三基色荧光粉的最佳粉量配比
- 格式:pdf
- 大小:91.89 KB
- 文档页数:3
高温固相合成是指在高温(1000~1500℃)下,固体界面间经过接触,反应,成核,晶体生长反应而生成一大批复合氧化物,如含氧酸盐类、二元或多元陶瓷化合物等。
高温固相法是一种传统的制粉工艺,虽然有其固有的缺点,如能耗大、效率低、粉体不够细、易混入杂质等,由于该法制备的粉体颗粒无团聚、填充性好、成本低、产量大、制备工艺简单等优点,迄今仍是常用的方法。
高温固相合成是指在高温(1000~1500℃)下,固体界面间经过接触,反应,成核,晶体生长反应而生成一大批复合氧化物,如含氧酸盐类、二元或多元陶瓷化合物等。
高温固相法是一种传统的制粉工艺,虽然有其固有的缺点,如能耗大、效率低、粉体不够细、易混入杂质等,由于该法制备的粉体颗粒无团聚、填充性好、成本低、产量大、制备工艺简单等优点,迄今仍是常用的方法。
扩展资料合成稀土三基色荧光粉的几种方法.(一)高温固相反应法此方法是制备稀土三基色荧光粉最原始的一种方法.以稀土三基色荧光粉中的红色荧光粉(YEu)O3为例,用这种方法制备的工艺如下:称取一定计量比的Y2O3和Eu2O3(99.99%或以上)加入定量助熔剂,混匀在1300-1500ºC灼烧2h左右后取出研磨并洗涤即可.这种方法操作简单但粒度较大,会有成分偏析的现象,这样会降低发光效率,若灼烧温度偏高则会烧结严重在最后研磨时会破坏激活剂所在的晶格位置从而导致发光效率的降低.(二)共沉淀法制备前驱体在发现了高温固相法的缺点后人们一直在探索一种新的方法试图克服高温固相反应的弊端.结果发现,在溶液合成荧光粉会使产品成分均匀.方法如下:(同样以红色荧光粉为例)取一定配比的Y2O3和Eu2O3(99.99%或以上)用HNO3或HCl溶解,制成混合稀土酸溶液后用草酸与其反应直至完全在经烘干,其他方法同方法(一).这种方法制出的产品成分组成相对均匀很少出现成分的偏析,但粒度不易控制,工序比第一种方法稍复杂.以上两种方法使比较常用的也已形成工业化生产,虽然两种方法都存在着不足,但这两种方法制备出来的产品比其他方法合成的产品在发光性能指标上有着很大的优势.。
T5线性泛光灯主要性能指标T5线性泛光灯问世后很快受到照明行业的重视,国际电工委员会已于1997年12月将T5荧光灯系列纳入IEC60081标准,对灯的尺寸、启动特性、电特性、阴极特性等作了规定。
2002年5月,我国发布的GBPT10682 —2002《双端荧光灯性能要求》国家标准也收纳了T5 灯管系列内容。
从参数指标上看,光参数、寿命等指标与国外大公司尚有一定差距,这也客观反映了国内多数厂家的制灯工艺水平。
这里就几项主要性能指标加以分析,并提出相应控制方法。
1、电参数及其控制T5 线性泛光灯分为高光效(HE) 和高亮度(HO) 两大系列。
IEC60081 和GBPT10682 —2002 中规定了T5 HE系列灯管的额定电流、灯端电压等电参数。
两个标准的相关参数完全一样,所不同的是IEC60081 规定测试温度为35 ℃,而GBPT10682 —2002 规定测试温度为25 ℃。
实际上在不同温度下,电参数特别是灯端电压是有一定变化的。
对于T5 (HE) 荧光灯,其显著特点是无论额定功率为何种规格,灯的额定电流都一样,从而使该系列各种规格灯管的阴极特性完全一样,简化了阴极设计,更便于大规模生产中的品种调整。
对于T5 HO 系列荧光灯,是在与HE 荧光灯管长相等的条件下,通过提高工作电流增加灯的功率以获得更大光输出的。
标准规定,不同规格的灯管,工作电流不同,因此阴极的设计也不相同。
在灯管的设计尺寸和灯电流确定后,灯端电压和灯功率很大程度上取决于灯管的真空度以及充入惰性气体的种类和压力。
有资料介绍,T5 HE 灯管采用纯氩作填充气体,目的是防止充填氪氩混合气低温下易产生的“条纹放电”现象。
