高考数学备考冲刺之易错点点睛系列专题 导数及应用(学生版)
- 格式:doc
- 大小:502.00 KB
- 文档页数:11
专题04导数及其应用易错点一:忽略切点所在位置及求导简化形式(导数的概念及应用)一、导数的概念和几何性质1.概念函数()f x 在0x x 处瞬时变化率是0000()()lim limx x f x x f x yx x,我们称它为函数 y f x 在0x x 处的导数,记作0()f x 或0x x y.诠释:①增量x 可以是正数,也可以是负,但是不可以等于0.0x 的意义:x 与0之间距离要多近有多近,即|0|x 可以小于给定的任意小的正数;②当0x 时,y 在变化中都趋于0,但它们的比值却趋于一个确定的常数,即存在一个常数与00()()f x x f x y x x无限接近;③导数的本质就是函数的平均变化率在某点处的极限,即瞬时变化率.如瞬时速度即是位移在这一时刻的瞬间变化率,即00000()()()limlimx x f x x f x yf x x x.2.几何意义函数()y f x 在0x x 处的导数0()f x 的几何意义即为函数()y f x 在点00()P x y ,处的切线的斜率.3.物理意义函数)(t s s 在点0t 处的导数)(0t s 是物体在0t 时刻的瞬时速度v ,即)(0t s v ;)(t v v 在点0t 的导数)(0t v 是物体在0t 时刻的瞬时加速度a ,即)(0t v a .二、导数的运算1.求导的基本公式基本初等函数导函数()f x c (c 为常数)()0f x()a f x x ()a Q 1()a f x ax ()x f x a (01)a a ,()ln x f x a a()log (01)a f x x a a ,1()ln f x x a()xf x e ()xf x e ()ln f x x 1()f x x()sin f x x ()cos f x x ()cos f x x()sin f x x2.导数的四则运算法则(1)函数和差求导法则:[()()]()()f x g x f x g x ;(2)函数积的求导法则:[()()]()()()()f x g x f x g x f x g x ;(3)函数商的求导法则:()0g x ,则2()()()()()[]()()f x f xg x f x g x g x g x.3.复合函数求导数复合函数[()]y f g x 的导数和函数()y f u ,()u g x 的导数间关系为x u x y y u :应用1.在点的切线方程切线方程000()()()y f x f x x x 的计算:函数()y f x 在点00(())A x f x ,处的切线方程为000()()()y f x f x x x ,抓住关键000()()y f x k f x.应用2.过点的切线方程设切点为00()P x y ,,则斜率0()k f x ,过切点的切线方程为:000()()y y f x x x ,又因为切线方程过点()A m n ,,所以000()()n y f x m x 然后解出0x 的值.(0x 有几个值,就有几条切线)注意:在做此类题目时要分清题目提供的点在曲线上还是在曲线外.易错提醒:1.求函数导数的总原则:先化简解析式,再求导.注意以下几点:连乘形式则先展开化为多项式形式,再求导;三角形式,先利用三角函数公式转化为和或差的形式,再求导;分式形式,先化为整式函数或较为简单的分式函数,再求导;复合函数,先确定复合关系,由外向内逐层求导,必要时可换元2.利用导数研究曲线的切线问题,一定要熟练掌握以下三点:(1)函数在切点处的导数值是切线的斜率,即已知切点坐标可求切线斜率,已知斜率可求切点坐标.(2)切点既在曲线上,又在切线上,切线还有可能和曲线有其它的公共点.(3)曲线 y f x =“在”点00(,)P x y 处的切线与“过”点00(,)P x y 的切线的区别:曲线 y f x =在点00(,)P x y 处的切线是指点P 为切点,若切线斜率存在,切线斜率为 0k f x =,是唯一的一条切线;曲线y f x =过点00(,)P x y 的切线,是指切线经过点P ,点P 可以是切点,也可以不是切点,而且这样的直线可能有多条.3.利用导数的几何意义求参数的基本方法利用切点的坐标、切线的斜率、切线的方程等得到关于参数的方程(组)或者参数满足的不等式(组),进而求出参数的值或取值范围.4.求解与导数的几何意义有关问题时应注意的两点(1)注意曲线上横坐标的取值范围;(2)谨记切点既在切线上又在曲线上.(1)求曲线 y f x 在 1,1f 处的切线方程;(2)若对 0,x , 22f x ax x 恒成立.求实数a 的取值范围.易错点二:转化为恒成立后参变分离变号的前提条件(利用导数研究函数的单调性)1.求可导函数单调区间的一般步骤第一步:确定函数()f x 的定义域;第二步:求()f x ,令()0f x ,解此方程,求出它在定义域内的一切实数;第三步:把函数()f x 的间断点(即()f x 的无定义点)的横坐标和()0f x 的各实根按由小到大的顺序排列起来,然后用这些点把函数()f x 的定义域分成若干个小区间;第四步:确定()f x 在各小区间内的符号,根据()f x 的符号判断函数()f x 在每个相应小区间内的增减性.注意①使()0f x 的离散点不影响函数的单调性,即当()f x 在某个区间内离散点处为零,在其余点处均为正(或负)时,()f x 在这个区间上仍旧是单调递增(或递减)的.例如,在(,) 上,3()f x x ,当0x 时,()0f x ;当0x 时,()0f x ,而显然3()f x x 在(,) 上是单调递增函数.②若函数()y f x 在区间(,)a b 上单调递增,则()0f x (()f x 不恒为0),反之不成立.因为()0f x ,即()0f x 或()0f x ,当()0f x 时,函数()y f x 在区间(,)a b 上单调递增.当()0f x 时,()f x 在这个区间为常值函数;同理,若函数()y f x 在区间(,)a b 上单调递减,则()0f x (()f x 不恒为0),反之不成立.这说明在一个区间上函数的导数大于零,是这个函数在该区间上单调递增的充分不必要条件.于是有如下结论:()0f x ()f x 单调递增;()f x 单调递增()0f x ;()0f x ()f x 单调递减;()f x 单调递减()0f x .技巧:1.利用导数比较大小或解不等式的常用技巧利用题目条件,构造辅助函数,把比较大小或求解不等式的问题转化为先利用导数研究函数的单调性问题,再由单调性比较大小或解不等式.2.利用函数的单调性求参数的取值范围的解题思路第一步:由函数在区间[],a b 上单调递增(减)可知 0f x ( 0f x )在区间[],a b 上恒成立列出不等式;第二步:利用分离参数法或函数的性质求解恒成立问题;第三步:对等号单独检验,检验参数的取值能否使 f x 在整个区间恒等于0,若 f x 恒等于0,则参数的这个值应舍去;若只有在个别点处有 0f x =,则参数可取这个值.易错提醒:一:研究单调性问题1.函数的单调性函数单调性的判定方法:设函数()y f x 在某个区间内可导,如果()0f x ,则()y f x 为增函数;如果()0f x ,则()y f x 为减函数.2.已知函数的单调性问题①若()f x 在某个区间上单调递增,则在该区间上有()0f x 恒成立(但不恒等于0);反之,要满足()0f x ,才能得出()f x 在某个区间上单调递增;②若()f x 在某个区间上单调递减,则在该区间上有()0f x 恒成立(但不恒等于0);反之,要满足()0f x在某个区间上单调递减.f x ,才能得出()二:讨论单调区间问题类型一:不含参数单调性讨论(1)求导化简定义域(化简应先通分,尽可能因式分解;定义域需要注意是否是连续的区间);(2)变号保留定号去(变号部分:导函数中未知正负,需要单独讨论的部分.定号部分:已知恒正或恒负,无需单独讨论的部分);(3)求根做图得结论(如能直接求出导函数等于0的根,并能做出导函数与x轴位置关系图,则导函数正负区间段已知,可直接得出结论);(4)未得结论断正负(若不能通过第三步直接得出结论,则先观察导函数整体的正负);(5)正负未知看零点(若导函数正负难判断,则观察导函数零点);(6)一阶复杂求二阶(找到零点后仍难确定正负区间段,或一阶导函数无法观察出零点,则求二阶导);求二阶导往往需要构造新函数,令一阶导函数或一阶导函数中变号部分为新函数,对新函数再求导.(7)借助二阶定区间(通过二阶导正负判断一阶导函数的单调性,进而判断一阶导函数正负区间段);类型二:含参数单调性讨论(1)求导化简定义域(化简应先通分,然后能因式分解要进行因式分解,定义域需要注意是否是一个连续的区间);(2)变号保留定号去(变号部分:导函数中未知正负,需要单独讨论的部分.定号部分:已知恒正或恒负,无需单独讨论的部分);(3)恒正恒负先讨论(变号部分因为参数的取值恒正恒负);然后再求有效根;(4)根的分布来定参(此处需要从两方面考虑:根是否在定义域内和多根之间的大小关系);(5)导数图像定区间。
考点3 导数及其应用【重点·提醒】导数及其应用【重点·提醒】1.注意“在某点处的切线”与“过某点的切线”的差异.2.利用导数可以证明或判断函数的单调性,注意当f'(x)≥0或f'(x)≤0时带上等号.3.求函数单调区间时,易错误的在多个单调区间之间添加符号“∪”和“或”,单调区间不能用集合或不等式表示.4.x0是极值点的充要条件是x0点两侧导数异号,而不仅是f'(x0)=0,f'(x0)=0是x0为极值点的既不充分也不必要条件;给出函数极大(小)值的条件,一定要既考虑f'(x0)=0,又要考虑检验“左正右负”(“左负右正”)的转化,否则条件不完整,这一点一定要切记!【经典·剖析】【经典·剖析】例1已知曲线y=13x3上一点P823⎛⎫⎪⎝⎭,,求过点P的切线方程.【解答】因为y'=x2,设切点为30013x x⎛⎫⎪⎝⎭,,则切线方程为y-313x=20x(x-x0).因为切线过点823⎛⎫⎪⎝⎭,,所以x0=2或x0=-1,故所求切线方程为3x-3y+2=0或12x-3y-16=0.例2若函数f(x)=x3+ax2+bx+a2在x=1处有极小值10,则a+b=.【解析】由题意知,2(1)110'(1)230f a a bf a b⎧=+++=⎨=++=⎩,,解得4-11ab=⎧⎨=⎩,或-33.ab=⎧⎨=⎩,经验证,当a=4,b=-11时,满足题意;当a=-3,b=-3时,不满足题意,舍去.所以a+b=-7.例3已知函数f(x)=13x3+x2-3x+a+1.(1)若对任意的x∈[1,+∞),f(x)≥0恒成立,求实数a的取值范围;(2)若对任意的x∈[1,+∞),f(x)的值域是[0,+∞),求实数a的值.【解答】(1)f'(x)=x2+2x-3,由f'(x)=0,求得x1=-3,x2=1.当f'(x)>0时,x<-3或x>1;当f'(x)<0时,-3<x<1,所以函数在[1,+∞)上单调递增.f(x)的最小值为f(1)=a-23,依题意得a-23≥0,a≥23,故实数a的取值范围是23∞⎡⎫+⎪⎢⎣⎭,.(2)f'(x)=x2+2x-3,由f'(x)=0,求得x1=-3,x2=1.当x<-3或x>1时,f'(x)>0;当-3<x<1时,f'(x)<0,所以f(x)在[1,+∞)上单调递增,f(x)的最小值为f(1)=a-23=0,所以a=23,即a=23时,f(x)的值域是[0,+∞).例4已知函数f(x)=-x3+ax+2(a∈R).(1)若函数f (x )在区间(-1,1)上是增函数,求实数a 的取值范围;(2)若函数f (x )的增区间是(-1,1),求实数a 的取值范围.【解答】 (1)f'(x )=-3x 2+a ,当a ≤0时,f'(x )≤0,函数f (x )在(-∞,+∞)上是单调减函数;当a>0时,由f'(x )=0得x=±3a ,当-3a <x<3a时,f'(x )>0,f (x )的单调增区间为-33a a ⎛⎫ ⎪ ⎪⎝⎭,.由于f (x )在(-1,1)上是增函数,所以-3a ≤-1且3a ≥1,所以a ≥3,故实数a 的取值范围是[3,+∞).(2)由问题(1)可知f (x )的单调增区间是-33a a ⎛⎫ ⎪ ⎪⎝⎭,,由于f (x )的增区间恰是(-1,1),所以3a=1,a=3,即a=3时,f (x )的增区间是(-1,1).。
