为(2.5,2),圆的半径为1.5.B 组1.(1)20x y +-=;(2)1.2.(1)m=4;(2)x 2+(y -4)2=16.3.(1)点A 的坐标(7,1),点B 的坐标(-5,-5);(2)15.4.解:我们以港口中心为原点O ,东西方向为x 轴,建立平面直角坐标系,圆的方程为22230x y +=,轮船航线所在的直线方程为472800x y +-=;如果圆O 与直线有公共点,则轮船有触礁危险,需要改变航向;如果圆O 与直线无公共点,则轮船没有触礁危险,无需改变航向.由于圆心O (0,0)到直线的距离为30d =>,所以直线与圆O 没有公共点,轮船没有触礁危险,不用改变航向.第七章 简 单 几 何 体7.1多面体八、习题答案练习7.1.11.略.2.(1)√;(2)√;(3)√; (4)√.3.)(侧2cm 60=S , S 表=73.86(cm 2), ()3320cm V =.4. 2a 22=表S ; 36a V =.练习7.1.21.2.3.练习7.1.31.略.2.()2cm 34=侧S , ()3234cm V =. 3.(1)()()2cm 41939+=表S , ()3233cm V =; (2)习题7.1A 组1.(1)Q M N P ⊆⊆⊆;(2) 2 ;(3) 4.2. S 侧=296()cm .3. 33)4V cm =.4. S 表=212()cm , 3)V =.5. S 侧23a =.6. 31)2V cm =. B 组1.S 表=(24a + , 3V a =. 2. ()372V cm =. 3.4.C 组20+,S 表=122524202⨯⨯+⨯⨯⨯=+7.2旋转体习题答案练习7.2.11. (1)√;(2)×;(3) ×.2. S 表=228()cm π, 320()V cm π=.3. S 侧=2100()cm π,3250()V cm π=.4. 2种;表面积不相等;体积不相等. 练习7.2.21.略.2.(1)×;(2)×;(3)√.3.38()V cm π=.4.310()3V cm π=. 5.S 表=236()cm π,316()V cm π=.6.6()L cm =, )h cm =. 练习7.2.31.(1)√;(2)√;(3)√.2.S 表=236()cm π, 336()V cm π=.3.16倍; 64倍.提示:设原球的半径为r ,S 原=24r π , V 原343r π= ,则现半径为R=4r ,S 现=222441664R r r πππ=⨯=,V 现=333444(4)64333R r r πππ=⨯=⨯,S 现=16S 原,V 现=64V 原. 4.4 cm.习题7.2A 组1. (1)26()cm π;(2)()343cm π;(3)236()cm π , 336()cm π ;(4) 8∶27.2. 2316()V cm π=.3. S 表=264()cm π,3128()3V cm =. 4. S 表=264()cm π,3256()3V cm π=. 5. 24 cm. B 组1. 390 g.2. (1)75()8h cm =;(2)不会溢出. 3.约4.49 cm.C 组粮囤的容积为49π+343√372π,最多能装稻谷约103 420 kg.提示:由题知圆锥的底面半径7()2r m =,高)h m =,故粮囤的容积V=V 圆柱+V 圆锥=227177423264972ππππ⎛⎫⎛⎫⨯⨯+⨯ ⎪ ⎪⎝⎭⎝⎭=+所以所装谷物质量为4957510342072ππ⎛⎫+⨯≈ ⎪ ⎪⎝⎭kg.7.3简单几何体的三视图习题答案 练习7.31.2.略.3.4.5.略.习题 7.3A 组1.俯视图,主视图,左视图.2.C.3.4.(1)(2)B 组1.2.C 组俯视图复习题7A 组一、 1.B. 2.D. 3.C. 4.A. 5.C. 6.C.二、7. 312a .8. S 表= (236()cm +,3)V cm =.9. 4 cm.三、10. S侧= (()2384cm +,31152()V cm =.提示:由S 底=72 cm 2得AB=BC=12cm ,AC=.S 侧= ((()22416384cm +⨯=+,372161152()V cm =⨯=.11. S 侧= S π,4SV π=.提示:设圆柱的底面半径为r ,则高为2r ,由题知S =4r 2,得2r =,S侧=222444Sr r r S ππππ⋅===,23222V r r r πππ=⋅==⋅=12. 3288()V cm π= 或3192()V cm π=.13.14.B 组1. C.2. 1 004.8(cm 3). 提示:223851004.8()V r h cm ππ==⨯≈.3.34 .提示:设球的半径为2r =,所以截面圆的面积)2213s r ππ==,大圆的面积:()2224s r r ππ==.所以截面圆的面积与大圆的面积之比为34.4.(1)方案一,体积31400()V m π= .提示:仓库的半径r=10m ,h=4m ,则2311400()V r h m ππ==.方案二,体积 32288()V m π= .提示:仓库的半径r=6m ,h=8m ,则2322288()V r h m ππ==.(2)方案一,墙面建造成本80πa 元.提示:墙面建造成本112210480y r ha a πππ==⨯⨯=(元).方案二,墙面建造成本96πa 元.提示:墙面建造成本22226896y r ha a πππ==⨯⨯=(元).(3)方案一更经济.提示:由(1)(2)知1212,V V y y ><,即方案一体积大,可以储藏的粮食多、墙面建造面积小,用材少、成本低,所以选择方案一更经济.第八章 概率与统计初步8.1随机事件习题答案练习8.1.11.必然事件:(1); 不可能事件:(2)(5);随机事件:(3)(4).2. Ω={0,1,2},随机事件:(1)(2);不可能事件:(3);必然事件:(4).3. Ω={(书法,计算机),(计算机,陶艺),(书法,陶艺)},3个样本点.4.