三角形证明(辅助线归类讲解)
- 格式:docx
- 大小:74.21 KB
- 文档页数:4
三角形作辅助性方法大全1.在利用三角形的外角大于任何和它不相邻的内角证明角的不等关系时,如果直接证不出来,可连结两点或延长某边,构造三角形,使求证的大角在某个三角形外角的位置上,小角处在内角的位置上,再利用外角定理证题.例:已知D 为△ABC 内任一点,求证:∠BDC >∠BAC证法(一):延长BD 交AC 于E ,∵∠BDC 是△EDC 的外角,∴∠BDC >∠DEC同理:∠DEC >∠BAC ∴∠BDC >∠BAC 证法(二):连结AD ,并延长交BC 于F ∵∠BDF 是△ABD 的外角, ∴∠BDF >∠BAD 同理∠CDF >∠CAD∴∠BDF +∠CDF >∠BAD +∠CAD 即:∠BDC >∠BAC2.有角平分线时常在角两边截取相等的线段,构造全等三角形.例:已知,如图,AD 为△ABC 的中线且∠1 = ∠2,∠3 = ∠4,求证:BE +CF >EF证明:在DA 上截取DN = DB ,连结NE 、NF ,则DN= DC 在△BDE 和△NDE 中,DN = DB ∠1 = ∠2ED = ED ∴△BDE ≌△NDE∴BE = NE同理可证:CF = NF在△EFN 中,EN +FN >EF ∴BE +CF >EF3. 有以线段中点为端点的线段时,常加倍延长此线段构造全等三角形.例:已知,如图,AD 为△ABC 的中线,且∠1 = ∠2,∠3 = ∠4,求证:BE +CF >EF证明:延长ED 到M ,使DM = DE ,连结CM 、FM△BDE 和△CDM 中, BD = CD ∠1 = ∠5 ED = MD∴△BDE ≌△CDM ∴CM = BE又∵∠1 = ∠2,∠3 = ∠4∠1+∠2+∠3 + ∠4 = 180oFABC DE D C B A4321NF E DC B A∴∠3 +∠2 = 90o 即∠EDF = 90o∴∠FDM = ∠EDF = 90o△EDF 和△MDF 中 ED = MD ∠FDM = ∠EDFDF = DF ∴△EDF ≌△MDF ∴EF = MF∵在△CMF 中,CF +CM >MF BE +CF >EF(此题也可加倍FD ,证法同上)4. 在三角形中有中线时,常加倍延长中线构造全等三角形.例:已知,如图,AD 为△ABC 的中线,求证:AB +AC >2AD证明:延长AD 至E ,使DE = AD ,连结BE∵AD 为△ABC 的中线 ∴BD = CD 在△ACD 和△EBD 中BD = CD ∠1 = ∠2AD = ED∴△ACD ≌△EBD∵△ABE 中有AB +BE >AE ∴AB +AC >2AD5.截长补短作辅助线的方法截长法:在较长的线段上截取一条线段等于较短线段; 补短法:延长较短线段和较长线段相等. 这两种方法统称截长补短法.当已知或求证中涉及到线段a 、b 、c 、d 有下列情况之一时用此种方法: ①a >b ②a ±b = c ③a ±b = c ±d例:已知,如图,在△ABC 中,AB >AC ,∠1 = ∠2,P 为AD 上任一点,求证:AB -AC >PB -PC证明:⑴截长法:在AB 上截取AN = AC ,连结PN在△APN 和△APC 中, AN = AC∠1 = ∠2AP = AP ∴△APN ≌△APC ∴PC = PN ∵△BPN 中有PB -PC <BNMA BC D E F12345 12E DC B AP 12N DCB A∴PB -PC <AB -AC⑵补短法:延长AC 至M ,使AM = AB ,连结PM 在△ABP 和△AMP 中 AB = AM ∠1 = ∠2 AP = AP∴△ABP ≌△AMP ∴PB = PM 又∵在△PCM 中有CM >PM -PC ∴AB -AC >PB -PC练习:1.已知,在△ABC 中,∠B = 60o ,AD 、CE 是△ABC 的角平分线,并且它们交于点O求证:AC = AE +CD2.已知,如图,AB ∥CD ∠1 = ∠2 ,∠3 = ∠4. 求证:BC = AB +CD6.证明两条线段相等的步骤:①观察要证线段在哪两个可能全等的三角形中,然后证这两个三角形全等。