高中考数学易错点专题点睛:函数与导数【原题21】不等式 ).23(log )423(log 2)2(2)2(22+->--++x x x x x x【错误分析】:,122>+x ,2342322+->--∴x x x x.223,0622-<>∴>-+∴x x x x 或当2=x 时,真数0232=+-x x 且2=x 在所求的范围内(因232>),说明解法错误.原因是没有弄清对数定义.此题忽视了“对数的真数大于零”这一条件造成解法错误,表现出思维的不严密性. 【答案】:2 2.x x ><-或【解析】:122>+x⎪⎩⎪⎨⎧+->-->+->--∴2342302304232222x x x x x x x x ⎪⎪⎪⎩⎪⎪⎪⎨⎧-<><>-<+>∴2231231313131x x x x x x 或或或.22-<>∴x x 或 【易错点点睛】 1.要注意x 的取值范围(保证对数有意义); 2.解题思路是将对数方程转化为二次方程,再利用二次方程根的分布求解。
【原题22】在一个交通拥挤及事故易发生路段,为了确保交通安全,交通部门规定,在此路段内的车速v (单位:km /h )的平方和车身长l (单位:m )的乘积与车距d 成正比,且最小车距不得少于半个车身长.假定车身长均为l (单位:m )且当车速为50(km /h )时,车距恰为车身长,问交通繁忙时,应规定怎样的车速,才能使在此路段的车流量Q 最大?(车流量=车身长车距车速+)【错误分析】:l kv d 2=,将50=v ,l d =代入得25001=k ,∴l v d 225001=,又将l d 21=代入得225=v ,由题意得l v d 225001=(225≥v )将Q=ld v+1000=)25001(10002v l v+(225≥v ) ∵l v v l v v l v l v 250002500121000)25001(1000)25001(10002=⋅⋅≤+=+∴当且仅当50=v 时,l Q 25000max= 综上所知,50=v (km /h )时,车流量Q 取得最大值. 【答案】:50=v【解析】:(1)依题意,⎪⎪⎩⎪⎪⎨⎧≤>=)225(21)225(250012v l v l v d 则⎪⎪⎪⎩⎪⎪⎪⎨⎧≤>+=+=)225(231000)225()25001(100010002v l vv v l vl d v Q 显然当225≤v 时,Q 是关于v 的增函数,∴当225=v 时,l l v Q 3250000231000max =当225>v 时,Q=ld v+1000=l v v l v v l v l v 250002500121000)25001(1000)25001(10002=⋅⋅≤+=+当且仅当50=v 时,上式等号成立.综上所述,当且仅当50=v 时,车流量Q 取得最大值.【易错点点睛】在行驶过程中车速有可能低于252(km /h ),所以解题材中应分两类情形求解,得分段函数.【原题23】定义在R 上的函数()f x 满足:对任意实数,m n ,总有()()()f m n f m f n +=⋅,且当0x >时,()01f x <<.(1)试求()0f 的值;(2)判断()f x 的单调性并证明你的结论;(3)设()()()(){}()(){}22,1,,21,A x y f x f y f B x y f ax y a R =⋅>=-+=∈,若A B ⋂=∅,试确定a 的取值范围.(4)试举出一个满足条件的函数()f x .【错误分析】: 根据题意,将一般问题特殊化,也即选取适当的特值(如本题中令1,0m n ==;以及21,m n x m x +==等)是解决有关抽象函数问题的非常重要的手段;另外,如果能找到一个适合题目条件的函数,则有助于问题的思考和解决. 【答案】:见解析【解析】:(1)在()()()f m n f m f n +=⋅中,令1,0m n ==.得:()()()110f f f =⋅.因为()10f ≠,所以,()01f =.(2)要判断()f x 的单调性,可任取12,x x R ∈,且设12x x <.在已知条件()()()f m n f m f n +=⋅中,若取21,m n x m x +==,则已知条件可化为:()()()2121f x f x f x x =⋅-.由于210x x ->,所以()2110f x x >->.为比较()()21f x f x 、的大小,只需考虑()1f x 的正负即可.在()()()f m n f m f n +=⋅中,令m x =,n x =-,则得()()1f x f x ⋅-=. ∵ 0x >时,()01f x <<,∴ 当0x <时,()()110f x f x =>>-.又()01f =,所以,综上,可知,对于任意1x R ∈,均有()10f x >.∴ ()()()()2112110f x f x f x f x x -=--<⎡⎤⎣⎦.∴ 函数()f x 在R 上单调递减. (3)首先利用()f x 的单调性,将有关函数值的不等式转化为不含f 的式子.()()()222211f x f y f x y ⋅>+<即,()()210f ax y f -+==,即20ax y -+=.由A B ⋂=∅,所以,直线20ax y -+=与圆面221x y +<无公共点.所以,2211a ≥+.解得 11a -≤≤.(4)如()12xf x ⎛⎫= ⎪⎝⎭.【易错点点睛】有些抽象函数的性质是用条件恒等式给出的,可通过赋特殊值法使问题得以解决 【原题24】已知2)2cos 1(x y +=,则='y . 【错误分析】:)2cos 1(2sin 2x x y +-='. 【答案】:)2cos 1(2sin 4x x y +-='【解析】:设2u y =,x u 2cos 1+=,则)2()2sin (2)2cos 1(2'⋅-⋅='+=''='x x u x u u y y x u x)2cos 1(2sin 42)2sin (2x x x u +-=⋅-⋅=∴)2cos 1(2sin 4x x y +-='.【易错点点睛】复合函数求导数计算不熟练,其x 2与x 系数不一样也是一个复合的过程,有的同学忽视了.【原题25】已知函数⎪⎪⎩⎪⎪⎨⎧>+≤+=)1)(1(21)1)(1(21)(2x x x x x f 判断f(x)在x=1处是否可导?【错误分析】:1)1(,1)11(21]1)1[(21lim 220='∴=∆+-+∆+→∆f xx x 。
平面解析几何一、高考预测解析几何初步的内容主要是直线与方程、圆与方程和空间直角坐标系,该部分内容是整个解析几何的基础,在解析几何的知识体系中占有重要位置,但由于在高中阶段平面解析几何的主要内容是圆锥曲线与方程,故在该部分高考考查的分值不多,在高考试卷中一般就是一个选择题或者填空题考查直线与方程、圆与方程的基本问题,偏向于考查直线与圆的综合,试题难度不大,对直线方程、圆的方程的深入考查则与圆锥曲线结合进行.根据近年来各地高考的情况,解析几何初步的考查是稳定的,预计2012年该部分的考查仍然是以选择题或者填空题考查直线与圆的基础知识和方法,而在解析几何解答题中考查该部分知识的应用.圆锥曲线与方程是高考考查的核心内容之一,在高考中一般有1~2个选择题或者填空题,一个解答题.选择题或者填空题在于有针对性地考查椭圆、双曲线、抛物线的定义、标准方程和简单几何性质及其应用,试题考查主要针对圆锥曲线本身,综合性较小,试题的难度一般不大;解答题中主要是以椭圆为基本依托,考查椭圆方程的求解、考查直线与曲线的位置关系,考查数形结合思想、函数与方程思想、等价转化思想、分类与整合思想等数学思想方法,这道解答题往往是试卷的压轴题之一.由于圆锥曲线与方程是传统的高中数学主干知识,在高考命题上已经比较成熟,考查的形式和试题的难度、类型已经较为稳定,预计2012年仍然是这种考查方式,不会发生大的变化.解析几何的知识主线很清晰,就是直线方程、圆的方程、圆锥曲线方程及其简单几何性质,复习解析几何时不能把目标仅仅定位在知识的掌握上,要在解题方法、解题思想上深入下去.解析几何中基本的解题方法是使用代数方程的方法研究直线、曲线的某些几何性质,代数方程是解题的桥梁,要掌握一些解方程(组)的方法,掌握一元二次方程的知识在解析几何中的应用,掌握使用韦达定理进行整体代入的解题方法;数学思想方法在解析几何问题中起着重要作用,数形结合思想占首位,其次分类讨论思想、函数与方程思想、化归与转化思想,如解析几何中的最值问题往往就是建立求解目标的函数,通过函数的最值研究几何中的最值.复习解析几何时要充分重视数学思想方法的运用. 二、知识导学 (一)直线的方程1.点斜式:)(11x x k y y -=-;2. 截距式:b kx y +=;3.两点式:121121x x x x y y y y --=--;4. 截距式:1=+by ax;5.一般式:0=++C By Ax ,其中A 、B 不同时为0. (二)两条直线的位置关系两条直线1l ,2l 有三种位置关系:平行(没有公共点);相交(有且只有一个公共点);重合(有无数个公共点).在这三种位置关系中,我们重点研究平行与相交.设直线1l :y =1k x +1b ,直线2l :y =2k x +2b ,则1l ∥2l 的充要条件是1k =2k ,且1b =2b ;1l ⊥2l 的充要条件是1k 2k =-1. (三)圆的有关问题 1.圆的标准方程222)()(r b y a x =-+-(r >0),称为圆的标准方程,其圆心坐标为(a ,b ),半径为r.特别地,当圆心在原点(0,0),半径为r 时,圆的方程为222r y x =+.2.圆的一般方程022=++++F Ey Dx y x (F E D 422-+>0)称为圆的一般方程,其圆心坐标为(2D -,2E -),半径为FE D r 42122-+=.当FED422-+=0时,方程表示一个点(2D-,2E-);当FED422-+<0时,方程不表示任何图形.3.圆的参数方程圆的普通方程与参数方程之间有如下关系:222ryx=+⇔cossinx ry rθθ=⎧⎨=⎩(θ为参数)222)()(rbyax=-+-⇔cossinx a ry b rθθ=+⎧⎨=+⎩(θ为参数)(五)椭圆的简单几何性质1.椭圆的几何性质:设椭圆方程为12222=+byax(a>b>0).⑴范围: -a≤x≤a,-b≤x≤b,所以椭圆位于直线x=a±和y=b±所围成的矩形里.⑵对称性:分别关于x轴、y轴成轴对称,关于原点中心对称.椭圆的对称中心叫做椭圆的中心.⑶顶点:有四个1A(-a,0)、2A(a,0)1B(0,-b)、2B(0,b).线段1A2A、1B2B分别叫做椭圆的长轴和短轴.它们的长分别等于2a和2b,a和b分别叫做椭圆的长半轴长和短半轴长. 所以椭圆和它的对称轴有四个交点,称为椭圆的顶点.⑷离心率:椭圆的焦距与长轴长的比ace=叫做椭圆的离心率.它的值表示椭圆的扁平程度.0<e<1.e越接近于1时,椭圆越扁;反之,e越接近于0时,椭圆就越接近于圆.2.椭圆的第二定义⑴定义:平面内动点M与一个顶点的距离和它到一条定直线的距离的比是常数ace=(e <1=时,这个动点的轨迹是椭圆.⑵ 准线:根据椭圆的对称性,12222=+by ax(a >b >0)的准线有两条,它们的方程(六)椭圆的参数方程椭圆12222=+b ya x(a >b >0)的参数方程为cos sin x a y b θθ=⎧⎨=⎩(θ为参数).说明 ⑴ 这里参数θ叫做椭圆的离心角.椭圆上点P 的离心角θ与直线OP 的倾斜角α不同:θαtan tan a b=;⑵ 椭圆的参数方程可以由方程12222=+b ya x与三角恒等式1sin cos 22=+θθ相比较而得到,所以椭圆的参数方程的实质是三角代换. (七)双曲线及其标准方程1.