略.练习8.1.21.0.125.2.(1)(2)0.55.3.不是必然事件.习题8.1A组1. 不可能事件:(1); 随机事件:(3); 必然事件:(2)(4).2.(1)Ω={0,1,2};(2)A包含样本点为“没有硬币正面向上”和“只有一枚硬币正面向上”.3.0.7.4.5.(1)(2)0.949.B组1.(1)正确;(2)错误;(3)错误.2.(1)随机事件;(2)不可能事件;(3)必然事件.3.(1)(2)0.080.C组第二种解释是正确的.8.2古典概型习题答案练习8.21.0.22.(1)(2)是古典概型,(3)不是古典概型.3.1 2 .习题8.2A组1.不是古典概型.2.1 3 .3.1 2 .4.1 13.5.1 2 .6.(1)15;(2)35.B组1.1 5 .2.(1)310;(2)12;(3)710.3.(1)12;(2)16;(3)56.C组略.8.3概率的简单性质习题答案练习8.31.(1)是互斥事件;(2)(3)不是互斥事件.2.0.762.3.2 3 .习题8.3 A组1.3 10.2.0.35.3.0.25.4.(1)(2)(3)不是互斥事件;(4)是互斥事件.5.0.8.6.2 3 .B组1.0.3.2.0.93.3.(1)136;(2)16;(3)518.C组略.8.4抽样方法习题答案练习8.4.11.总体是300件产品;样本是50件产品;样本容量是50。
高中数学学习材料马鸣风萧萧*整理制作高一下学期数学必修5模块考试一、选择题(每小题5分,共50分) 1、已知ABC ∆中,32sin ,2,5.1===B AC AB .则=C ( )。
A. 30 B. 60 C. 30或 150 D. 60或 120 2、 设11a b >>>-,则下列不等式中恒成立的是 ( ) Ab a 11< B ba 11> C 2a b > D 22a b > 3、设4321,,,a a a a 成等比数列,其公比为2,则432122a a a a ++的值为( )A .1B .21 C .81D .41 4、 下列结论正确的是( )A .当0x >且1x ≠时,1lg lg x x +2≥ B 。
02x <≤时,1x x-无最大值 C .当2x ≥时,1x x +的最小值为2 D 。
0x >当时,12x x+≥ 5 、若不等式022>++bx ax 的解集为⎭⎬⎫⎩⎨⎧<<-3121|x x ,则a -b 值是( ) A.-10 B.-14 C. 10 D. 146 、 已知变量y x ,满足⎪⎩⎪⎨⎧≥<+≤+-12553034x y x y x ,目标函数是y x z +=2,则有( )A .3,12min max ==z zB .,12max =z z 无最小值C .z z ,3min =无最大值D .z 既无最大值,也无最小值 7、设c >1,记c 1c m -+=,1c c n --=,()1c 1c 21p --+=,则m 、n 、p的大小关系是 ( )A m< p < nB m< n < pC n< p < mD p < m< n 8、在等比数列{a n }中,4S =1,8S =3,则20191817a a a a +++的值是A .14B .16C .18D .209、等比数列{}n a 前n 项的积为n T ,若3618a a a 是一个确定的常数,那么数列10T ,13T ,17T ,25T 中也是常数的项是( )A .10T B .13T C .17T D .25T10、.在等差数列{}n a 中,前四项之和为40,最后四项之和为80,所有项之和是210,则项数n 为( )A .12B .14C .15D .16二 填空题(本大题共5个小题,每小题5分,共25分,把答案填在答题卡的横线上)11、在△ABC 中,角A ,B ,C 所对的边分别是a ,b , c ,若222,4b c a bc AC AB +=+∙=且,则△ABC 的面积等于 .12、在数列{}n a 中,11a =,且对于任意正整数n ,都有1n n a a n +=+,则100a = _______. 13、若不等式022>+-mx mx 对一切实数x 恒成立,则实数m 的取值范围是 14、已知a,b 为正实数,且ba b a 11,12+=+则的最小值为 15、等差数列{}n a 和{}n b 的前n 项和分别为n S 和n T ,若对一切正整数n 都有1223+-=n n T S n n ,求711b a =三、解答题:(本大题共 6 小题,共 75分。
复习题61. 选择题:(1) 已知数列{a n }的通项公式为a n =2n-5,那么a 2n =〔 B 〕。
A 2n-5B 4n-5C 2n-10D 4n-10〔2〕等差数列-7/2,-3,-5/2,-2,··第n+1项为〔 A 〕A )7(21-nB )4(21-nC 42-nD 72-n 〔3〕在等差数列{ a n }中,已知S 3=36,则a 2=〔 B 〕A 18B 12C 9D 6〔4〕在等比数列{a n }中,已知a 2=2,a 5=6,则a 8=〔 C 〕A 10B 12C 18D 242.填空题:〔1〕数列0,3,8,15,24,…的一个通项公式为an=n^2-1.〔2〕数列的通项公式为a n =〔-1〕n+1•2+n,则a 10=8.〔3〕等差数列-1,2,5,…的一个通项公式为an=3n-4.〔4〕等比数列10,1,101,…的一个通项公式为an=10^(2-n) 3.数列的通项公式为a n =sin ,4πn 写出数列的前5项。