三角形中作辅助线的常用方法举例一、延长已知边构造三角形:分析:欲证 AD =BC ,先证分别含有AD ,BC 的三角形全等,有几种方案:△ADC 与△BCD ,△AOD 与△BOC ,△ABD 与△BAC ,但根据现有条件,均无法证全等,差角的相等,因此可设法作出新的角,且让此角作为两个三角形的公共角。
证明:分别延长DA ,CB ,它们的延长交于E 点, ∵AD ⊥AC BC ⊥BD (已知) ∴∠CAE =∠DBE =90° (垂直的定义) 在△DBE 与△CAE 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠)()()(已知已证公共角AC BD CAE DBE E E∴△DBE ≌△CAE (AAS )∴ED =EC EB =EA (全等三角形对应边相等) ∴ED -EA =EC -EB 即:AD =BC 。
(当条件不足时,可通过添加辅助线得出新的条件,为证题创造条件。
)二 、连接四边形的对角线,把四边形的问题转化成为三角形来解决。
三、有和角平分线垂直的线段时,通常把这条线段延长。
分析:要证BD =2CE ,想到要构造线段2CE ,同时CE 与∠ABC 的平分线垂直,想到要将其延长。
证明:分别延长BA ,CE 交于点F 。
∵BE ⊥CF (已知)∴∠BEF =∠BEC =90° (垂直的定义)在△BEF 与△BEC 中,19-图DCBAEF 12ABCDE17-图O∵ ⎪⎩⎪⎨⎧∠=∠=∠=∠)()()(21已证公共边已知BEC BEF BE BE ∴△BEF ≌△BEC (ASA )∴CE=FE=21CF (全等三角形对应边相等) ∵∠BAC=90° BE ⊥CF (已知)∴∠BAC =∠CAF =90° ∠1+∠BDA =90°∠1+∠BFC =90° ∴∠BDA =∠BFC在△ABD 与△ACF 中⎪⎩⎪⎨⎧∠=∠∠=∠)()()(已知=已证已证AC AB BFC BDA CAF BAC∴△ABD ≌△ACF (AAS )∴BD =CF (全等三角形对应边相等) ∴BD =2CE四、取线段中点构造全等三有形。
全等三角形六种辅助线方法及例题全等三角形是初中数学中一个非常重要的概念,掌握全等三角形的判定方法和辅助线方法对于解题至关重要。
本文将介绍全等三角形的六种辅助线方法,并结合例题进行详细讲解。
一、辅助线法1.等角分线法:将三角形内角的平分线相互交点构成的点与三角形的另外一个顶点相连,得到一条辅助线。
这条辅助线将三角形分成两个等角的小三角形,从而得到相似或全等三角形。
2.中线法:将三角形任意两边的中点相连,得到三角形的中线。
相等的中线将三角形分成两个面积相等的小三角形,从而得到相似或全等三角形。
3.高线法:将三角形内任意一条边的垂线向另外两边引出,得到三角形的高线。
相等的高线将三角形分成两个面积相等的小三角形,从而得到相似或全等三角形。
4.角平分线法:将三角形内角的平分线相互交点构成的点相连,得到三角形的角平分线。
相等的角平分线将三角形分成两个面积相等的小三角形,从而得到相似或全等三角形。
5.角平分线中垂线法:将三角形内角的平分线的中垂线相互交点构成的点相连,得到三角形的角平分线中垂线。
相等的角平分线中垂线将三角形分成两个面积相等的小三角形,从而得到相似或全等三角形。
6.外心连线法:将三角形外接圆心与三角形三个顶点分别相连,得到三条辅助线。
这三条辅助线相等,将三角形分成三个面积相等的小三角形,从而得到相似或全等三角形。
二、例题解析1.已知△ABC,点D,E分别为BC,AB边上的中点,连接AD,BE相交于点F,求证:△DEF≌△ABC。
解析:由题意可知,△ABC是由两个等腰三角形组成的,因此可使用中线法证明两个三角形的全等。