双曲线的定义:平面内与两个定点1F 、2F 的距离的差的绝对值等于常数2a (小于|1F 2F |)的动点M 的轨迹叫做双曲线.在这个定义中,要注意条件2a <|1F 2F |,这一条件可以用“三角形的两边之差小于第三边”加以理解.若2a=|1F 2F |,则动点的轨迹是两条射线;若2a >|1F 2F |,则无轨迹.若1MF <2MF 时,动点M 的轨迹仅为双曲线的一个分支,又若1MF >2MF 时,轨迹为双曲线的另一支.而双曲线是由两个分支组成的,故在定义中应为“差的绝对值”.2. 双曲线的标准方程:12222=-b ya x和12222=-b xay(a >0,b >0).这里222a c b -=,其中|1F 2F |=2c.要注意这里的a 、b 、c 及它们之间的关系与椭圆中的异同.3.双曲线的标准方程判别方法是:如果2x 项的系数是正数,则焦点在x 轴上;如果2y 项的系数是正数,则焦点在y 轴上.对于双曲线,a 不一定大于b ,因此不能像椭圆那样,通过比较分母的大小来判断焦点在哪一条坐标轴上.4.求双曲线的标准方程,应注意两个问题:⑴ 正确判断焦点的位置;⑵ 设出标准方程后,运用待定系数法求解.(八)双曲线的简单几何性质1.双曲线12222=-b yax的实轴长为2a ,虚轴长为2b ,离心率a ce =>1,离心率e 越大,双曲线的开口越大.2. 双曲线12222=-by a x的渐近线方程为xab y ±=或表示为02222=-by ax.若已知双曲线的渐近线方程是xnm y ±=,即0=±ny mx ,那么双曲线的方程具有以下形式:k yn x m =-2222,其中k 是一个不为零的常数.3.双曲线的第二定义:平面内到定点(焦点)与到定直线(准线)距离的比是一个大于1的常数(离心率)的点的轨迹叫做双曲线.对于双曲线12222=-b y a x,它的焦点坐标是(-c ,0)和(c ,0),与它们对应的准线方程分别是c ax 2-=和c ax 2=.在双曲线中,a 、b 、c 、e 四个元素间有a ce =与222b ac +=的关系,与椭圆一样确定双曲线的标准方程只要两个独立的条件.(九)抛物线的标准方程和几何性质1.抛物线的定义:平面内到一定点(F )和一条定直线(l )的距离相等的点的轨迹叫抛物线。
易错点04 导数及其应用易错题【01】不会利用等价转化思想及导数的几何意义研究曲线的切线求曲线的切线方程一定要注意区分“过点A 的切线方程”与“在点A 处的切线方程”的不同.虽只有一字之差,意义完全不同,“在”说明这点就是切点,“过”只说明切线过这个点,这个点不一定是切点,求曲线过某点的切线方程一般先设切点把问题转化为在某点处的切线,求过某点的切线条数一般也是先设切点,把问题转化为关于切点横坐标的方程实根个数问题.易错题【02】对极值概念理解不准确致对于可导函数f (x ):x 0是极值点的充要条件是在x 0点两侧导数异号,即f ′(x )在方程f ′(x )=0的根x 0的左右的符号:“左正右负”⇔f (x )在x 0处取极大值;“左负右正”⇔f (x )在x 0处取极小值,而不仅是f ′(x 0)=0.f ′(x 0)=0是x 0为极值点的必要而不充分条件.对于给出函数极大(小)值的条件,一定要既考虑f ′(x 0)=0,又考虑检验“左正右负”或“左负右正”,防止产生增根.易错题【03】研究含有参数的函数单调性分类标准有误若函数的单调性可转化为解不等式()()()()1200a x x x x x −−><>或0求解此类问题,首先根据a 的符号进行讨论,当a 的符号确定后,再根据12,x x 是否在定义域内讨论,当12,x x 都在定义域内时在根据12,x x 的大小进行讨论.易错题【04】不会利用隐零点研究函数的性质函数零点按是否可求精确解可以分为两类:一类是数值上能精确求解的,称之为“显零点”;另一类是能够判断其存在但无法直接表示的,称之为“隐零点”.利用导数求函数的最值或单调区间,常常会把最值问题转化为求导函数的零点问题,若导数零点存在,但无法求出,我们可以设其为0x ,再利用导函数的单调性确定0x 所在区间,最后根据()00f x '=,研究()0f x ,我们把这类问题称为隐零点问题. 注意若)(x f 中含有参数a ,关系式0)('0=x f 是关于ax ,0的关系式,确定0x 的合适范围,往往和a 的范围有关.01(2022新高考1卷T7)若过点(,)a b 可以作曲线x y e =的两条切线,则( )A .b e a <B .a e b <C .0b a e <<D .0a b e <<【警示】不会把切线条数有2条,转化为关于a 的方程有2个实根. 【答案】D【问诊】设过点(),a b 的切线与曲线e x y =切于(),e t P t ,对函数e x y =求导得e xy '=,所以曲线02已知f(x)=x3+ax2+bx+a(2022全国1卷T12)设则0<<;综上b a2.(2021届山西长治市高三月考)已知函数m n+=()03(2021新高考2卷T22(1.(2021届河南高三月考)已知函数04(2021届福建省龙岩高三月考)已知函数()f x '在)01m =+,,()f x f '>]1,0上单调递增()01f =,1.(2021届内蒙古海拉尔高三期中)已知函数又1x =是()f x 的极值点,则()110f a '=+=,解得1a =−,此时()111x f x x x −'=−+=:当01x <<时,()0f x ¢<;当1x >时,()0f x ¢>;∴易知:1x =是()f x 的极小值点,且()f x 的单调递增区间为()1,+?,单调递减区间为()0,1;(2)若1a =有()ln f x x x =+,设()ln 1x h x x x xe =+−+,()0,x ∈+∞; ∴()()()11111x x h x x e x e x x ⎛⎫'=+−+=+− ⎪⎝⎭; 令()1xt x e x=−,()0,x ∈+∞,则()210x t x e x '=−−<对任意()0,x ∈+∞恒成立,∴()1xt x e x=−在()0,+?上单调递减;又1202t e ⎛⎫=−> ⎪⎝⎭,()110t e =−<,∴01,12x ⎛⎫∃∈ ⎪⎝⎭,使得()00010x t x e x =−=,即001x e x =,则001ln ln x e x =,即00ln x x −=;因此,当00x x <<时()0t x >,即()0h x '>,()h x 单调递增; 当0x x >时,()0t x <,即()0h x '<,()h x 单调递减;故()()00000ln 10110xh x h x x x x e ≤=+−+=−+=,即得证.2.已知0a >,函数sin 1()ln a x f x x x x=−+. (1)证明:()f x 在(0,)π上有唯一的极值点; (2)当2a =时,求()f x 在(0,)+∞上的零点个数. 【解析】(1)证明:()2cos sin 1x x ax x a x f x −⋅+−'=,记()cos 1g x x ax x asinx =−+−,0()x π∈,, 则()sin 1g x ax x '=+.由0a >得()0g x '>在(0,)π上恒成立,从而()g x 在(0,)π上为增函数, 并且(0)10g =−<,()10g a πππ=+−>.根据零点存在性定理可知,存在唯一的()00x π∈,使得()00g x =, 并且当()00x x ∈,时,()0<g x ,当()0x x π∈,时,()0>g x . 由于()2()x g f xx '=,因此当()00x x ∈,时,()0f x '<, 当()0x x π∈,时,()0f x '>,当0x x =时,()0f x '=, 所以0x 是()f x 在(0,)π上唯一的极值点. (2)当2a =时,()22cos 2sin 1x x x x x f x −+−'=,并且根据(1)知存在1(0)x π∈,使得()f x 在1(0)x ,上为减函数,在1()x π,上为增函数.由于(1)2sin12cos10f '=−>,从而1(01)x ∈,. 由于(1)12sin10f =−<,1()ln 0f πππ=+>,根据零点存在性定理可知,()f x 在(1)π,上存在唯一的零点,在()11x ,上无零点; 当x π>时,2sin 111()ln ln ln 0x f x x x x x x ππ=−+≥−>−>, 因此函数()f x 在()π+∞,上无零点; 当()10x x ∈,时,记sin y x x =−,则cos 10y x '=−<, 所以sin y x x =−在()10x ,上为减函数,所以sin 0x x −<, 即sin 0x x >>对()10x x ∈,恒成立. 因此当()10x x ∈,时有2sin 11()ln ln 2x f x x x x x x=−+>+−, 因此()2240f e e −>−>,结合1()0f x <知函数()f x 在21()e x −,上存在唯一的零点,在()20e−,上无零点.综上所述,函数()f x 在(0)+∞,上共有2个零点.。
专题03 导数及其应用易错点1 不能正确识别图象与平均变化率的关系A ,B 两机关单位开展节能活动,活动开始后两机关的用电量()()12W t W t ,与时间t (天)的关系如图所示,则一定有A .两机关单位节能效果一样好B .A 机关单位比B 机关单位节能效果好C .A 机关单位的用电量在0[0]t ,上的平均变化率比B 机关单位的用电量在0[0]t ,上的平均变化率大D .A 机关单位与B 机关单位自节能以来用电量总是一样大 【错解】选C.因为在(0,t 0)上,()1W t 的图象比()2W t 的图象陡峭,所以在(0,t 0)上用电量的平均变化率,A 机关单位比B 机关单位大.【错因分析】识图时,一定要结合题意弄清图形所反映的量之间的关系,特别是单调性,增长(减少)的快慢等要弄清.【试题解析】由题可知,A 机关单位所对应的图象比较陡峭,B 机关单位所对应的图象比较平缓,且用电量在0[0]t ,上的平均变化率都小于0,故一定有A 机关单位比B 机关单位节能效果好.故选B. 【参考答案】B1.平均变化率函数()y f x =从1x 到2x 的平均变化率为2121()()f x f x x x --,若21x x x ∆=-,2()y f x ∆=-1()f x ,则平均变化率可表示为y x∆∆. 2.瞬时速度一般地,如果物体的运动规律可以用函数()s s t =来描述,那么,物体在时刻t 的瞬时速度v 就是物体在t 到t t +∆这段时间内,当t ∆无限趋近于0时,st∆∆无限趋近的常数.1.巍巍泰山为我国的五岳之首,有“天下第一山”之美誉,登泰山在当地有“紧十八,慢十八,不紧不慢又十八”的俗语来形容爬十八盘的感受,下面是一段登山路线图.同样是登山,但是从A 处到B 处会感觉比较轻松,而从B 处到C 处会感觉比较吃力.想想看,为什么?你能用数学语言来量化BC 段曲线的陡峭程度吗?【答案】见解析.【解析】山路从A 到B 高度的平均变化率为h AB =10015005-=-,山路从B 到C 高度的平均变化率为h BC =1510170504-=-,∴h BC >h AB ,∴山路从B 到C 比从A 到B 要陡峭的多.易错点2 求切线时混淆“某点处”和“过某点”若经过点P (2,8)作曲线3y x =的切线,则切线方程为A .12160x y --=B .320x y -+=C .12160x y -+=或320x y --=D .12160x y --=或320x y -+=【错解】设()3f x x =,由定义得f ′(2)=12,∴所求切线方程为()8122y x -=-,即12160x y --=.【错因分析】曲线过点P 的切线与在点P 处的切线不同.求曲线过点P 的切线时,应注意检验点P 是否在曲线上,若点P 在曲线上,应分P 为切点和P 不是切点讨论.【试题解析】①易知P 点在曲线3y x =上,当P 点为切点时,由上面解法知切线方程为12160x y --=.