解:sin π/4=根号2/2sin π/2=1sin 3π/4=根号2/2sin π =0sin 5π/4=-根号2/24.在等差数列{ a n }中,a 1=2,a 7=20,求S 15.解:an=a1+(n-1)da1=2a7=a1+(7-1)d20=2+6d 所以d=3sn=na1+n(n-1)/2*d 所以s15=15*2+15*14/2*3=3455.在等比数列{ a n }中,a 5=43,q=21-,求S 7. 解:a5=a1*q^(5-1),∴a1=12S7=a1(1-q^6)/(1-q)=63/86. 已知本金p=1000元,每期利i=2%,期数n=5,按复利计息,求到期后的本利和 解:由于以复利计息,故到期时得到的钱为P*〔1+i 〕的n 次〔n 为年数〕此处n=5故本利和为1000*〔1+2%〕的5次方=1104.08元7.在同一根轴上安装五个滑轮,它们的直径成等差数,最小与最大的滑轮直径分别为120厘米与216厘米,求中间三个滑轮的直径.解:216-120=9696/4=24就是说差值为24所以中间3个分别是120+24*1=144120+24*2=168120+24*3=192单位厘米。
高职数学基础模块下册期中考试试卷1、椭圆的离心率一定()[单选题] *A、等于1B、等于2(正确答案)C、大于1D、等于02、y=k/x(k是不为0的常数)是()。
[单选题] *正比例函数一次函数反比例函数(正确答案)二次函数3、10. 如图所示,小明周末到外婆家,走到十字路口处,记不清哪条路通往外婆家,那么他一次选对路的概率是(? ? ?).[单选题] *A.1/2B.1/3(正确答案)C.1/4D.14、10. 已知方程组的解为,则、对应的值分别为()[单选题] *A、1,2B、1,5C、5,1(正确答案)D、2,45、下列说法正确的是[单选题] *A.绝对值最小的数是0(正确答案)B.绝对值相等的两个数相等C.-a一定是负数D.有理数的绝对值一定是正数6、7.如图,数轴上点M表示的数可能是()[单选题] *A.5B.﹣6C.﹣6(正确答案)D.67、6.有15张大小、形状及背面完全相同的卡片,卡片正面分别画有正三角形、正方形、圆,从这15张卡片中任意抽取一张正面的图形既是轴对称图形,又是中心对称图形的概率是1/3?,则正面画有正三角形的卡片张数为()[单选题] *A.3B.5C.10(正确答案)D.158、7人小组选出2名同学作正副组长,共有选法()种。
[单选题] *A、14B、15(正确答案)C、49D、1289、6、已知点A的坐标是,如果且,那么点A在()[单选题] *x轴上y轴上x轴上,但不能包括原点(正确答案)y轴上,但不能包括原点10、已知sina<0且cota>0,则是()[单选题] *、第一象限角B、第一象限角C、第三象限角(正确答案)D、第四象限角11、从3点到6点,时针旋转了多少度?[单选题] *60°-90°(正确答案)-60°90°12、34、根据下列已知条件, 能画出唯一的△ABC的是() [单选题] *A、∠C=90°,AB=8,BC=10B、AB=4,BC=3,∠A=30°C、AB=3,BC=4,CA=8D、∠A=60°,∠B=45°,AB=6(正确答案)13、17. 的计算结果为()[单选题] *A.-7B.7(正确答案)C.49D.1414、24.已知点M在线段AB上,点N是线段MB的中点,若AN=6,则AM+AB的值为()[单选题] *A.10B.8C.12(正确答案)D.以上答案都不对15、420°用弧度制表示为()[单选题] *7π/3(正确答案)-2π/3-π/32π/316、计算(2x-1)(5x+2)的结果是() [单选题] *A. 10x2-2B. 10x2-5x-2C. 10x2+4x-2D. 10x2-x-2(正确答案)17、已知10?=5,则100?的值为( ) [单选题] *A. 25(正确答案)B. 50C. 250D. 50018、11.11点40分,时钟的时针与分针的夹角为()[单选题] *A.140°B.130°C.120°D.110°(正确答案)19、已知a+b=3,则代数式(a+b)(a-b)+6b的值是(? ????) [单选题] *A. -3B. 3C. -9D. 9(正确答案)20、29.已知2a=5,2b=10,2c=50,那么a、b、c之间满足的等量关系是()[单选题] *A.ab=cB.a+b=c(正确答案)C.a:b:c=1:2:10D.a2b2=c221、17.若a与﹣2互为相反数,则a的值是()[单选题] *A.﹣2B.C.D.2(正确答案)22、9.已知关于x,y的二元一次方程组的解满足x+y=8,则k的值为( ) [单选题] * A.4B.5C.-6D.-8(正确答案)23、若10?=3,10?=2,则10的值为( ) [单选题] *A. 5B. 6(正确答案)C. 8D. 924、5.下列说法中正确的是()[单选题] *A.没有最大的正数,但有最大的负数B.没有最小的负数,但有最小的正数C.没有最小的有理数,也没有最大的有理数(正确答案) D.有最小的自然数,也有最小的整数25、下列说法中,正确的是()[单选题] *A、第一象限角是锐角B、第一象限角是锐角(正确答案)C、小于90°的角是锐角D、第一象限的角不可能是钝角26、390°是第()象限角?[单选题] *第一象限(正确答案)第二象限第三象限第四象限27、-330°是第()象限角?[单选题] *第一象限(正确答案)第二象限第三象限第四象限28、如果平面a和平面β有公共点A,则这两个平面就相交()[单选题] *A、经过点A的一个平面B、经过点A的一个平面(正确答案)C、点AD、无法确定29、7.已知点A(-2,y1),B(3,y2)在一次函数y=-x+b的图象上,则( ) [单选题]* A.y1 > y2(正确答案)B.y1 < y2C.y1 ≤y2D.y1 ≥y230、30、等腰三角形ABC中,AB=2BC,且BC=12,则△ABC的周长为( ). [单选题]A. 48B. 60(正确答案)C. 48或60D. 36。