由于D,E分别是BC,AB边上的中点,因此DE是AC中线,即DE=1/2AC;同理,AE是BC中线,AF=1/2BC。
因此,△ADB和△AEC是等腰三角形,且AD=EC,AB=AB,∠BAC=∠BAC,因此△ADB≌△AEC。
又因为DE是AC中线,BF是AE中线,因此DE=1/2AC,BF=1/2AE。
三角形全等证明常见做辅助线方法一、遇到三角形中线时常见的辅助线若遇到三角形的中线,可倍长中线,使延长线段与原中线长相等,构造全等三角形。
(倍长中线法或“旋转”全等)1、如图,AD 为 △ABC 的中线,求证:AB +AC >2AD 。
(三角形一边上的中线小于其他两边之和的一半)2、已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 。
3、如图,已知:AD 是△ABC 的中线,且CD=AB ,AE 是△ABD 的中线,求证:AC=2AE.C二、遇到角平分线时常见的辅助线1.角平分线上点向角两边作垂线构造全等 过角平分线上一点向角两边作垂线,利用角平分线上的点到角两边距离相等的性质来证明问题。
(作垂线)2.截取构造全等(截长法、补短法)如图1-1,∠AOC=∠BOC ,如取OE=OF ,并连接DE 、DF ,则有△OED ≌△OFD ,从而为我们证明线段、角相等创造了条件。
ADBC图1-1B3.延长垂线段(延长法)遇到垂直于角平分线的线段,则延长该线段与角的另一边相交,构成等腰三角形。
4.作平行线①、以角平分线上一点作角的另一边的平行线,构造等腰三角形,图4-1。
②、通过一边上的点作角平分线的平行线与另外一边的反向延长线相交,从而也构造等腰三角形,图4-2。
图4-2图4-1ABCBIG4、已知:如图2-6,在正方形ABCD 中,E 为CD 的中点,F 为BC上的点,∠FAE=∠DAE 。
求证:AF=AD+CF 。
5、已知CE 、AD 是△ABC 的角平分线,∠B=60°,求证:AC=AE+CD6、已知:如图在△ABC 中,∠A=90°,AB=AC ,BD 是∠ABC 的平分线,求证:BC=AB+AD三、截长补短法(适合于证明线段的和、差、倍、分等类题目)截长法:在长线段上截取与两条线段中的一条相等的一段,证明剩余的线段与另一段相 等(截取----全等----等量代换)图2-6ECDABCD AEBDC补短法:延长其中一短线段使之与长线段相等,再证明延长段与另一短线段相等(延长----全等----等量代换)①、对于证明有关线段和差的不等式,通常会联系到三角形中两线段之和大于第三边、之差小于第三边,故可想办法将其放在一个三角形中证明。
初中数学:19种有关三角形的辅助线方法归纳,结合例题实战演练初中数学:有关三角形的辅助线方法归纳,共是19种类型,结合例题实战演练,适合想要提升自己解题能力的同学。
辅助线的使用对大部分初中同学来说是难以逾越的一条鸿沟,难度大,无从下手已经成为常态,今天唐老师带大家一起搞定三角形有关的辅助线使用方法。
第一类型:在利用三角形三边关系证明线段不等关系时,如果直接证不出来,可以连接两点或延长某边构造三角形,使结论中出现的线段在一个或几个三角形中,再利用三边关系定理及不等式性质证明。
第二类型:在利用三角形的外角大于任何不相邻的内角证明角的不等关系时,如果证不出来,就连接两点或延长某边,构造三角形,使求证的大角在某个三角形外角的位置上,小角处于内角的位置上,再利用外角定理证明。
第三类型:有角平分线时常在角两边截取相等的线段,构造全等三角形。
第四种类型:有以线段中点为端点的线段时,常加倍延长此线段构造全等三角形。
第五类型:在三角形中有中线时,常加倍延长中线构造全等三角形。
第六种类型:截长补短作辅助线的方法。
其实这个很好理解的,截长表示在较长的线段上截取与较短线段相等长度的线段,反之补短则是通过延长较短线段与已知较长线段相等的方法。