②当P 点不是切点时,设切点为A (x 0,y 0),由定义可求得切线的斜率为203k x =.∵A 在曲线上,∴300y x=,∴32000832x x x -=-,∴3200340x x -+=, ∴()()200120x x +-=,解得01x =-或x 0=2(舍去),∴01y =-,k =3,此时切线方程为y +1=3(x +1),即320x y -+=.故经过点P 的曲线的切线有两条,方程为12160x y --=或320x y -+=. 【参考答案】D1.导数的几何意义函数()y f x =在0x x =处的导数0()f x '就是曲线()y f x =在点00(,())x f x 处的切线的斜率k . 2.曲线的切线的求法若已知曲线过点00(),P x y ,求曲线过点P 的切线,则需分点P (x 0,y 0)是切点和不是切点两种情况求解: (1)当点00(),P x y 是切点时,切线方程为()000()y y f x x x '-=-; (2)当点00(),P x y 不是切点时,可分以下几步完成: 第一步:设出切点坐标P ′(x 1,f (x 1));第二步:写出过()11()P x f x ',的切线方程为()()()111 y f x f x x x -='-; 第三步:将点P 的坐标(x 0,y 0)代入切线方程求出x 1;第四步:将x 1的值代入方程()()()111 y f x f x x x -='-,可得过点00(),P x y 的切线方程.2.已知函数0()(2018ln ),()2019f x x x f 'x =+=,则0x = A .2e B .1C .ln 2018D .e【答案】B【解析】()(2018ln ),f x x x =+Q()2018ln 12019ln f 'x x x ∴=++=+,又因为0()2019f 'x =, 所以02019ln 2019x +=, 解得01x =,故选B.【名师点睛】本题主要考查导数的运算法则以及初等函数的求导公式,意在考查对基础知识的掌握与应用,属于基础题.在求曲线()y f x =的切线方程时,要注意区分是求某点处的切线方程,还是求过某点(不在曲线()f x 上)的切线方程,前者的切线方程为()()()000y f x f x x x -='-,其中切点()()00,x f x ,后者一般先设出切点坐标,再求解.易错点3 不能准确把握导数公式和运算法则求下列函数的导数:(1)22()2f x a ax x =+-; (2)sin ()ln x xf x x=.【错解】(1)22()(2)22f x a ax x a x ''=+-=+; (2)2sin (sin )sin cos ()()sin cos 1ln (ln )x x x x x x xf x x x x x x x x'+''====+'.【错因分析】(1)求导是对自变量求导,要分清表达式中的自变量.本题中的自变量是x ,a 是常量;(2)商的求导法则是:分母平方作分母,分子是差的形式,等于分子的导数乘以分母的积减去分母的导数乘以分子的积.本题把分数的导数类同于分数的乘方运算了. 【试题解析】(1)22()(2)22f x a ax x a x ''=+-=-; (2)22sin (sin )ln sin (ln )sin ln cos ln sin ()()ln (ln )ln x x x x x x x x x x x x x xf x x x x''⋅-⋅+-''===. 【参考答案】(1)()22f x a x '=-;(2)2sin ln cos ln sin ()ln x x x x x xf x x+-'=.1.导数计算的原则先化简解析式,使之变成能用八个求导公式求导的函数的和、差、积、商,再求导. 2.导数计算的方法①连乘积形式:先展开化为多项式的形式,再求导;②分式形式:观察函数的结构特征,先化为整式函数或较为简单的分式函数,再求导; ③对数形式:先化为和、差的形式,再求导; ④根式形式:先化为分数指数幂的形式,再求导;⑤三角形式:先利用三角函数公式转化为和或差的形式,再求导;3.已知()f x =1()2f '= A .2ln2--B .2ln2-+C .2ln2-D .2ln2+【答案】D【解析】依题意有()()121122ln 22x x x f x x-⋅⋅⋅'=,故12ln22ln221f +⎛⎫=⎪⎭'=+ ⎝,所以选D. 【名师点睛】本小题主要考查基本初等函数的导数,考查复合函数的导数计算,考查函数除法的导数计算,属于中档题.易错点4 区分复合函数的构成特征求下列函数的导数:(1)()221y x =+; (2)22cosy x =. 【错解】(1)()221y x '=+; (2)2sin2xy =-. 【错因分析】这是复合函数的导数,若()(),y f u u h x ==,则x u x y y u '='⋅'.如(1)中,22,1y u u x ==+,()()222221241x y u x x x x x '=⋅=+⋅=+,遇到这种类型的函数求导,可先整理再求导,或用复合函数求导公式求导.【试题解析】解法一:(1)∵()2242121y x x x =+=++,∴344y x x '=+.(2)∵221cos cos2x y x +==,∴1sin 2y x '=-. 解法二:(1)()()()22221141y x x x x '=+⋅+'=+.(2)12coscos 2cos sin sin 2222()()(22)x x x x x y x '=⋅'=⋅-⋅'=-. 【参考答案】(1)()241y x x '=+;(2)1sin 2y x '=-.1.求复合函数的导数的关键环节: ①中间变量的选择应是基本函数结构; ②正确分析出复合过程;③一般是从最外层开始,由外及里,一层层地求导; ④善于把一部分表达式作为一个整体; ⑤最后结果要把中间变量换成自变量的函数. 2.求复合函数的导数的方法步骤:①分解复合函数为基本初等函数,适当选择中间变量; ②求每一层基本初等函数的导数;③每层函数求导后,需把中间变量转化为自变量的函数.4⎛ ⎝⎭处的切线方程是__________.【答案】20x y -+=【解析】πcos 3y x '⎛⎫=+⎪⎝⎭,所以斜率为π1cos 032⎛⎫+= ⎪⎝⎭,切线方程为1,20.2y x x y -=-= 易错点5 审题不细致误设函数()2ln af x ax x x=--. (1)若()20f '=,求函数()f x 的单调区间;(2)若()f x 在定义域上是增函数,求实数a 的取值范围. 【错解】(1)∵()22a f x a x x '=+-,∴()2104a f a '=+-=,∴45a =. ∴()()2224422252555f x x x x x x'=+-=-+, 令()0f x '>,得2x >或12x <,令()0f x '<,得122x <<,∴函数()f x 的单调递增区间为122()()-∞+∞U ,,,单调递减区间为1()22,. (2)∵()f x 在定义域上为增函数,∴()0f x '≥恒成立,∵()22222a ax x a f x a x x x-+'=+-=,∴220ax x a -+≥恒成立, ∴2440a a >⎧⎨∆=-≤⎩,∴1a ≥,即实数a 的取值范围是[1,)+∞. 【错因分析】错解有多处错误:一是忽视了定义域的限制作用,研究函数一定要注意函数的定义域;二是将单调区间取并集,函数的单调区间不要随意取并集;三是对不等式恒成立处理不当,对于自变量取值有限制条件的恒成立问题要和自变量在R 上取值的恒成立问题加以区分. 【试题解析】(1)由已知得x >0,故函数()f x 的定义域为(0,+∞).∵()22a f x a x x '=+-, ∴()2104af a '=+-=,∴45a =.∴()()2224422252555f x x x x x x'=+-=-+,令()0f x '>,得2x >或12x <,令()0f x '<,得122x <<,∴函数()f x 的单调递增区间为()102)2(+∞,,,,单调递减区间为1()22,.(2)若()f x 在定义域上是增函数,则()0f x '≥对x >0恒成立,∵()22222a ax x af x a x x x -+'=+-=,∴需x >0时220ax x a -+≥恒成立,即221xa x ≥+对x >0恒成立. ∵222111x x x x=≤++,当且仅当x =1时取等号, ∴1a ≥,即实数a 的取值范围是[1,)+∞.【参考答案】(1)函数()f x 的单调递增区间为()102)2(+∞,,,,单调递减区间为1()22,;(2)[1,)+∞.用导数求函数()f x 的单调区间的“三个方法”:1.当不等式()0f x '>(或()0f x '<)可解时, ①确定函数()y f x =的定义域; ②求导数()y f x '=';③解不等式()0f x '>,解集在定义域内的部分为单调递增区间; ④解不等式()0f x '<,解集在定义域内的部分为单调递减区间. 2.当方程()0f x '=可解时, ①确定函数()y f x =的定义域;②求导数()y f x '=',令()0f x '=,解此方程,求出在定义区间内的一切实根;③把函数()f x 的间断点(即()f x 的无定义点)的横坐标和上面的各实数根按由小到大的顺序排列起来,然后用这些点把函数()f x 的定义区间分成若干个小区间;④确定()f x '在各个区间内的符号,根据符号判定函数在每个相应区间内的单调性. 3.当不等式()0f x '>(或()0f x '<)及方程()0f x '=均不可解时, ①确定函数()y f x =的定义域;②求导数并化简,根据()f x '的结构特征,选择相应基本初等函数,利用其图象与性质确定()f x '的符号; ③得单调区间.5.已知函数()322f x x ax b x =+-,其中,a b ∈R .(1)若曲线()y f x =在点()()1,1f 处的切线与直线30y -=平行,求a 与b 满足的关系; (2)当0b =时,讨论()f x 的单调性;(3)当0,1a b ==时,对任意的()0,x ∈+∞,总有()()e xf x x k <+成立,求实数k 的取值范围.【答案】(1)2320a b +-=;(2)①当0a =时,()f x 在R 上单调递增;②当0a >时,()f x 在2,3a ⎛⎫-∞- ⎪⎝⎭和()0,+∞上单调递增;在2,03a ⎛⎫- ⎪⎝⎭上单调递减;当0a <时,函数()f x 在(),0-∞和2,3a ⎛⎫-+∞ ⎪⎝⎭上单调递增;在20,3a ⎛⎫- ⎪⎝⎭上单调递减;(3)[)2,-+∞. 【解析】(1)由题意,得22()32f 'x x ax b =+-.由函数()f x 在点()()1,1f 处的切线与30y -=平行,得(1)0f '=. 即2320a b +-=.(2)当0b =时,2()32f 'x x ax =+,由()0f 'x =知240a ∆=≥.① 当0a =时,0∆=,()0f 'x ≥在R 恒成立, ∴函数()f x 在R 上单调递增.②当0a >时,由()0f 'x >,解得0x >或23x a <-; 由()0f 'x <,解得203a x -<<. 函数()f x 在2,3a ⎛⎫-∞-⎪⎝⎭和()0,+∞上单调递增;在2,03a ⎛⎫- ⎪⎝⎭上单调递减. ③当0a <时,()0f 'x >,解得23x a >-或0x <; 由()0f 'x <,解得203x a <<-. 函数()f x 在(),0-∞和2,3a ⎛⎫-+∞ ⎪⎝⎭上单调递增;在20,3a ⎛⎫-⎪⎝⎭上单调递减. (3)当0,1a b ==时,3()f x x x =-,由()()e xf x x k <+,得()3e xx x x k -<+对任意的()0,x ∈+∞恒成立.0x Q >,21e x x k ∴-<+,21e x k x ∴>--在()0,x ∈+∞恒成立.设()()21e ,0xg x x x =-->,则()2e xg'x x =-,令()2e xh x x =-,则()2e xh'x =-,由()0h'x =,解得ln2x =. 