(新课标)最新北师大版高中数学必修五必修五模块测试卷(150分,120分钟)一、选择题(每题5分,共60分)1.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且cos 22A =ccb 2+,则△ABC 是( )A.直角三角形B.等腰三角形或直角三角形C.等边三角形D.等腰直角三角形2.在等比数列{a n }中,如果a 1+a 2=40,a 3+a 4=60,那么a 7+a 8等于( ) A.135 B.100 C.95 D.803.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且(3b -c)cos A =acos C ,则cos A 的值等于( ) A.23 B. 33 C. 43 D. 63 4.〈日照模拟〉已知等比数列{a n }的前n 项和S n =t 25-⋅n -51,则实数t 的值为( ) A.4 B.5 C. 54 D. 515.某人向正东方向走x km 后,向右转150°,然后朝新方向走3 km ,结果他离出发点恰好是3 km ,那么x 的值为( )A.3B.23C.3或23D.3 6.设{a n }为各项均是正数的等比数列,S n 为{a n }的前n 项和,则( ) A.44S a =66S a B. 44S a >66S a C. 44S a <66S a D. 44S a≤66S a 7.已知数列{a n }的首项为1,并且对任意n ∈N +都有a n >0.设其前n 项和为S n ,若以(a n ,S n )(n ∈N +)为坐标的点在曲线y =21x(x +1)上运动,则数列{a n }的通项公式为( ) A.a n =n 2+1 B.a n =n 2C.a n =n +1D.a n =n8.设函数f(x)=⎪⎪⎩⎪⎪⎨⎧≥-.0,1,0,132<x xx x 若f(a)<a ,则实数a 的取值范围为( )A.(-1,+∞)B.(-∞,-1)C.(3,+∞)D.(0,1)9.已知a>0,b>0,则a 1+b1+2ab 的最小值是( ) A.2 B.22 C.4 D.510.已知目标函数z=2x+y 中变量x,y 满足条件⎪⎩⎪⎨⎧≥+-≤-,1,2553,34x y x y x <则( )A.z max =12,z min =3B.z max =12,无最小值C.z min =3,无最大值D.z 无最大值,也无最小值 11.如果函数f(x)对任意a ,b 满足f(a +b)=f(a)·f(b),且f(1)=2,则)1()2(f f +)3()4(f f +)5()6(f f +…+)2013()2014(f f =( )A.4 018B.1 006C.2 010D.2 014 12.已知a ,b ,a +b 成等差数列,a ,b ,ab 成等比数列,且log c (ab)>1,则c 的取值范围是( ) A.0<c<1 B.1<c<8 C.c>8 D.0<c<1或c>8 二、填空题(每题4分,共16分)13.〈泉州质检〉△ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,且acosC ,bcosB ,ccosA 成等差数列,则角B=.14.已知两正数x ,y 满足x +y =1,则z =⎪⎪⎭⎫⎝⎛+⋅⎪⎭⎫ ⎝⎛+y y x x 11的最小值为. 15.两个等差数列的前n 项和之比为12105-+n n ,则它们的第7项之比为.16.在数列{a n }中,S n 是其前n 项和,若a 1=1,a n +1=31S n (n ≥1),则a n =.三、解答题(解答应写出文字说明,证明过程或演算步骤)(17~20题每题12分,21~22题每题13分,共74分)17.已知向量m =⎪⎭⎫ ⎝⎛21,sin A 与n =(3,sin A +3cos A)共线,其中A 是△ABC 的内角. (1)求角A 的大小;(2)若BC =2,求△ABC 的面积S 的最大值,并判断S 取得最大值时△ABC 的形状.18.已知数列{a n }满足a 1=1,a n+1=2a n +1(n ∈N*) (1)求数列{a n }的通项公式; (2)若数列{b n }满足11144421---n b b b Λ=n b n a )1(+ (n ∈N*),证明:{b n }是等差数列;19.如图1,A,B是海面上位于东西方向相距5(3+3)海里的两个观测点,现位于A点北偏东45°,B点北偏西60°的D点有一艘轮船发出求救信号,位于B点南偏西60°且与B点相距203海里的C点的救援船立即前往营救,其航行速度为30海里/小时,该救援船到达D点需要多长时间?20.解关于x的不等式ax2-2≥2x-ax(a∈R).21.已知等差数列{a n}的首项a1=4,且a2+a7+a12=-6.(1)求数列{a n}的通项公式a n与前n项和S n;(2)将数列{a n}的前四项抽去其中一项后,剩下三项按原来顺序恰为等比数列{b n}的前三项,记{b n}的前n项和为T n,若存在m∈N+,使对任意n∈N+总有T n<S m+λ恒成立,求实数λ的最小值.22.某食品厂定期购买面粉,已知该厂每天需用面粉6 t,每吨面粉的价格为1 800元,面粉的保管等其他费用为平均每吨每天3元,每次购买面粉需支付运费900元.(1)该厂多少天购买一次面粉,才能使平均每天所支付的总费用最少?(2)若提供面粉的公司规定:当一次性购买面粉不少于210 t时,其价格可享受9折优惠(即原价的90%),该厂是否应考虑接受此优惠条件?请说明理由.参考答案及点拨一、1.A 点拨:因为cos 22A =c c b 2+及2cos 22A -1=cos A ,所以cos A =cb .而cos A=bca cb 2222-+,∴b 2+a 2=c 2,则△ABC 是直角三角形.故选A.2.A 点拨:由等比数列的性质知a 1+a 2,a 3+a 4,…,a 7+a 8仍然成等比数列,公比q =2143a a a a ++=4060=23,∴a 7+a 8=(a 1+a 2)14-q =40×323⎪⎭⎫ ⎝⎛=135. 