但实际上,如充填纯氩灯端电压和功率接近甚至超过标准规定上限,无法达到额定值。
由理论计算和实际制灯试验可知,要达到IEC 标准规定的电参数额定值仍可采用氪氩混合气。
从理论上讲,气体的原子量越大,电子与它碰撞截面越大,碰撞几率增加。
三基色荧光粉发光原理详解1. 引言三基色荧光粉(Tricolor phosphor)是指由红、绿、蓝三种不同颜色的荧光粉组合而成的一种发光材料。
它在显示技术、照明、荧光灯等领域得到广泛应用。
三基色荧光粉的发光原理是基于荧光效应,即通过吸收外部能量激发内部电子跃迁,从而发出特定波长的光。
本文将详细解释三基色荧光粉发光的基本原理。
2. 荧光效应荧光效应是指物质在吸收能量后,通过非辐射跃迁的方式将能量释放出来,发出特定波长的光。
荧光效应的基本原理是能级的跃迁。
物质的电子在不同能级之间跃迁时,会吸收或释放能量,其中包括电子的激发、激发态的寿命以及光的发射等过程。
3. 三基色荧光粉的组成三基色荧光粉由三种不同颜色的荧光粉组合而成,分别是红色、绿色和蓝色荧光粉。
每种荧光粉都能吸收特定波长的光,并发出相应颜色的光。
通过调整三种荧光粉的比例,可以实现各种颜色的发光效果。
4. 红色荧光粉发光原理红色荧光粉主要由钇铝石榴石(YAG:Ce)组成。
钇铝石榴石是一种稀土离子掺杂的晶体材料,它具有很高的发光效率和较长的激发寿命。
红色荧光粉在被激发后,钇铝石榴石中的铈离子(Ce3+)被激发到高能级。
在铈离子的激发态,它会通过非辐射跃迁的方式将能量释放出来,发出红色的光。
5. 绿色荧光粉发光原理绿色荧光粉通常由硫化锌(ZnS)和铜(Cu)组成。
硫化锌是一种半导体材料,它具有很高的荧光效率和较长的激发寿命。
当绿色荧光粉被激发时,硫化锌中的电子被激发到导带,形成激子。
激子在激发态的寿命较长,会通过非辐射跃迁的方式将能量释放出来,发出绿色的光。
6. 蓝色荧光粉发光原理蓝色荧光粉通常由硫化锌(ZnS)和铜(Cu)掺杂钡(Ba)组成。
蓝色荧光粉的发光原理与绿色荧光粉类似,都是基于硫化锌中的激子发光。
不同之处在于,蓝色荧光粉通过掺杂钡元素,改变了硫化锌的晶格结构,从而使得蓝色荧光粉发出蓝色的光。
7. 三基色荧光粉的混合在显示技术中,通过将红色、绿色和蓝色荧光粉混合在一起,可以实现各种颜色的发光效果。
紫外光激发荧光粉
紫外光激发荧光粉,也被称为紫外荧光粉或紫外光致荧光颜料,是由金属(如锌、镉)硫化物或稀土氧化物与微量活性剂配合,经煅烧而成。
这种荧光颜料在紫外光(200\~400nm)照射下,会根据颜料中金属和活化剂、含量的不同,而呈现出各种颜色的可见光(400\~800nm)。
按激光发源的波长不同,又可分为短波紫外线激发荧光颜料(激发波长为254nm)和长波紫外线激发荧光颜料(激发波长为365nm)。
紫外荧光粉具有工艺过程简便、耗费低、易批量化生产等优势,但同时也存在一些问题,如色饱和度变差、色坐标漂移等。
为了改善这些问题,一些方案采用了紫外芯片发射短波长紫外光来激发三基色荧光粉产生红、绿、蓝三种颜色光复合后形成白光,通过调节三基色荧光粉之间的配比,可以实现具有不同色温和显色指数的白光,并且具有良好的光色稳定性。
紫外荧光粉在防伪领域有着广泛的应用,如用于制造防伪荧光粉、无色荧光粉、紫外隐形防伪荧光粉等,这些材料可以在特定的紫外光照射下呈现出特定的颜色,从而实现防伪效果。
此外,紫外荧光粉还可以用于烟囱管道检漏、工艺品油漆印刷等领域。
总的来说,紫外光激发荧光粉是一种具有广泛应用前景的新型材料,其在防伪、照明、显示等领域的应用将会越来越广泛。
稀土发光材料的发光机理及其应用学好:09021126 姓名:彭振华摘要:稀土是我国的重要战略资源,对稀土元素的基本物理和化学性质的了解,是深入研究稀土元素的结构与性能,开发稀土生产新的工艺流程、稀土元素新应用、稀土新材料,充分利用稀土资源的基础。