由()0h'x >,解得0ln2x <<; 由()0h'x <,解得ln2x >.∴导函数()g'x 在区间()0,ln2上单调递增;在区间()ln2,+∞上单调递减,()()ln22ln220g'x g'∴≤=-<,∴()g x 在()0,+∞上单调递减, ()()02g x g ∴<=-,2k ∴≥-.故所求实数k 的取值范围[)2,-+∞.本题主要考查导数的几何意义以及利用导数求函数的单调性、最值,考查了不等式恒成立问题,属于难题.不等式恒成立问题常见方法:① 分离参数()a f x ≥恒成立(()max a f x ≥即可)或()a f x ≤恒成立(()min a f x ≤即可);② 数形结合(()y f x = 图象在()y g x = 上方即可);③ 讨论最值()min 0f x ≥或()max 0f x ≤恒成立;④ 讨论参数,排除不合题意的参数范围,筛选出符合题意的参数范围.易错点6 极值的概念理解不透彻已知()322f x x ax bx a =+++在1x =处有极值10,则a b +=________.【错解】7-或0由题得,2()32f x x ax b '=++,由已知得2(1)10110,,(1)0230f a a b f a b =⎧+++=⎧∴⎨⎨'=++=⎩⎩解得411a b =⎧⎨=-⎩或33a b =-⎧⎨=⎩,所以a b +等于7-或0.【错因分析】极值点的导数值为0,但导数值为0的点不一定为极值点,错解忽视了“()101f x '=≠>=是f (x )的极值点”的情况.【试题解析】由题得,2()32f x x ax b '=++,由已知得2(1)10110,,(1)0230f a a b f a b =⎧+++=⎧∴⎨⎨'=++=⎩⎩解得411a b =⎧⎨=-⎩或33a b =-⎧⎨=⎩,所以a b +等于7-或0.当4,11a b ==-时,2()3811(311)(1)f x x x x x '=+-=+-在x =1两侧的符号相反,符合题意. 当3,3a b =-=时,2()3(1)f x x '=-在x =1两侧的符号相同,所以3,3a b =-=不合题意,舍去. 综上可知,4,11a b ==-,所以7a b +=-. 【参考答案】7-对于给出函数极大(小)值的条件,一定既要考虑()00f x '=,又要考虑在0x x =两侧的导数值符号不同,否则容易产生增根.1.函数极值的判断:先确定导数为0的点,再判断导数为0的点的左、右两侧的导数符号. 2.求函数()f x 极值的方法: ①确定函数()f x 的定义域. ②求导函数()f x '. ③求方程()0f x '=的根.④检查()f x '在方程的根的左右两侧的符号,确定极值点.如果左正右负,那么()f x 在这个根处取得极大值,如果左负右正,那么()f x 在这个根处取得极小值,如果()f x '在这个根的左右两侧符号不变,则()f x 在这个根处没有极值.3.利用极值求参数的取值范围:确定函数的定义域,求导数()f x ',求方程()0f x '=的根的情况,得关于参数的方程(或不等式),进而确定参数的取值或范围.6.若1x =是函数()3221()(1)33f x x a x a a x =++-+-的极值点,则a 的值为 A .−2 B .3C .−2或3D .−3或2【答案】B 【解析】()()()()23222()2(131)133f 'x f x x a x a a x a x x a a =++-+-⇒+-+=-+,由题意可知(1)0f '=,()2(1)12(1)303f 'a a a a ⇒+-+=-⇒+==或2a =-,当3a =时,()222389(9)(1)()2(1)f 'x x a x a a x x x x +-=++-=+-=+-,当1,9x x ><-时,()0f 'x >,函数单调递增;当91x -<<时,()0f 'x <,函数单调递减,显然1x =是函数()f x 的极值点;当2a =-时,()2222()232(111))(0a a f 'x x a x x x x +-=-++=-=+≥-,所以函数是R 上的单调递增函数,没有极值,不符合题意,舍去,故选B.【名师点睛】本题考查了已知函数的极值,求参数的问题.本题易错的地方是求出a 的值,没有通过单调性来验证1x =是不是函数的极值点,也就是说使得导函数为零的自变量的值,不一定是极值点.(1)()f x 在0x x =处有极值时,一定有()00f x '=,()0f x 可能为极大值,也可能为极小值,应检验()f x 在0x x =两侧的符号后才可下结论;(2)若()00f x '=,则()f x 未必在0x x =处取得极值,只有确认102x x x <<时,()()120f x f x ⋅<,才可确定()f x 在0x x =处取得极值.(3)在本题中,不要遗漏掉3a =-这种特殊情况.易错点7 被积函数与积分上、下限确定不准致误由抛物线()280y x y =>与直线60x y +-=及y =0所围成图形的面积为A .163-B .163+ C .403D .143【错解】D由()280y x y =>得y =,由60x y +-=得6y x =-,由2860y x x y ⎧=⎨+-=⎩得24x y =⎧⎨=⎩或1812x y =⎧⎨=-⎩(舍去).∴所求面积206(S x x =-⎰()32220111468212|3[]x x x =--=,故选D.【错因分析】错解没有画图分析曲线之间的位置关系,没有弄清平面图形的形状,以致弄错被积函数和积分区间致误.【试题解析】由题意,所围成平面图形如图所示,由2860y x x y ⎧=⎨+-=⎩得24x y =⎧⎨=⎩或1812x y =⎧⎨=-⎩(舍去),所以抛物线()280y x y =>与直线60x y +-=的交点坐标为(2,4),方法一:(选y 为积分变量)24042301111406d 624864822424(3())|S y y y y y y =--=--=--⨯=⎰. 方法二:(选x 为积分变量)3262202602221d 6d ()|62)3(|S x x x x x x =+-=+-⎰⎰2216114066662232)()]2[(3-=+⨯-⨯⨯-⨯=. 【参考答案】C用定积分求较复杂的平面图形的面积时:一要根据图形确定x 还是y 作为积分变量,同时,由曲线交点确定好积分上、下限;二要依据积分变量确定好被积函数,积分变量为x 时,围成平面图形的上方曲线减去下方曲线为被积函数,积分变量为y 时,围成平面图形的右方曲线减去左方曲线为被积函数; 三要找准原函数.1.利用定积分求平面图形面积的步骤 ①根据题意画出图形;②借助图形确定出被积函数,求出交点坐标,确定积分的上、下限; ③把曲边梯形的面积表示成若干个定积分的和; ④计算定积分,写出答案. 2.定积分与曲边梯形的面积的关系定积分的概念是从曲边梯形面积引入的,但是定积分并不一定就是曲边梯形的面积.这要结合具体图形来确定:设阴影部分面积为S ,则 (1) ()d ba S f x x =⎰;(2) ()d b aS f x x =-⎰; (3) ()()d d cbacS f x x f x x =-⎰⎰;(4) ()()()()d d []d b b baaaS f x x g x x f x g x x =-=-⎰⎰⎰.7.如图,若在矩形OABC 中随机撒一粒豆子,则豆子落在图中阴影部分的概率为A .21π- B .2π C .22πD .221π-【答案】A【解析】π1πS =⨯=矩形,又()ππ00sin d cos |cos πcos02x x x =-=--=⎰,π2S ∴=-阴影,∴豆子落在图中阴影部分的概率为π221ππ-=-. 故选A.在利用定积分求曲边梯形的面积时,要注意结合图形分析,否则易造成对实际情况的考虑不全而失误.本题主要考查的是抛物线的方程和定积分的几何意义,属于难题.解题时一定要抓住重要字眼“原始”和“当前”,否则很容易出现错误.解本题需要掌握的知识点是定积分的几何意义,即由直线x a =,x b =,0y =和曲线()y f x =所围成的曲边梯形的面积是()d b af x x ⎰.一、导数的概念及计算 1.导数的定义:00()()()limlim x x y f x+x f x f x x x∆→∆→∆∆-'==∆∆.2.导数的几何意义:函数()y f x =在0x x =处的导数()0f x '就是曲线()y f x =在点00(,())x f x 处的切线的斜率k ,即0()k f x '=.求曲线()y f x =的切线方程的类型及方法(1)已知切点()00,P x y ,求()y f x =过点P 的切线方程:求出切线的斜率f ′(x 0),由点斜式写出方程; (2)已知切线的斜率为k ,求()y f x =的切线方程:设切点()00,P x y ,通过方程()0k f x ='解得x 0,再由点斜式写出方程;(3)已知切线上一点(非切点),求()y f x =的切线方程:设切点()00,P x y ,利用导数求得切线斜率()0f x ',再由斜率公式求得切线斜率,列方程(组)解得x 0,最后由点斜式或两点式写出方程.(4)若曲线的切线与已知直线平行或垂直,求曲线的切线方程时,先由平行或垂直关系确定切线的斜率,再由()0k f x ='求出切点坐标()00,x y ,最后写出切线方程. (5)①在点P 处的切线即是以P 为切点的切线,P 一定在曲线上.②过点P 的切线即切线过点P ,P 不一定是切点.因此在求过点P 的切线方程时,应首先检验点P 是 否在已知曲线上. 3.基本初等函数的导数公式4.导数的运算法则(1)()()()()u x v x u x v x ±'⎡⎦'⎤±⎣'=. (2)()()()()()()·u x v x u x v x u x v x ⎡⎤⎣⎦'''=+. (3)2()()()()()[](()0)()()u x u x v x u x v x v x v x v x ''-'=≠. 5.复合函数的导数复合函数()()y f g x =的导数和函数()()y f u u g x ==,的导数间的关系为x u x y y u '='⋅',即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积. 二、导数的应用1.函数的单调性与导数的关系 一般地,在某个区间(a ,b )内:①如果()0f x '>,函数f (x )在这个区间内单调递增; ②如果()0f x '<,函数f (x )在这个区间内单调递减; ③如果()=0f x ',函数f (x )在这个区间内是常数函数.(1)利用导数研究函数的单调性,要在函数的定义域内讨论导数的符号;(2)在某个区间内,()0f x '>(()0f x '<)是函数f (x )在此区间内单调递增(减)的充分条件,而不是必要条件.例如,函数3()f x x =在定义域(,)-∞+∞上是增函数,但2()30f x x '=≥.(3)函数()f x 在(a ,b )内单调递增(减)的充要条件是()0f x '≥(()0f x '≤)在(a ,b )内恒成立,且()f x '在(a ,b )的任意子区间内都不恒等于0.这就是说,在区间内的个别点处有()0f x '=,不影响函数()f x 在区间内 的单调性.2.函数的极值与导数的关系 一般地,对于函数()y f x =,①若在点x = a 处有f ′(a )= 0,且在点x = a 附近的左侧()0f 'x <,右侧()0f 'x >,则称x= a 为f (x )的极小值点;()f a 叫做函数f (x )的极小值.②若在点x =b 处有()f 'b =0,且在点x=b 附近的左侧()0f 'x >,右侧()0f 'x <,则称x= b 为f (x )的极大值点,()f b 叫做函数f (x )的极大值.③极小值点与极大值点通称极值点,极小值与极大值通称极值. 3.