总之截长补短的方法的使用还是要看具体的情况而定,唐老师在这只是给大家提出解决问题的具体方法,大家可以顺着这个思路看看下面的例题,然后找相同类型的题进行练习。
只有熟练运用这个方法,才能在考试的做题中自由发挥。
反之,没有深刻的理解和熟练的运用,遇到题目时,总感觉自己很乏力,没有做题的思路,甚至都找不到突破口。
对于大部分的同学来说,解难题已经很困难了,要是遇到需要做辅助线才能完成的题目,那将更是雪上加霜了。
第七类型:条件不足时,延长已知边构造三角形。
第八类型:连接四边形的对角线,把四边形问题转化为三角形问题来解决。
解题的方法并不是唯一的,但适时地打开思维,找到解题的突破口那将是变化多端。
第九类型:有和角平分线垂直的线段时,通常把这条线段延长。
相似三角形中几种常见的辅助线作法在添加辅助线时,所添加的辅助线往往能够构造出一组或多组相似三角形,或得到成比例的线段或出等角,等边,从而为证明三角形相似或进行相关的计算找到等量关系。
主要的辅助线有以下几种:一、添加平行线构造“A ”“X ”型例1:如图,D 是△ABC 的BC 边上的点,BD :DC=2:1,E 是AD 的中点,求:BE :EF 的值.解法一:过点D 作CA 的平行线交BF 于点P ,则∴PE=EF BP=2PF=4EF 所以BE=5EF ∴BE :EF=5:1.解法二:过点D 作BF 的平行线交AC 于点Q ,∴BE :EF=5:1.解法三:过点E 作BC 的平行线交AC 于点S ,解法四:过点E 作AC 的平行线交BC 于点T ,∵BD=2DC ∴ ∴BE :EF=5:1.变式:如图,D 是△ABC 的BC 边上的点,BD :DC=2:1,E 是AD 的中点,连结BE 并延长交AC 于F,求AF :CF 的值.解法一:过点D 作CA 的平行线交BF 于点P , 解法二:过点D 作BF 的平行线交AC 于点Q , 解法三:过点E 作BC 的平行线交AC 于点S , 解法四:过点E 作AC 的平行线交BC 于点T ,,1==AE DE FEPE ,2==DC BD PF BP ,则2==EA DA EF DQ ,3==DCBC DQBF ,EF EF EF EF DQ EF BF BE 563=-=-=-=,则DC CT DT 21==;TC BT EF BE =,DC BT 25=例2:如图,在△ABC 的AB 边和AC 边上各取一点D 和E ,且使AD =AE ,DE 延长线与BC 延长线相交于F ,求证:(证明:过点C 作CG//FD 交AB 于G )例3:如图,△ABC 中,AB<AC ,在AB 、AC 上分别截取BD=CE ,DE ,BC 的延长线相交于点F ,证明:AB ·DF=AC ·EF.分析:证明等积式问题常常化为比例式,再通过相似三角形对应边成比例来证明。
倍长中线专题初中阶段三角形有三条重要的、也是最基本的线段:三角形的高线、中线、角平分线。
三种线段各有其重要信息反馈,就中线而言,它具有的功能:①必有相等的线段②必有相等的面积③必有倍长中线构成全等。
本专题只讨论倍长中线的问题。
【基本原理】:如图所示,AD是△ABC的中线,延长AD至E点,使DE=AD,得到△ADC≌△EDB。
口诀:图形有中线,倍长延中线,连接另一端,全等尽呈现。
【模型实例】:如图,在△ABC 中,AD 是BC 边的中线,E 是AD 上一点,连接BE 并延长交AC 于F 点,AF=EF ,求证:AC=BE证明: 如图所示。
延长AD 至G 点,使DG=AD ,连接BG 。
在△ADC 与△GDB 中,⎪⎩⎪⎨⎧=∠=∠=CD BD GDB ADC GD AD∴△ADC ≌△GDB∴BG =AC ,∠1=∠G又因为AF=EF∴∠1=∠2=∠3∴∠3=∠G∴BG=BE (等角对等边)∴AC=BE②证全等①作倍长中线 ③列出需要用的结果④转化替代 ⑤得出结果【练习1】:如图,在在△ABC中,D为BC的中点,求证:AD+>AB2AC【练习2】:如图,在△ABC中,D为B C的中点,且AD是角平分线。