3.B 点拨:(3b -c)cos A =acos C ,由正弦定理得3sin Bcos A =sin Ccos A +cos Csin A⇒3sin Bcos A =sin(C +A)=sin B ,又sin B ≠0,所以cos A =33.故选B. 4.B 点拨:∵a 1=S 1=51t -51,a 2=S 2-S 1=54t ,a 3=S 3-S 2=4t ,∴由{a n }是等比数列.知254⎪⎭⎫⎝⎛t =⎪⎭⎫ ⎝⎛-5151t ×4t ,显然t ≠0,∴t =5.5.C 点拨:根据题意,由余弦定理得(3)2=x 2+32-2x ·3·cos 30°,整理得x 2-33x +6=0,解得x =3或23.6.B 点拨:由题意得公比q>0,当q =1时,有44S a -66S a =41-61>0,即44S a >66S a ; 当q ≠1时,有44S a -66S a =()41311)1(q a q q a ---()61511)1(q a q q a --=q 3(1-q)()()642111q q q ---⋅=231q q +611q q --⋅>0,所以44S a >66S a .综上所述,应选B. 7.D 点拨:由题意,得S n =21a n (a n +1),∴S n -1=21a n -1(a n -1+1)(n ≥2). 作差,得a n =21()1212---+-n n n n a a a a , 即(a n +a n -1)(a n -a n -1-1)=0.∵a n >0(n ∈N +),∴a n -a n -1-1=0,即a n -a n -1=1(n ≥2).∴数列{a n }为首项a 1=1,公差为1的等差数列. ∴a n =n(n ∈N +).8.A 点拨:不等式f(a)<a 等价于⎪⎩⎪⎨⎧≥-0,132a a a <或⎪⎩⎪⎨⎧,1,0a aa <<解得a ≥0或-1<a<0,即不等式f(a)<a的解集为(-1,+∞). 9.C 点拨:依题意得a 1+b 1+2ab ≥2ab 1+2ab ≥4ab ab ⋅1=4,当且仅当a 1=b1,且ab1=ab 时,取等号,故应选C. 10.C11.D 点拨:由f(a +b)=f(a)·f(b),可得f(n +1)=f(n)·f(1),)()1(n f n f +=f(1)=2,所以)1()2(f f +)3()4(f f +)5()6(f f +…+)2013()2014(f f =2×1 007=2 014. 12.B 点拨:因为a ,b ,a +b 成等差数列,所以2b =a +(a +b),即b =2a.又因为a ,b ,ab成等比数列,所以b 2=a ×ab ,即b =a 2.所以a =2,b =4,因此log c (ab)=log c 8>1=log c c ,有1<c<8,故选B. 二、13.60° 点拨:依题意得acos C +ccos A =2bcos B ,根据正弦定理得sin Acos C +sin Ccos A =2sin Bcos B ,则sin(A +C)=2sin Bcos B ,即sin B =2sin Bcos B ,所以cos B =21,又0°<B<180°,所以B =60°,14. 425 点拨:z =⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+y y x x 11=xy +xy 1+x y +y x =xy +xy 1+xy xy y x 2)(2-+=xy 2+xy -2,令t =xy ,则0<t =xy ≤22⎪⎭⎫ ⎝⎛+y x =41.设f(t)=t +t 2,t ∈⎥⎦⎤ ⎝⎛41,0,设41≥t 2>t 1>0,则f(t 1)-f(t 2)=⎪⎪⎭⎫ ⎝⎛+112t t -⎪⎪⎭⎫ ⎝⎛+222t t =212121)2)((t t t t t t --. 因为41≥t 2>t 1>0, 所以t 2-t 1>0,t 1·t 2<161.则t 1·t 2-2<0. 所以f(t 1)-f(t 2)>0.即f(t 1)>f(t 2).∴f(t)=t +t 2在⎥⎦⎤ ⎝⎛41,0上单调递减,故当t =41时f(t)=t +t2有最小值433,所以当x =y =21时,z 有最小值425. 15.3∶1 点拨:设两个等差数列{a n },{b n }的前n 项和为S n ,T n ,则n n T S =12105-+n n ,而77b a=131131b b a a ++=1313T S =113210135-⨯+⨯=3. 16.21,114,233n n n -=⎧⎪⎨⎛⎫≥ ⎪⎪⎝⎭⎩ 点拨:∵3a n +1=S n (n ≥1),∴3a n =S n -1(n ≥2). 两式相减,得3(a n +1-a n )=S n -S n -1=a n (n ≥2)⇒n n a a 1+=34(n ≥2) ⇒n ≥2时,数列{a n }是以34为公比,以a 2为首项的等比数列, ∴n ≥2时,a n =a 2234-⎪⎭⎫ ⎝⎛⋅n .令n =1,由3a n +1=S n ,得3a 2=a 1,又a 1=1⇒a 2=31,∴a n =31234-⎪⎭⎫⎝⎛⋅n (n ≥2).故⎪⎩⎪⎨⎧≥⎪⎭⎫ ⎝⎛⋅=-.2,3431,112n n n , 三、17.解:(1)因为m ∥n , 所以sinA ·(sinA +3cosA)-23=0. 所以22cos 1A -+23sin2A -23=0.即23sin2A -21cos2A =1,即sin ⎪⎭⎫ ⎝⎛-62πA =1. 因为A ∈(0,π),所以2A -6π∈⎪⎭⎫ ⎝⎛-611,6ππ, 故2A -6π=2π,即A =3π. (2)由余弦定理,得4=b 2+c 2-bc ,又S △ABC =21bcsinA =43bc ,而b 2+c 2≥2bc ,bc +4≥2bc ,bc ≤4(当且仅当b =c 时等号成立), 所以S △ABC =21bcsinA =43bc ≤43×4=3.