函数的最值与极值的关系①极值是对某一点附近(即局部)而言,最值是对函数的定义区间[,]a b 的整体而言;②在函数的定义区间[,]a b 内,极大(小)值可能有多个(或者没有),但最大(小)值只有一个(或者没有);③函数f (x )的极值点不能是区间的端点,而最值点可以是区间的端点; ④对于可导函数,函数的最大(小)值必在极大(小)值点或区间端点处取得.求函数()y f x =在[a ,b ]上的最大值与最小值的步骤 ①求函数()y f x =在(a ,b )内的极值;②将函数()y f x =的各极值与端点处的函数值f (a ),f (b )比较,其中最大的一个是最大值,最小的一个是最小值.三、定积分与微积分基本定理 1.定积分的定义和相关概念(1)如果函数f (x )在区间[a ,b ]上连续,用分点011i i n a x x x x x b -=<<<<<<=L L 将区间[a ,b ]等分成n 个小区间,在每个小区间[x i −1,x i ]上任取一点()1,2,,i i n ξ=L ,作和式11()()nni i i i b af x f nξξ==-∆=∑∑;当n →∞时,上述和式无限接近某个常数,这个常数叫做函数f (x )在区间[a ,b ]上的定积分,记作()d baf x x ⎰,即()d baf x x ⎰= 1lim ()ni n i b af nξ→∞=-∑. (2)在()d baf x x ⎰中,a 与b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,函数()f x 叫做被积函数,x 叫做积分变量,f (x )d x 叫做被积式. 2.定积分的性质 (1)()()d d bba akf x x k f x x =⎰⎰(k 为常数);(2)[()()]d ()d ()d bb ba aaf xg x x f x x g x x ±=±⎰⎰⎰;(3)()d =()d +()d bcb aacf x x f x x f x x ⎰⎰⎰(其中a <c <b ).3.定积分的几何意义(1)当函数f (x )在区间[a ,b ]上恒为正时,定积分ba ⎰ f (x )d x 的几何意义是由直线x = a ,x =b (a ≠b ),y = 0和曲线y = f (x )所围成的曲边梯形的面积(图①中阴影部分).(2)一般情况下,定积分ba ⎰ f (x )d x 的几何意义是介于x 轴、曲线f (x )以及直线x = a ,x =b 之间的曲边梯形面积的代数和(图②中阴影部分所示),其中在x 轴上方的面积等于该区间上的积分值,在x 轴下方的面积等于该区间上积分值的相反数.定积分的物理意义(1)变速直线运动的路程:做变速直线运动的物体所经过的路程s ,等于其速度函数v =v (t )(v (t )≥0)在时间区间[a ,b ]上的定积分,即()d bas v t t =⎰.(2)变力做功:一物体在恒力F (单位:N)的作用下做直线运动,如果物体沿着与F 相同的方向移动了s m ,则力F 所做的功为W =Fs .如果物体在变力F (x )的作用下沿着与F (x )相同的方向从x =a 移动到x =b ,则变力F (x )做的功()d baW F x x =⎰.4.微积分基本定理一般地,如果f (x )是区间[a ,b ]上的连续函数,且F ′(x )= f (x ),那么()d baf x x ⎰= F (b )−F (a ).这个结论叫做微积分基本定理,又叫做牛顿—莱布尼茨公式,其中F (x )叫做f (x )的一个原函数.为了方便,我们常把F (b )−F (a )记作()|b aF x ,即()d baf x x ⎰=()|b a F x = F (b )−F (a ).1.【2019年高考全国Ⅲ卷理数】已知曲线e ln x y a x x =+在点(1,a e )处的切线方程为y =2x +b ,则 A .e 1a b ==-, B .a=e ,b =1 C .1e 1a b -==,D .1e a -=,1b =-【答案】D【解析】∵e ln 1,xy a x '=++∴切线的斜率1|e 12x k y a ='==+=,1e a -∴=, 将(1,1)代入2y x b =+,得21,1b b +==-.故选D .【名师点睛】本题求解的关键是利用导数的几何意义和点在曲线上得到含有a ,b 的等式,从而求解,属于常考题型.2.【2018年高考全国Ⅰ卷理数】设函数32()(1)f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为 A .2y x =- B .y x =- C .2y x = D .y x =【答案】D【解析】因为函数f(x)是奇函数,所以a −1=0,解得a =1,所以f(x)=x 3+x ,f′(x)=3x 2+1, 所以f′(0)=1,f(0)=0,所以曲线y =f(x)在点(0,0)处的切线方程为y −f(0)=f′(0)x ,化简可得y =x . 故选D.【名师点睛】该题考查的是有关曲线y =f(x)在某个点(x 0,f(x 0))处的切线方程的问题,在求解的过程中,首先需要确定函数解析式,此时利用到结论多项式函数中,奇函数不存在偶次项,偶函数不存在奇次项,从而求得相应的参数值,之后利用求导公式求得f′(x),借助于导数的几何意义,结合直线方程的点斜式求得结果.3.【2017年高考全国Ⅱ卷理数】若2x =-是函数21()(1)ex f x x ax -=+-的极值点,则()f x 的极小值为A .1-B .32e -- C .35e - D .1【答案】A【解析】由题可得12121()(2)e(1)e [(2)1]e x x x f x x a x ax x a x a ---'=+++-=+++-,因为(2)0f '-=,所以1a =-,21()(1)e x f x x x -=--,故21()(2)ex f x x x -'=+-,令()0f x '>,解得2x <-或1x >,所以()f x 在(,2),(1,)-∞-+∞上单调递增,在(2,1)-上单调递减, 所以()f x 的极小值为11()(111)e 11f -=--=-.故选A .【名师点睛】(1)可导函数y =f (x )在点x 0处取得极值的充要条件是f ′(x 0)=0,且在x 0左侧与右侧f ′(x )的符号不同;(2)若f (x )在(a ,b )内有极值,那么f (x )在(a ,b )内绝不是单调函数,即在某区间上单调增或减的函数没有极值.4(),x y 处的切线斜率为()g x ,则函数()2y x g x =的部分图象可以为A .B .C .D .【答案】DB 、C 错误;又当πx =时,0y =,当0y <,选项A 错误; 本题选择D 选项.【名师点睛】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势. (3)从函数的奇偶性,判断图象的对称性. (4)从函数的特征点,排除不合要求的图象. 5.函数2l ()n f x x x =的最小值为A .1e- B .1e C .12e-D .12e【答案】C【解析】由题得(0,)x ∈+∞,()2ln (2ln 1)f x x x x x x '=+=+, 令2ln 10x +=,解得12ex -=,则当12(0,e )x -∈时,()f x 为减函数,当12(e ,)x -∈+∞时,()f x 为增函数, 所以12e x -=处的函数值为最小值,且121(e )2ef -=-. 故选C.【名师点睛】本题考查用导数求函数最值,解此类题首先确定函数的定义域,其次判断函数的单调性,确定最值点,最后代回原函数求得最值.6.定义在()0,+∞上的函数()f x 满足()21x f x '>,()522f =,则关于x 的不等式()1e 3exx f <-的解集为A .()20,e B .(),ln2-∞ C .()0,ln2D .()2e ,+∞【答案】B【解析】令()()1,0g x f x x x=+>,则()()()22211x f x g x f x x x -=-=''', ∵()21x f x '>,∴()()2210x f x g x x -='>',∴函数()()1g x f x x=+在()0,+∞上单调递增. 又()522f =,∴()()12232g f =+=. 结合题意,不等式()1e 3e x x f <-可转化为()()11e 2e 2xx f f +<+,即()()e 2x g g <,∴0<e 2x<,解得ln2x <,原不等式的解集为(),ln2-∞.故选B .【名师点睛】对于含有导函数的不等式的问题,在求解过程中一般要根据不等式的形式构造出相应的函数,然后根据所给的不等式得到导函数的符号,进而得到构造的函数的单调性,再根据所构造的函数的单调性进行解题,其中根据题意构造符合题意的函数是解题的关键.由()21x f x '>构造函数()()1g x f x x =+,则有()()2210x f x g x x -='>',从而得到函数()()1g x f x x=+在()0,+∞上单调递增.又()()12232g f =+=,所以不等式()1e 3e x x f <-可化为()()11e 2e 2x x f f +<+,根据函数()g x 的单调性可得0<e 2x <,于是可得所求结果.7.已知定义在()0,+∞上的函数()()2,6ln 4f x x m h x x x =-=-,设两曲线()y f x =与()y h x =在公共点处的切线相同,则m 值等于 A .−3 B .1 C .3D .5【答案】D【解析】设函数()()2,6ln 4f x x m h x x x =-=-在公共点(a ,b )(a >0)处的切线相同,由题得()()62,4,f x x h x x =-'=所以26ln 4624b a m b a a a a ⎧⎪=-⎪=-⎨⎪⎪=-⎩,解之得a =1,b =−4,m =5. 故答案为D.【名师点睛】(1)本题主要考查导数的几何意义,考查曲线的切线问题,意在考查学生对这些知识的掌握水平和分析推理能力.(2)解答本题的关键是根据已知得到方程组26ln 4624b a m b a a a a ⎧⎪=-⎪=-⎨⎪⎪=-⎩.8.若函数()51ln 12f x x ax ax=+--在()1,2上为增函数,则a 的取值范围为 A .()1,0,24⎡⎤-∞⎢⎥⎣⎦UB .()1,0,12⎡⎤-∞⎢⎥⎣⎦U C .[)11,00,4⎛⎤- ⎥⎝⎦UD .[)11,0,12⎡⎤-⎢⎥⎣⎦U【答案】B【解析】依题意可得()25102f x a x ax =-'-≥对x ()1,2∈恒成立, 即25102ax x a-+≤对x ()1,2∈恒成立.设g (x )= a 2512x x a-+,x ()1,2∈. 当a >0时,()()5110212450g a ag a a ⎧=-+≤⎪⎪⎨⎪=-+≤⎪⎩,解得112a ≤≤.当a <0时,g (0)=10a <,−522a -=504a<,()()01,2g x x ∴<∈对恒成立.综上,a 的取值范围为()1,0,12⎡⎤-∞⎢⎥⎣⎦U . 故选B.【名师点睛】本题主要考查利用导数法研究函数的单调性,是一道中档题,其基本解题思路是:当函数为增函数时,导数大于等于零;当函数为减函数时,导数小于等于零,已知函数单调性求参数的范围问题往往转化为求相应函数的最值问题,体现了转化的数学思想,很好地考查了学生的计算能力. 9.若方程330x x m -+=在[0,2]上有解,则实数m 的取值范围是 A .[]2,2- B .[0,2]C .[]2,0-D .2()()2-∞-+∞U ,, 【答案】A【解析】由题意得,方程330x x m -+=在[0,2]上有解,则33m x x -=-,x ∈[0,2],令33y x x =-,x∈[0,2],则233y x '=-,令0y '>,解得x >1,因此函数在[0,1]上单调递减,在[1,2]上单调递增,又x =1时,2y =-;x =2时,y =2;x = 0,y = 0,∴函数33y x x =-,x ∈[0,2]的值域是[]2,2-,故[]2,2m -∈-,∴[]2,2m ∈-,故选A.10.