求证:AB=AC【练习3】:AD是△ABC的中线,分别以AB边、AC边为直角边向外作等腰直角三角形,求证:EF=2AD【练习4】:在四边形ABCD中,AB∥DC,E为BC边的中点,∠BAE=∠EAF,AF与DC的延长线相交于F点。
试探究线段AB与AF、CF之间的数量关系,并证明你的结论。
截长补短专题要证明两条线段之和等于第三条线段,可以采用“截长补短”法。
①截长法:把较长的线段截取一段等于两较短线中的一条;②补短法:把两条较短的线段补成一条,再证与长线段相等。
【模型实例】:如图,△ABC中,∠1=∠2,∠B=2∠C。
求证:AC=AB+BD 方法一:截长(利用角平分线构建全等三角形)分析:如图,在AC上截AE=AB,连接DE。
三角形常用辅助线在学习三角形的过程中,辅助线的运用是一个非常重要的解题技巧。
它能够帮助我们将复杂的三角形问题转化为更简单、更易于解决的形式。
接下来,让我们一起深入探讨三角形中常用的辅助线。
一、中线倍长法中线倍长法是解决三角形中线相关问题的常用方法。
如果一个三角形中有中线,我们可以将中线延长一倍,构造出全等三角形。
例如,在三角形 ABC 中,AD 是 BC 边上的中线。
我们延长 AD 至E,使 DE = AD,然后连接 BE。
这样就可以得到三角形 ADC 和三角形EDB 全等。
通过这种方法,我们可以将与中线相关的条件进行转化,从而解决问题。
二、截长补短法当遇到线段之间的和差关系时,截长补短法就派上用场了。
截长法是在较长的线段上截取一段等于较短的线段,然后证明剩余部分与另一条线段相等。
补短法是将较短的线段延长,使其与较长的线段相等,然后证明延长后的线段与另一条线段相等。
比如,在三角形 ABC 中,AB > AC,∠1 =∠2。
要证明 BD =DC,我们可以采用截长补短法。
如果用截长法,可以在 AB 上截取 AE = AC,连接 DE,证明三角形 AED 和三角形 ACD 全等,从而得出 DE = DC,再证明 BD = DE即可。
如果用补短法,可以延长 AC 至 F,使 AF = AB,连接 DF,证明三角形 ABD 和三角形 AFD 全等,得出 BD = DF,再证明 DF = DC即可。
三、作平行线法作平行线可以利用平行线的性质来解决问题。
比如,在三角形 ABC 中,D 是 AB 上一点,要证明∠ACD =∠A+∠B。
我们可以过点C 作CE∥AB,根据两直线平行,内错角相等,同位角相等的性质,得到∠ACE =∠A,∠ECD =∠B,从而证明∠ACD =∠A +∠B。
四、作垂线法作垂线常用于构造直角三角形,利用勾股定理或三角函数来解决问题。
例如,在三角形 ABC 中,要证明某两条边的关系,可以过某一顶点作垂线,然后利用直角三角形的相关知识进行求解。
完整版)全等三角形常用辅助线做法证明三角形全等时,有时需要添加辅助线,对于初学几何证明的学生来说,这往往是一个难点。
下面介绍证明全等时常见的五种辅助线,供同学们研究时参考。
一、截长补短当所证结论为线段的和、差关系,且这两条线段不在同一直线上时,通常可以考虑用截长补短的办法。
具体作法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明。
这种作法适用于证明线段的和、差、倍、分等类的题目。
例如,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB。
要证明AC=AE+CD,因为AE、CD不在同一直线上,所以在AC上截取AF=AE,只要证明CF=CD即可。
具体证明过程为:在AC上截取AF=AE,连接OF。
由于AD、CE分别平分∠BAC、∠ACB,∠ABC=60°,因此∠1+∠2=60°,∠4=∠6=∠1+∠2=60°。
显然,△AEO≌△AFO,因此∠5=∠4=60°,∠7=180°-(∠4+∠5)=60°。