稀土发光材料在一些方面已得到普遍应用并在新能源和生物医学等方面具有重要的应用前景。
目前稀土材料已广泛用于照明、显示、信息、显像、医学放射学图像和辐射场的探测等领域,并形成很大的工业生产和消费市场规模;同时也正在向着其他新型技术领域扩展,成为人类生活中不可缺少的重要组成部分。
1、稀土发光材料的发光原理物质发光现象大致分为两类:一类是物质受热,产生热辐射而发光;另一类是物体受激发吸收能量而跃迁至激发态(非稳定态)在返回到基态的过程中,以光的形式放出能量。
以稀土化合物为基质和以稀土元素为激活剂的发光材料多属于后一类,即稀土荧光粉。
稀土元素原子具有丰富的电子能级,稀土化合物的发光是基于它们的4f电子在f-f组态之内或f-d组态之间的跃迁。
2、稀土发光材料的重要应用2.1光致发光材料灯用发光材料自70年代末实用化以来,促使稀土节能荧光灯、金属卤化物灯向大功率、小型化、低光衰、高光效、高显色、无污染、无频闪、实用化、智能化等方面发展。
这些发光灯主要被用于照明、复印机光源、光化学光源等由发射红、绿、蓝3种含稀土的荧光粉(即三基色荧光粉)按一定比例混合制成的节能灯。
由于其光效高于白炽灯数倍,光色也好,被长期用于办公室、百货商店和工厂中的照明中。
稀土发光材料的质量提高和应用技术的发展,推动了新一代节能光源的科研、生产及应用,并带动了许多相关行业的发展。
典型的荧光灯是在玻璃管内壁涂荧光粉,当灯通电时,封装在灯两端的电极间放电发出紫外光,荧光粉吸收紫外光受到激发,然后通过各种非辐射弛豫过程和能量传递过程,使稀土离子处于可发出可见光的能态上,从而进一步发出各种颜色的可见光。
①汞灯稀土荧光粉用于高压汞灯中已有多年。
荧光粉简介荧光粉(俗称夜光粉、长效夜光粉、发光粉、蓄光粉),通常分为稀土材料环保无毒无害无放射光致储能夜光粉和带有放射性的夜光粉两类。
光致储能夜光粉是荧光粉在受到自然光、日光灯光、紫外光等照射后,把光能储存起来,在停止光照射后,在缓慢地以荧光的方式释放出来,所以在夜间或者黑暗处,仍能看到发光,持续时间长达几小时至十几小时。
带有放射性的夜光粉,是在荧光粉中掺入放射性物质,利用放射性物质不断发出的射线激发荧光粉发光,这类夜光粉发光时间很长,但因为有毒有害和环境污染等,所以应用范围小。
简史20世纪初,人们在研究放电发光现象的过程中开发了荧光灯和荧光粉。
当时的荧光灯使用硅酸锌铍荧光粉,发光效率低,并有毒性。
1942年,a.h.麦基格发明卤磷酸钙荧光粉并用在荧光灯内,在照明领域引起了一次革命。
这种粉发光效率高、无毒、价格便宜,一直使用到现在。
70年代初,荷兰科学家从理论上计算出荧光粉的发射光谱,发现荧光粉如由450nm、550nm和610nm三条窄峰组成(三基色[1]),则显色指数和发光效率能同时提高。
1974年,荷兰的范尔斯泰亨等人先后合成了发射峰值分别在上述范围内的三种稀土荧光粉,使灯的发光效率达到85lm/w,显色指数为85,使荧光灯有了新的突破。
稀土三基色荧光粉的特点是发光谱带狭窄,发光能量更为集中,且在短波紫外线激发下稳定性高,高温特性好,更适用于高负载细管荧光灯和各种单端紧凑型荧光灯。
类型灯用荧光粉主要有3类。
第一类用于普通荧光灯和低压汞灯,第二类用于高压汞灯和自镇流荧光灯,第三类用于紫外光源等。
荧光灯和低压汞灯用荧光粉有锑、锰激活的卤磷酸钙荧光粉和稀土三基色荧光粉。
锑、锰激活的卤磷酸钙荧光粉是在氟氯磷灰石基质3ca3(po4)2·ca(f,cl)2中,掺入少量的激活剂锑(sb)和锰(mn)以后制成的荧光粉,通常表示式为:3ca3(po4)2·ca(f,cl)2:sb,mn 这种荧光粉的制备方法很多,采用的原料也可以不同,但对原料的纯度要求较高。
三基色荧光粉发光原理三基色荧光粉是一种重要的发光材料,可广泛应用于LED显示屏、荧光灯、荧光剂等领域。