两曲线sin y x =,cos y x =与两直线0x =AC【答案】D【解析】作出曲线sin y x =,cos y x =与两直线0x =.根据对称性,可知曲线sin y x =,cos y x =与两直线0x =sin y x =,cos y x =与直线0x =,所围成的平面区域的面积的两倍,所以S =D.11.已知函数()()()3221132132f x x a x a a x =+-+-+,若在区间()0,3内存在极值点,则实数a 的取值范围是 A .()0,3B .1,22⎛⎫⎪⎝⎭ C .()()0,11,3UD .()1,11,22⎛⎫⎪⎝⎭U 【答案】C【解析】()()()()2213221,f x x a x a a x a x a ⎡⎤=+-+-=---⎣⎦' 令()0f x '=,则x =a 或x =2a −1.若1a =,则()21,0a a f x '=-≥R 在上恒成立,函数()f x 在R 上单调递增,所以()f x 没有极值点; 若1a >,则21a a <-, 由于f (x )在区间()0,3内存在极值点,所以3,13a a <∴<<; 若1a <,则21a a >-,由于f (x )在区间()0,3内存在极值点,所以0,01a a >∴<<. 综上所述,0113a a <<<<或, 故选C.【名师点睛】本题考查导数在求函数极值中的应用,比较21a a -与的大小,11a a ><分和进行讨论.12.【2019年高考全国Ⅰ卷理数】曲线23()e xy x x =+在点(0)0,处的切线方程为____________. 【答案】30x y -=【解析】223(21)e 3()e 3(31)e ,x x xy x x x x x '=+++=++ 所以切线的斜率0|3x k y ='==,则曲线23()e xy x x =+在点(0,0)处的切线方程为3y x =,即30x y -=.【名师点睛】准确求导数是进一步计算的基础,本题易因为导数的运算法则掌握不熟,而导致计算错误.求导要“慢”,计算要准,是解答此类问题的基本要求.13.【2018年高考全国Ⅱ卷理数】曲线2ln(1)y x =+在点(0,0)处的切线方程为__________.【答案】y =2x【解析】∵y ′=2x+1,∴在点(0,0)处切线的斜率为k =20+1=2, 则所求的切线方程为y =2x .【名师点睛】求曲线的切线要注意“过点P 的切线”与“在点P 处的切线”的差异,过点P 的切线中,点P 不一定是切点,点P 也不一定在已知的曲线上,而在点P 处的切线,必以点P 为切点.14.【2018年高考全国Ⅰ卷理数】已知函数()2sin sin2f x x x =+,则()f x 的最小值是_____________.【答案】−3√32【解析】f′(x)=2cosx +2cos2x =4cos 2x +2cosx −2=4(cosx +1)(cosx −12), 所以当cosx <12时函数单调递减,当cosx >12时函数单调递增, 从而得到函数的递减区间为()5ππ2π,2π33k k k ⎡⎤--∈⎢⎥⎣⎦Z , 函数的递增区间为()ππ2π,2π33k k k ⎡⎤-+∈⎢⎥⎣⎦Z , 所以当π2π,3x k k =-∈Z 时,函数f (x )取得最小值, 此时sinx =−√32,sin2x =−√32, 所以f (x )min =2×(−√32)−√32=−3√32, 故答案是−3√32. 【名师点睛】该题考查的是有关应用导数研究函数的最小值问题,在求解的过程中,需要明确相关的函数的求导公式,需要明白导数的符号与函数的单调性的关系,确定出函数的单调增区间和单调减区。
选考系列一、高考预测几何证明选讲是高考的选考内容,主要考查相似三角形的判定与性质,射影定理,平行线分线段成比例定理;圆的切线定理,切割线定理,相交弦定理,圆周角定理以及圆内接四边形的判定与性质等.题目难度不大,以容易题为主.对本部分的考查主要是一道选考解答题,预测2012年仍会如此,难度不会太大.矩阵与变换主要考查二阶矩阵的基本运算,主要是以解答题的形式出现.预测在2012年高考主要考查(1)矩阵的逆矩阵;(2)利用系数矩阵的逆矩阵求点的坐标或曲线方程.坐标系与参数方程重点考查直线与圆的极坐标方程,极坐标与直角坐标的互化;直线,圆与椭圆的参数方程,参数方程与普通方程的互化,题目不难,考查“转化”为目的.预测2012高考中,极坐标、参数方程与直角坐标系间的互化仍是考查的热点,题目容易.不等式选讲是高考的选考内容之一,主要考查绝对值的几何意义,绝对值不等式的解法以及不等式证明的基本方法(比较法、分析法、综合法).关于含有绝对值的不等式的问题.预测2012年高考在本部分可能会考查不等式的证明或求最值问题.1.极点的极径为0,极角为任意角,即极点的坐标不是惟一的.极径ρ的值也允许取负值,极角θ允许取任意角,当ρ<0时,点M(ρ,θ)位于极角θ的终边的反向延长线上,且OM=|ρ|,在这样的规定下,平面上的点的坐标不是惟一的,即给定极坐标后,可以确定平面上惟一的点,但给出平面上的点,其极坐标却不是惟一的.这有两种情况:①如果所给的点是极点,其极径确定,但极角可以是任意角;②如果所给点M的一个极坐标为(ρ,θ)(ρ≠0),则(ρ,2kπ+θ),(-ρ,(2k+1)π+θ)(k∈Z)也都是点M的极坐标.这两种情况都使点的极坐标不惟一,因此在解题的过程中要引起注意.2.在进行极坐标与直角坐标的转化时,要求极坐标系的极点与直角坐标系的原点重合,极轴与x轴的正半轴重合,且长度单位相同,在这个前提下才能用转化公式.同时,在曲线的极坐标方程和直角坐标方程互化时,如遇约分,两边平方,两边同乘以ρ,去分母等变形,应特别注意变形的等价性.3.对于极坐标方程,需要明确:①曲线上点的极坐标不一定满足方程.如点P(1,1)在方程ρ=θ表示的曲线上,但点P的其他形式的坐标都不满足方程;②曲线的极坐标方程不惟一,如ρ=1和ρ=-1都表示以极点为圆心,半径为1的圆.4.同一个参数方程,以不同量作为参数,一般表示不同的曲线.5.任何一个参数方程化为普通方程,从理论上分析都存在扩大取值范围的可能性.从曲线和方程的概念出发,应通过限制普通方程中变量的取值范围,使化简前后的方程表示的是同一条曲线,原则上要利用x=f(t),y=g(t),借助函数中求值域的方法,以t为自变量,求出x和y的值域,作为普通方程中x和y的取值范围.7.注意柯西不等式等号成立的条件⇔a1b2-a2b1=0,这时我们称(a1,a2),(b1,b2)成比例,如果b1≠0,b2≠0,那么a1b2-a2b1=0⇔=.若b1·b2=0,我们分情况说明:①b1=b2=0,则原不等式两边都是0,自然成立;②b1=0,b2≠0,原不等式化为(a+a)b≥ab,是自然成立的;③b1≠0,b2=0,原不等式和②的道理一样,自然成立.正是因为b1·b2=0时,不等式恒成立,因此我们研究柯西不等式时,总是假定b1·b2≠0,等号成立的条件可写成=.三、易错点点睛几何证明选讲几何证明选讲是考查同学们推理能力、逻辑思维能力的好资料,题目以证明题为主,特别是一些定理的证明和用多个定理证明一个问题的题目,我们更应注意.重点把握以下内容:1.射影定理的内容及其证明;2.圆周角与弦切角定理的内容及证明;3.圆幂定理的内容及其证明;4.圆内接四边形的性质与判定;5.平行投影的性质与圆锥曲线的统一定义.如图,A,B,C,D四点在同一圆上,AD的延长线与BC的延长线交于E点,且EC=ED.(1)证明:CD∥AB;(2)延长CD到F,延长DC到G,使得EF=EG,证明:A,B,G,F四点共圆.证明(1)因为EC=ED,所以∠EDC=∠ECD.因为A,B,C,D四点在同一圆上,所以∠EDC=∠EBA.故∠ECD=∠EBA.所以CD∥AB.(2)由(1)知,AE=BE.因为EF=EG,故∠EFD=∠EGC,从而∠FED=∠GEC.连结AF,BG,则△EFA≌△EGB,故∠FAE=∠GBE.又CD∥AB,∠EDC=∠ECD,所以∠FAB=∠GBA.所以∠AFG+∠GBA=180°.故A,B,G,F四点共圆.易错提醒(1)对四点共圆的性质定理和判定定理理解不透.(2)不能正确作出辅助线,构造四边形.(3)角的关系转化不当.矩阵与变换矩阵与变换易错易漏 (1)因矩阵乘法不满足交换律,多次变换对应矩阵的乘法顺序易错. (2)图形变换后,所求图形方程易代错.已知矩阵M =\o(\s\up12(1b ,N =\o(\s\up12(c0,且MN =\o(\s\up12(2-2 .(1)求实数a ,b ,c ,d 的值;(2)求直线y =3x 在矩阵M 所对应的线性变换作用下的象的方程. 解 方法一 (1)由题设得解得易错提醒 (1)忽视将C 1的参数方程和C 2的极坐标方程化为直角坐标系下的普通方程,即转化目标不明确.(2)转化或计算错误. 不等式选讲设a 、b 是非负实数,求证:a 3+b 3≥(a 2+b 2).证明 由a ,b 是非负实数,作差得a 3+b 3-(a 2+b 2)=a 2(-)+b 2(-) =(-)[()5-()5].当a ≥b 时,≥,从而()5≥()5,得(-)[()5-()5]≥0; 当a <b 时,<,从而()5<()5,得(-)[()5 -()5]>0.所以a 3+b 3≥(a 2+b 2).易错提醒 (1)用作差法证明不等式入口较易,关键是分解因式,多数考生对分组分解因式不熟练.(2)分解因式后,与零比较时,易忽略分类讨论.设f x ax bx ()=+2,且112214≤-≤≤≤f f ()(),,求f ()-2的取值范围。
高考导数常考、易错、失分点分析【易错点1】复合函数的求导例1、函数1cos x y x e -=⋅ 的导数为 。
【易错点诊断】复合函数对自变量的导数等于已知函数对中间变量的导数,乘以中间变量对自变量的导数,即x u x y y u '''=⋅。
解析: ()()1cos 1cos 1cos 1cos 1cos 1cos x x x x x y e x e e xe x e -----'''=+=+-=+1cos sin x xe x -()1cos 1sin x x x e -=+.【迷津指点】掌握复合函数的求导方法关键在于分清函数的复合关系,适当选定中间变量,分步计算中的每一步都要明确是对哪个变量求导,而其中要特别注意的是中间变量的系数。
[适用性练习](1)设3x =是函数23()()()x f x x ax b e x R -=++∈的一个极值点。
(1)求a 与b 的关系式(用a 表示b )答案:23b a =--.(2)y =ln (x +21x +)答案: y ′=211x x ++·(x +21x +)′=211x x ++(1+21x x +)=211x +.【易错点2】关于导数的几何意义(还有一个易错题)例2、曲线33:x x y S -=在点(0,16)A 处的切线方程为 。
【易错点诊断】此题易由/2/()33,(0)3f x x f =-+=,从而得到以A 点为切点的切线的斜率为3,即所求切线方程为3160x y -+=的错误结果,事实上要注意到点A 不在曲线S 上。
解析:设过点A 的切线与曲线S 切于点()3000,3M x x x -处,由于/2()33,f x x =-+由导数的几何意义可知切线的斜率()20033k f x x '==-+①,又由两点连线的斜率公式知30003161x x k x --=②,联立①②得02x =-,从而切线的斜率()20033k f x x '==-+=-9,故切线方程为9160x y +-=。
高考文科数学易错题:导数的应用要掌握好导数的几何意义、导数的运算、导数和函数的单调性与极值的关系,由于函数的极值和最值的处置是以函数的单调性为前提的,因此要重点处置导数在研讨函数单调性中的运用,查字典数学网整理了2021高考文科数学易错题:导数的运用,供参考。
1.(典型例题)函数=-x3+3x2+9x+a.(1)求的单调递减区间;(2)假定在区间[-2,2]上最大值为20,求它在该区间上的最小值。