当△ABC 的面积最大时,b =c ,又A =3π,故此时△ABC 为等边三角形. 18.(1)解:∵a n+1=2a n +1(n ∈N *),∴a n+1+1=2(a n +1).∴{a n +1}是以a 1+1=2为首项,2为公比的等比数列.∴a n +1=2n.即a n =2n -1(n ∈N *). (2)证明:∵114-b 124-b …14-n b =()n bn a 1+.∴nb b b n -+++)(214Λ=nnb 2.∴2[(b 1+b 2+…+b n )-n ]=nb n ,①2[(b 1+b 2+…+b n +b n+1)-(n+1)]=(n+1)b n+1.②②-①,得2(b n+1-1)=(n+1)b n+1-nb n ,即(n -1)b n+1-nb n +2=0,③ ∴nb n+2-(n+1)b n+1+2=0.④④-③,得nb n+2-2nb n+1+nb n =0,即b n+2-2b n+1+b n =0,∴b n+2-b n+1=b n+1-b n (n ∈N *).∴{b n }是等差数列. 19.解:由题意知AB =5(3+3)海里,∠DBA =90°-60°=30°,∠DAB =90°-45°=45°,∴∠ADB =180°-(45°+30°)=105°. 在△DAB 中,由正弦定理得,DAB DB ∠sin =ADBAB∠sin .∴DB =ADBDAB AB ∠∠⋅sin sin =︒︒⋅+105sin 45sin )33(5=︒⋅︒+︒⋅︒︒⋅+45cos 60sin 60sin 45sin 45sin )33(5=213)13(35++=103(海里).又∠DBC =∠DBA +∠ABC =30°+(90°-60°)=60°, BC =203海里,在△DBC 中,由余弦定理得CD 2=BD 2+BC 2-2BD ·BC ·cos ∠DBC =300+1 200-2×103×203×21=900, ∴CD =30海里.则需要的时间t =3030=1(小时). 答:救援船到达D 点需要1小时.20.解:原不等式可化为ax 2+(a -2)x -2≥0⇒(ax -2)(x +1)≥0. (1)当a =0时,原不等式化为x +1≤0⇒x ≤-1.(2)当a >0时, 原不等式化为⎪⎭⎫ ⎝⎛-a x 2 (x +1)≥0⇒x ≥a2或x ≤-1; (3)当a <0时,原不等式化为⎪⎭⎫⎝⎛-a x 2 (x +1)≤0. ①当a 2>-1,即a <-2时,原不等式的解集为-1≤x ≤a 2; ②当a 2=-1,即a =-2时,原不等式的解集为x =-1;③当a 2<-1,即-2<a <0时,原不等式的解集为a2≤x ≤-1.综上所述:当a <-2时,原不等式的解集为⎥⎦⎤⎢⎣⎡-a2,1;当a =-2时,原不等式的解集为{-1}; 当-2<a <0时,原不等式的解集为⎥⎦⎤⎢⎣⎡-1,2a ; 当a =0时,原不等式的解集为(-∞,-1];当a >0时,原不等式的解集为(-∞,-1]∪⎪⎭⎫⎢⎣⎡+∞,2a . 21.解:(1)由a 2+a 7+a 12=-6得a 7=-2,又a 1=4,所以公差d =-1,所以a n =5-n , 从而S n =2)9(n n -. (2)由题意知b 1=4,b 2=2,b 3=1, 设等比数列的公比为q ,则q =12b b =21, 所以T n =2112114-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-n =8⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-n 211.令f(n)=n⎪⎭⎫ ⎝⎛21.因为f(n)=n⎪⎭⎫⎝⎛21是关于自然数n 的减函数,所以{T n }是递增数列,得4≤T n <8.又S m =2)9(m m -=-22921⎪⎭⎫⎝⎛-m +881,当m =4或m =5时,S m 取得最大值, 即(S m )max =S 4=S 5=10,若存在m ∈N +,使对任意n ∈N +总有T n <S m +λ恒成立, 则8≤10+λ,得λ≥-2, 所以λ的最小值为-2.22.解:(1)设该厂应每x 天购买一次面粉,则其购买量为6x t.由题意知,面粉的保管等其他费用为3[6x +6(x -1)+…+6×2+6×1]=9x(x +1)元. 设每天所支付的总费用为y 1元,则 y 1=x 1[9x(x +1)+900]+6×1 800=x900+9x +10 809≥2x x 9900⋅+10 809=10 989, 当且仅当9x =x900,即x =10时取等号. 所以该厂每10天购买一次面粉,才能使平均每天所支付的总费用最少.(2)若该厂接受此优惠条件,则至少每35天购买一次面粉.设该厂接受此优惠条件后,每x(x ≥35)天购买一次面粉,平均每天支付的总费用为y 2元,则y 2=x 1[9x(x +1)+900]+6×1 800×0.90=x900+9x +9 729(x ≥35). 令f(x)=x +x100(x ≥35),x 2>x 1≥35,则f(x 1)-f(x 2)=⎪⎪⎭⎫ ⎝⎛+11100x x -⎪⎪⎭⎫ ⎝⎛+22100x x =212121)100)((x x x x x x --. 因为x 2>x 1≥35,所以x 1-x 2<0,x 1·x 2>100.所以x 1x 2-100>0. 所以f(x 1)-f(x 2)<0,即f(x 1)<f(x 2). 所以f(x)=x +x100在[35,+∞)内为增函数. 所以当x =35时,y 2有最小值,约为10 069.7. 此时y 2<10 989,所以该厂应该接受此优惠条件.。