其发光原理是通过激发荧光物质的电子,使其跃迁至激发态,当电子回到基态时,会释放出能量,从而发光。
在三基色荧光粉中,红、绿、蓝三种颜色是通过不同的荧光物质来实现的。
下面将分别介绍三基色荧光粉的发光原理。
首先,我们来介绍红色荧光粉的发光原理。
红色荧光粉主要由铜掺杂的硫化锐青矿(Cu-doped ZnS)组成。
在未激发状态下,铜离子处于低能级状态。
当外加一定的能量,例如电流或光线,激发荧光物质时,铜离子就会被激发到高能级激发态。
此时,铜离子会与晶格中的硫离子发生键合,并占据一些晶格点,形成Cu-S配位有限体系。
这一过程称为铜活化。
当铜离子回到基态时,会释放能量,这些能量以光子的形式发出,达到发光的效果。
在红色荧光粉中,铜离子的能量差与光子的能量之间存在对应关系,所以红色荧光粉显示为红色。
接下来,我们介绍绿色荧光粉的发光原理。
绿色荧光粉主要由掺杂了镓离子的硅酸锶(Ga-doped SrSiO3)组成。
在未激发状态下,镓离子处于低能级状态。
当外加一定能量激发荧光物质时,镓离子会被激发到高能级激发态。
此时,镓离子会与晶格中SiO3的阴离子形成复合体,产生应变场。
镓离子回到基态时,会通过作用在带电粒子上的电场释放能量。
释放的能量以光子的形式发出,发出的光子具有一定的波长,对应于绿色发光。
最后,我们介绍蓝色荧光粉的发光原理。
蓝色荧光粉通常使用的是掺杂了钴离子的氧化镧(Co-doped La2O3)。
钴主要的激发过渡是d-d跃迁,即电子从3d能级跃迁至2p能级。
在未激发状态下,钴离子处于低能级状态。
当外加一定能量激发荧光物质时,钴离子会被激发到高能级激发态。
此时,钴离子在高能级激发态上会发生3d到2p的电子跃迁,形成一个激发态。
钴离子从这个激发态返回基态时,会释放出能量,从而产生光子。
这些光子具有蓝色的波长,使得蓝色荧光粉显示为蓝色。
三基色嵌段共聚物型白光荧光粉的制备及性能研究的开题报告一、选题背景及意义近年来,白光荧光粉作为一种重要的发光材料,被广泛应用于LED照明、显示技术等领域。
由于各种发光材料的特性不同,因此白光荧光粉也有多种制备方法,如单一基色荧光粉、复合基色荧光粉、共沉淀法制备等。
其中,三基色嵌段共聚物型白光荧光粉具有广阔的应用前景。
三基色嵌段共聚物型白光荧光粉具有以下优势:一是发光效率高,因为荧光基团分散均匀,能够吸收可见光的全部波长,从而实现白光发射;二是发光稳定性好,三基色嵌段共聚物中的基团之间的相互作用力可以起到稳定发光的作用;三是制备方法简单,可以通过简单的沉淀法、溶剂挥发法等方法实现。
因此,研究三基色嵌段共聚物型白光荧光粉的制备及性能对于推动白光发光材料的研究及应用具有重要的意义。
二、研究内容本研究将以三基色嵌段共聚物为主要研究对象,设计并实验制备三基色嵌段共聚物型白光荧光粉。
具体的研究内容包括:(1)设计合适的三基色嵌段共聚物结构,确定荧光基团的种类和含量。
(2)通过溶剂挥发法制备三基色嵌段共聚物型白光荧光粉,并进行表征和分析,包括荧光发射光谱、粉末形貌、颜色坐标等;(3)对不同条件下所制备的荧光粉样品进行比较,评估其荧光发射效率、发光稳定性等性能。
(4)最终通过探索合适的添加剂或制备方法,提高三基色嵌段共聚物型白光荧光粉的性能,以满足其在LED等领域的应用需求。
三、研究方法(1)化学合成法:通过聚合反应制备三基色嵌段共聚物。
(2)溶剂挥发法:通过溶剂挥发法制备三基色嵌段共聚物型白光荧光粉。
(3)调制荧光粉配方:通过合适的荧光基团种类和含量的设计,利用化学反应合成出合适的荧光粉配方。
(4)表征分析:利用荧光光谱仪、透射电镜等对荧光粉进行表征和分析。
四、研究意义与预期成果本研究将深入探究三基色嵌段共聚物型白光荧光粉的制备及性能,在理论上掌握该制备方法的关键技术,并对其在LED照明等领域的应用做出理论和实践探索。