[考场错解](1)=-3x2+6x+9,令0,解得x-1或x3,函数的音调递减区间为(-,-1)(3,+)(2)令=0,得x=-1或x=3当-20;当x3时,0.x=-1,是的极不值点,x=3是极大值点。
f(3)=-27+27+27+a=20,a=-7.的最小值为f(-1)=-1+3-9+a=-14.[专家把脉] 在闭区间上求函数的最大值和最小值,应把极值点的函数值与两端点的函数值停止比拟大小才干发生最大(小)值点,而下面解答题直接用极大(小)值替代最大(小)值,这显然是错误的。
[专家把脉] 当0时,是减函数,但反之并不尽然,如=-x3是减函数,=3x2并不恒小于0,(x=0时=0).因此此题应该有在R上恒小于或等于0。
[有的放矢] 函数的导数:=3x2+6x-1.当=3ax2+6x-10对任何xR恒成立时,在R上是减函数。
①对任何xR,3ax2+6x-10恒成立,a0且△=36+12a-3.所以当a-3时,由0对任何xR恒成立时,在R上是减函数。
②当a=-3时, =-3x3+3x2-x+1=-3(x-)3+.由函数y=x3在R上的单调性知,当a=-3时,在R上是减函数。
③当a-3时,f(x)=3ax2+6x-10在R上至少可解得一个区间,所以当a-3时,是在R上的减函数。
综上,所求a的取值范围是(-,-3)。
3.aR,讨论函数=ex(x2+ax+a+1)的极值点的个数。
[有的放矢]=ex(a2+ax+a+1)+ex(2x+a)=ex[x2+(a+2)x+(2a+1)]令=0得x2+(a+2)x+(2a+1)=0.(1)当△=(a+2)2-4(2a+1)=a2-4a=a(a-4)0即a0或a4时,方程x2+(a+2)x+(2a+1)=0有两个不同的实根x1、x2,无妨设x10;当xx1时,f(x)0因此f(x)无极值。
导数及应用一、高考预测从近几年考查的趋势看,本专题考查的重点是导数在研究函数的单调性和极值中的应用、导数在研究方程和不等式中的应用,考查的形式是解答题考查导数在研究函数问题中的综合运用,但常围绕一些交叉点设计一些新颖的试题,大部分函数和导数的基础试题难度也不大,但少数函数的基础试题难度较大,解答题中的函数导数试题也具有一定的难度.由于该专题的绝大多数内容(除定积分)都是传统的高中数学内容,在考查上已经基本稳定(难度稳定、考查重点稳定、考查的分值稳定),预计2012年基本上还是这个考查趋势,具体为:以选择题或者填空题的方式考查导数的几何意义的应用,定积分的计算及其简单应用.以解答题的方式考查导数在函数问题中的综合应用,重点是使用导数的方法研究函数的单调性和极值以及能够转化为研究函数的单调性、极值、最值问题的不等式和方程等问题,考查函数建模和利用导数解模.导数及其应用:要掌握好导数的几何意义、导数的运算、导数和函数的单调性与极值的关系,由于函数的极值和最值的解决是以函数的单调性为前提的,因此要重点解决导数在研究函数单调性中的应用,特别是含有字母参数的函数的单调性(这是高考考查分类与整合思想的一个主要命题点),在解决好上述问题后,要注意把不等式问题、方程问题转化为函数的单调性、极值、最值进行研究性训练,这是高考命制压轴题的一个重要考查点. 二、知识导学要点1:利用导数研究曲线的切线1.导数的几何意义:函数()y f x =在0x处的导数()f x '的几何意义是:曲线()y f x =在点00(,())P x f x 处的切线的斜率(瞬时速度就是位移函数()s t 对时间t 的导数)。
2.求曲线切线方程的步骤:(1)求出函数()y f x =在点0x x =的导数,即曲线()y f x =在点00(,())P x f x 处切线的斜率;(2)在已知切点坐标00(,())P x f x 和切线斜率的条件下,求得切线方程为000()()y y f x x x '-=-。
注:①当曲线()y f x =在点00(,())P x f x 处的切线平行于y 轴(此时导数不存在)时,由切线定义可知,切线方程为0x x=;②当切点坐标未知时,应首先设出切点坐标,再求解。
要点2:利用导数研究导数的单调性 利用导数研究函数单调性的一般步骤。
(1)确定函数的定义域;(2)求导数)(x f ';(3)①若求单调区间(或证明单调性),只需在函数()y f x =的定义域内解(或证明)不等式)(x f '>0或)(x f '<0。
②若已知()y f x =的单调性,则转化为不等式)(x f '≥0或)(x f '≤0在单调区间上恒成立问题求解。
要点3:利用导数研究函数的极值与最值1.在求可导函数的极值时,应注意:(以下将导函数)(x f '取值为0的点称为函数)(x f 的驻点可导函数的极值点一定是它的驻点,注意一定要是可导函数。
例如函数||x y =在点0=x 处有极小值)0(f =0,可是这里的)0(f '根本不存在,所以点0=x 不是)(x f 的驻点.(1) 可导函数的驻点可能是它的极值点,也可能不是极值点。
例如函数3)(x x f =的导数23)(x x f =',在点0=x 处有0)0(='f ,即点0=x 是3)(x x f =的驻点,但从)(x f 在()+∞∞-,上为增函数可知,点0=x 不是)(x f 的极值点.(2) 求一个可导函数的极值时,常常把驻点附近的函数值的讨论情况列成表格,这样可使函数在各单调区间的增减情况一目了然.(3) 在求实际问题中的最大值和最小值时,一般是先找出自变量、因变量,建立函数关系式,并确定其定义域.如果定义域是一个开区间,函数在定义域内可导(其实只要是初等函数,它在自己的定义域内必然可导),并且按常理分析,此函数在这一开区间内应该有最大(小)值(如果定义域是闭区间,那么只要函数在此闭区间上连续,它就一定有最大(小).记住这个定理很有好处),然后通过对函数求导,发现定义域内只有一个驻点,那么立即可以断定在这个驻点处的函数值就是最大(小)值。
知道这一点是非常重要的,因为它在应用上较为简便,省去了讨论驻点是否为极值点,求函数在端点处的值,以及同函数在极值点处的值进行比较等步骤.2.极大(小)值与最大(小)值的区别与联系极值是局部性概念,最大(小)值可以看作整体性概念,因而在一般情况下,两者是有区别的.极大(小)值不一定是最大(小)值,最大(小)值也不一定是极大(小)值,但三、易错点点睛命题角度 1导数的概念与运算1.设0()sin f x x =,10()()f x f x '=,21()()f x f x '=…, 1()()n n fx f x +'=,n ∈N,则2012()f x( )A.sinxB.-sinxC.cosxD.-cosx [考场错解] 选C[专家把脉] 由1()f x '=0()f x '(sin )cos x x '==,21()()f x f x '=(cos )sin x x'==-,f3(x)=(-sinx)’=-cosx,3()(sin )cos f x x x'=-=-,4()(cos )sin f x x x'=-=,故周期为4。
[对症下药] 选A2.已知函数()f x 在x=1处的导数为3,()f x 的解析式可能为 ( )A .()f x =(x-1)3+32(x-1)B .()f x =2x+1C .()f x =2(x-1)2D .()f x =-x+3=2e -xcosx 令f ’(x)=0,x=n π+2π(n=1,2,3,…)从而x n =n π+2π。
f(x n )=e-( n π+2π)(-1)n·)()(1n n x f x f +=-e 2π-.∴数列{f(x n )}是公比为q=-e -π的等比数列。
[专家把脉] 上面解答求导过程中出现了错误,即(e-x )’=e-x 是错误的,由复合函数的求导法则知(e-x )’=e -x (-x)’=-e -x才是正确的。
[对诊下药](1)证明:f ’(x)=(e-x)’(cos+sinx)+e -x (cosx+sinx)’ =-e -x (cosx+sinx) +e -x (-sinx+cos)=-2e -x sinx. 令f ’(x)=0得-2e -x sinx=0,解出x=n π,(n 为整数,从而x n =n π(n=1,2,3,…),f(x n )=(-1)ne-n ππ-+-=ex f x f n n )()(1,所以数列|f(xn)|是公比q=-e -π的等比数列,且首项f(x 1)=-e -π(2)S n =x 1f(x 1)+x 2f(x 2)+…+x n f(x n )=nq(1+2q+…+nq n-1)aS n =πq(q+2q 2+…+nq n )=πq(qqn--11-nq n )从而S n =q q -1π(qqn--11-nq n )2232221)1()1()1(2)1(q qq q n qq q nS S S n nn-+----=++++πππ∵|q|=e -π<1 ∴∞→n limq n =0,∴∞→n lim2221)1()1(ππππe eq qnSnS S +--=+++专家会诊1.理解导数的概念时应注意导数定义的另一种形式:设函数f(x)在x=a 处可导,则)(')()(lima f ax a f x f n =--∞→的运用。
2.复合函数的求导,关键是搞清复合关系,求导应从外层到内层进行,注意不要遗漏3.求导数时,先化简再求导是运算的基本方法,一般地,分式函数求导,先看是否化为整式函数或较简单的分式函数;对数函数求导先化为和或差形式;多项式的积的求导,先展开再求导等等。
命题角度 2导数几何意义的运用1.曲线y=x 3在点(1,1)的切线与x 轴、直线x=2所围成的三角形面积为_________.[考场错解] 填2 由曲线y=x 3在点(1,1)的切线斜率为1,∴切线方程为y-1==x-1,y=x.所以三条直线y=x,x=0,x=2所围成的三角形面积为S=21×2×2=2。
[专家把脉] 根据导数的几何意义,曲线在某点处的切线斜率等于函数在这点处的导数,上面的解答显然是不知道这点,无故得出切线的斜率为1显然是错误的。
[对症下药] 填38。
∵()f x '=3x 2当x=1时f ’(1)=3.由导数的几何意义知,曲线在点(1,1)处的斜率为3。
即切线方程为y-1=3(x-1) 得y=3x-2.联立⎩⎨⎧=-=223x x y 得交点(2,4)。
又y=3x-2与x 轴交于(32,0)。
∴三条直线所围成的面积为S=21×4×(2-32)=38。
2.设t ≠0,点P (t,0)是函数()f x =x 3+ax 与g(x)=bx 3+c 的图像的一个公共点,两函数的图像在P 点处有相同的切线。
(1)用t 表示a 、b 、c ;(2)若函数y=f(x)-g(x)在(-1,3)上单调递减,求t 的取值范围。
[考场错解] (1)∵函数()f x =x 3+ax 与g(x)=bx 2+c 的图像的一个公共点P(t,0).∴f(t)=g(t)⇒t 3+at=bt 2+c. ①又两函数的图像在点P 处有相同的切线,∴f ’(t)=g ’(t) ⇒3t 3+a=2bt. ②由①得b=t,代入②得a=-t 2.∴c=-t 3.[专家把脉] 上面解答中得b=t 理由不充足,事实上只由①、②两式是不可用t 表示a 、b 、c ,其实错解在使用两函数有公共点P ,只是利用f(t)=g(t)是不准确的,准确的结论应是f(t)=0,即t 3+at=0,因为t ≠0,所以a=-t 2.g(t)=0即bt 2+c=0,所以c=ab 又因为f(x)、g(x)在(t,0)处有相同的切线,所以f ’(t)=g;(t).即3t 2+a=2bt, ∵a=-t 2, ∴b=t.因此c=ab=-t 2·t=-t 3.故a=-t 2,b=t,c=-t 3 (2)解法1 y=()f x -g(x)=x 3-t 2x-tx 2+t 3 y ’=3x 2-2tx-t 2=(3x+t)(x-t).当y ’=(3x+t)(x-t)<0时,函数y=f(d)-g(x)单调递减。
由y ’<0,若t<0,则t<x<-3t,若t>0,则-3t<x<t.则题意,函数y=f(x)-g(x)在(-1,3)上单调递减,则(-1,3)⊂(-3t,t )或(-1,3)⊂(t ,-3t)所以t ≥3或-3t≥3。