1高教版《数学》基础模块(下册)《第5章指数函数与对数函数》复习题 及答案 A 知识巩固 一、选择题.1. 下列式子计算正确的是 ( ). A. (−1)2=−1 B. (−1)0=−1 C. (a 12)2=a (a >0) D. a −1=a (a ≠0) 2. 下列描述正确的是 ( ).A. √−273=3 B. 16 的四次方根是 ±2 C. √−325=±2 D. √81=−93. 若指数函数 f (x )=(a −1)x 是 R 上的减函数,则 a 的取值范围是( ). A. a >2 B. a <2 C. 0<a <1 D. 1<a <24. 下列各指数函数中,在 (−∞,+∞) 上为增函数的是( ). A. y =1.5xB. y =(π5)xC. y =0.2xD. y =(13)x5. 不在指数函数 y =5x 的图像上的点是 ( ). A.(0,1) B.(1,5)2C.(-1, - 5)D. (−1,15) 6. 函数 y =lgx ( ).A. 在 (−∞,+∞) 上是增函数B. 在 (−∞,+∞) 上是减函数C. 在 (0,+∞) 上是增函数D. 在 (−∞,0) 上是减函数 7. 函数 y =log 12(1−2x ) 的定义域是( ).A. (−∞,+∞)B. (−∞,12)∪(12,+∞) C. [12,+∞) D. (−∞,12) 8. 已知 3x−1=19 ,则 x = ( ). A. 2 B. -2 C. 1 D. -19. 若 log 4x =−3 ,则 x = ( ). A. 12 B. 164 C. -12 D. −3410. 若 1<x <y ,则下列式子正确的是 ( ). A. 3y <3x B. 3x <3yC. log 4y <log 4xD. log 14x <log 14y 11. 若 a 2<a −12,则 a 的取值范围是( ). A. a ≥0 B. a >0 C. 0<a <1 D. 0≤a ≤1312. 已知 a =(23)−12,b=(23)−13,c=1 ,则它们的大小关系是( ).A. b >c >aB. a >b >cC. b >a >cD. c >a >b 13. (lg5)2+lg2×lg5+lg2= ( ). A 1 B. -1 C. 2 D. -214. 下列不等式成立的是 ( ).A. log 32<log 23<log 25B. log 32<log 25<log 23C. log 23<log 32<log 25D. log 23<log 25<log 3215. 已知函数 f (x )={3x ,x <1,−x,x >1,则 f (12)= ( ).A. 3B. √3C. 12D. −12二、填空题.16.√734写成分数指数幂为____ . 17. (25)−3=1258的对数式为____ .18. 0.2512+(181)−14+(π−3)0= ____ .19. log 28+2lg 1100−log 327= ____ .20. 将三个数 5−12、 512、 log 512 按照从小到大的顺序排列为____ .4三、解答题.21. 已知指数函数 y =a x (a >0 且 a ≠1) 的图像经过点 P (2,9) ,求 x =−2 时 y 的值.22. 作出下列各函数的图像.(1) y =4x ; (2) y =log 12x .23. 计算下列各式的值.(1) 2log 242+12log 2436 ; (2) lg2+2lg3−lg60−lg30 . 24. 计算下列各式的值. (1)√(−4)24+27−13⋅(π−√2)0+log 1327 ;(2) (√273×√54)÷√2 . 25. 求下列函数的定义域.(1) y =log 0.5(1−x ) ; (2) y =2−x+lg3 .26. 某工厂机器设备的初始价值为 100 万元,由于磨损,每一年比上一年的价值降低 10% ,使用 10 年后, 该机器设备的价值为多少万元 (保留到小数点后第 2 位)?B 能力提升1. 求下列函数的定义域. (1) y =ln (x 2−x ) ; (2) y =√2−lgx.2. 求函数 f (x )=4x2−4x+5的值域.3. 若 √4a 2−4a +1=1−2a ,求实数 a 的取值范围.54. 若 0≤x ≤2 ,求函数 y =(12)x+3 的最大值和最小值.5. 按复利计算利息的一种储蓄产品,设本利和为 y ,存期为 x ,若本金为 a 元,每期利率为 r .(1)试写出本利和 y 随存期 x 变化的函数关系式.(2)如果本金 a =1000 元,每期利率 r =2.25% ,试计算 5 期后本利和是多少 (保留到小数点后第 2 位).6. 声强级 L I (单位: dB ) 由公式 L I =10lg (I10−12) 给出,其中 I 为声强 (单位: W/m 2 ),一般正常人听觉能忍受的最高声强为 1 W/m 2 ,能听到的最低声强为 10−12 W/m 2 ,那么,人听觉的声强级范围是多少?7. 我国是世界上鸟类种数较多的国家之一, 现有鸟类 1000 多种, 其中具有迁徙习性的鸟类有 800 多种. 燕子每年秋天要从北方飞往南方过冬, 研究发现, 燕子的飞行速度可以表示为函数 v =5log 2Q10 ,单位是 m/s ,其中 Q 表示燕子耗氧量的单位数.(1) 计算: 燕子静止时的耗氧量是多少个单位?(2)当一只燕子的耗氧量是 80 个单位时, 它的飞行速度是多少?C 学以致用1. 为推动实施扩大内需战略, 促进居住消费健康发展, 满足人民对美好生活向往的现实需要,某地开发商新建住宅单价为 1000元/m 2 ,金融机构可以提供 4 年期短期融资服务, 年利率为 4.5% ,采取复利方式支付利息. 若某人购买一套 120 m 2 的房屋,选择融资服务, 总付款多少元?2. 为预防某种病毒, 某职业学校用中药熏雾消毒法对教室进行消毒. 已知药物释放完毕后, 室内每立方米空气中药物的含量 y 与时间 t 的函数关系式为 y =(116)t−a( a 为常数),假设 0.1 h 时,室内每立方米空气中药物的含量为61mg ,据测定,当空气中每立方米的含药量降低到 0.25mg 以下时,学生可以进入教室. 请写出从药物释放开始,每立方米空气中药物的含量 y 与时间 t 之间的函数关系式; 从药物释放开始,学生至少需要经过多少小时后才能进入教室?答案:A 组一、1.C 2. B 3.D 4.A 5.C 6.C 7.D 8. D 9.B 10.B 11.C 12. B 13. A 14.A 15.B二、16.347- 17.-3 18. 4.5 19.-4 20.51log 2<125-<125三、21. 19 22. 略23.(1)1 (2)-2 24.(1)23-(2)25.(1)(),1-∞ (2)R 26. 34.87(万元) B 组 1. (1)()(),01,-∞+∞ (2)()0,1002. )4,⎡+∞⎣ 3.1,2⎛⎤-∞ ⎥⎝⎦ 4.13,44⎡⎤⎢⎥⎣⎦ 5.(1) ()()*1xy a r xN =+∈(2)1117.68元 提示:()510001 2.25%1117.68+≈6.0,120⎡⎤⎣⎦ 提示:因1211010lg IL -=令1I =得12110lg 10120L ==7令1210I -=得110lg 10L ==所以人听觉的声强级范围为0,120⎡⎤⎣⎦ 7. (1)10个单位 (2)15m/s提示:(1)由205log 10Q=,解的Q=10(2)由22805log 5log 815(/)10V m s ===C 组1.约1431022元提示:总付款=()412000001 4.5%1431022+≈(元)2.(1)0.1110,01011(),1610t t t y t -⎧≤≤⎪⎪=⎨⎪>⎪⎩ (2)0.6h提示:(1)当1010t ≤≤时,设y=kt ,过(0.1,1),代入得k=10,所以y=10t当110t >时,116t ay -⎛⎫= ⎪⎝⎭过(0.1,1),代入得a=0,所以0.1116t y -⎛⎫= ⎪⎝⎭综上所述,0.1110,01011(),1610t t t y t -⎧≤≤⎪⎪=⎨⎪>⎪⎩ (2)当1010t ≤≤时,y 从0增加到1,当110t >时,y 从1开始递减,所以80.110.2516t -⎛⎫< ⎪⎝⎭,解的t>0.6。
《数学》高中基础模块(下册)试卷5及参考答案
一、选择题(每小题5分,共50分)
1.过点)(7,1-M 且与直线
4x+2y-15=0平行的直线方程是
( )
A.2x+y-5=0
B.2x+y-1=0
C.x-2y-5=0
D.x-2y+1=0
2.直线(a-1)x+3y+12=0与直线x+(a+1)y+a=0互相垂直,则a 等于 ( )
A.-2或21-
B.1
C.21-
D.-2 3.已知直线1l 的方程为x+3y+C=0,直线2l 的方程为2x-By+4=0,若两直线的交点在x 轴上,则C 的值为 ( )
A.2
B.-2
C.2或-2
D.与B 有关
4.已知A(4,-1) , B(1,3), 则AB 两点的距离为 ( ) A.7 B.5 C. 23 D.13
5.已知点A (2,1),B (-518,5
19),则线段AB 的垂直平分线方程是 ( ) A.2x-y-4=0 B.x+y-3=0 C.2x-y=0 D.2x-y+4=0
6.若圆0m 42x 22=+-++y x y 过点(2,0),则m 的值为 ( )
A.2
B.8±
C.2±
D.8-
7.圆0542x 22=--++y x y 与直线y=-1的位置关系为 ( )
A.相离
B.相切
C.相交但不经过圆心
D.相交且经过圆心
8.圆922=+y x 上的点到直线3x-4y-20=0距离的最大值为 ( )
A..7 B 1 C.1-52或7 D.1-52或1
9.下列说法正确的是
A.线段AB 在平面α内,直线AB 不一定在平面α内
B.如果两个平面有三个公共点,这两个平面一定重合
C.四边形一定是平面图形
D.梯形一定是平面图形
10.已知DEF ABC ∠∠与为空间的两个角,AB//DE,BC//EF.若︒=∠105DEF ,那么ABC ∠= ( )
A.︒105
B.︒75或︒105
C.︒45或︒105
D.︒75
二、填空题.(本大题共8空,每空5分,共40分)
1.点P(x,-y)关于y 轴的对称点是 。
2.过点(1,-2)且与直线3x+2y-5=0平行的直线方程是 。
3.x 轴上点P 到点(-2,5)的距离等于8,则P 点坐标为 。
4.在袋中有编号依次为1,2,3,⋅⋅⋅,10的10个小球,现从袋中随机取出一个小球,则取出的球编号是3的倍数的概率是 。
5.直线3x-4=3y 的倾斜角为 。
6.以点M (-2,3)为圆心且与y 轴相切的圆的方程为 。
7.把教室看成一个长方体,那么教室的各个面中,相交的平面有 对。
8.在正方体ABCD-A 1B 1C 1D 1中,与对角线AC 1异面的棱有 条。
三、解答题(共60分)
1.(12分)已知直线l 的倾斜角是直线y=-3
3x+1的倾斜角的五分之一,且经过点(3,-1),求直线l 的方程。
2.(12分)已知直线l 经过直线2x-y+4=0和x-y+5=0的交点,且平行于直线3x+y-1=0,求直线l 的方程。
3.(12分)求与圆M :9x 22=+y 相切与点P(2,5)的直线方程。
4.(12分)求以M (2,1)为圆心,并且与直线4x-3y+9=0相切的圆的方程。
5.(12分)甲乙两人各进行一次射击,如果甲击中目标的概率为0.6,乙击未中目标的概率为0.3,求:
(1)甲乙两人都未击中目标的概率;
(2)恰好有一人击中目标的概率;
(3)至少有一人击中目标的概率。
参考答案
选择题1~5 ACAB D 6~10 DCADB
填空题::1.(-x ,-y) 2.3x+2y+1=0 3.(-239±,0)
4.3/10
5.60
6.43y 2x 22=+++)()(
7.12
8.6
一、评分标准:
选择题:(5 x 10=50分)
填空题(5x 8=40分)
解答题(60分)
1, 步骤答案对满分
2, 答案正确没有步骤两分
3, 看步骤酌情打分。