在△DOC与△FOC中,∠6=∠7=60°,∠2=∠3,OC=OC,因此△DOC≌△FOC,CF=CD,所以XXX。
另一个例子是在图甲中,AD∥BC,点E在线段AB上,∠ADE=∠CDE,∠DCE=∠ECB。
要证明CD=AD+BC。
因为结论是CD=AD+BC,可以考虑用“截长补短法”中的“截长”,即在CD上截取CF=CB,只要再证明DF=DA即可,这就转化为证明两线段相等的问题,从而达到简化问题的目的。
具体证明过程为:在CD上截取CF=BC,如图乙,因此△XXX≌△BCE(SAS),∴∠2=∠1.又因为AD∥BC,∴∠ADC+∠BCD=180°,∴∠DCE+∠XXX°,∴∠2+∠3=90°,∠1+∠4=90°,∴∠3=∠4.在△FDE与△ADE中,∴△XXX≌△ADE(ASA),∴DF=DA,因此CD=DF+CF,∴XXX。
全等三角形几何证明常用辅助线
辅助线证明三角形全等
一、辅助线定义
辅助线,又称辅助规则,是专门用来证明几何结论的辅助线,它可以
指向几何结论的前提或结果,以更清晰地证明几何结论。
二、辅助线用法
1.在证明三角形全等的情况下,用辅助线来证明角的相等性:用一条
辅助线平分角A,然后将辅助线平移到角B上,如果辅助线可以在角B上
的两点重合,则说明角A和角B是相等的。
2.在证明三角形全等的情况下,用辅助线来证明边的相等性:用一条
辅助线平分边AB,然后将辅助线平移到边CD上,如果辅助线可以在边CD
上的两点重合,则说明边AB和边CD是相等的。
3.在证明三角形全等的情况下,用辅助线来证明两个三角形的相等性:在三角形ABC中画出一条辅助线,然后将该辅助线平移到三角形CDE中,
如果辅助线可以在三角形CDE中的三个点重合,则说明两个三角形ABC和CDE是相等的。
三、辅助线证明三角形全等的步骤
1.识别出待证明的相关图形,并将其准确地表示在平面上。
2.根据定义,确定三角形全等的前提条件,并假设三角形全等。
3.画出两个三角形之间的辅助线,如果相交点都在两个三角形相交的
边上,证明该辅助线可以同时在两个三角形中存在。
三角形中的辅助线一、知识梳理1、判定两个三角形全等的一般思路判定两个三角形全等时如果给出的条件不全面,就需要根据已知的条件结合相应的公理来进行分析,先推导出所缺的条件然后再证明。
具体方法如下:(1)已知一边及与其相邻的一个内角对应相等判定两个三角形全等的公理中边和角相邻的有SAS、ASA、AAS,所以可以从三个方面进行考虑:(2)已知两边对应相等判定两个三角形全等的公理中已知两边的有SAS、SSS,所以可以从两个方面考虑(3)已知两角对应相等判定两个三角形全等的公理中已知两角的有ASA、AAS,所以可以从两个方面考虑(4)已知一边与其对角对应相等,与之相对应个公理只有AAS,可以考虑先判定这条边的某一邻角也对应相等,然后再判定这两个三角形全等。
2、证明边或角相等的一些常用的依据:(1)等线段(角)的和或差相等;(2)全等三角形的对应边(角)相等;(3)等角的余角或补角相等;(4)垂直定义;(5)角平分线的性质;(6)平行线得同位角、内错角相等,同旁内角互补。
3、角平分线的性质:角平分线上一点到角两边距离相等。
方法:从角平分线上一点作角的两边的垂线,使得垂线段和顶点到两垂足的距离相等。
借此,可在角的两边上实施截长补短或既截长又补短,达到“移多补少”的目的。
4、等腰三角形底边中线、高线与顶角平分线“三线合一”。
因此在等腰三角形中常作底边的高线,进而得到底边的中线和顶角平分线,创造线段、角相等的条件。
5、直角三角形中,30°角所对的边等于斜边的一半。
一般情况下,遇到30°角常用的添加辅助线的方法就是作垂线,构造直角三角形,解决线段的相关问题。
6、在三角形的问题中,120°角也是常见角,此时既可以作垂线,构造直角三角形;也可以利用120°的外角找到60°角经过添加线段,构造等边三角形。
二、专题精讲例1:1、已知△ABC中,AB=AC, CE是AB边上的中线,延长AB到D,使BD=AB,求证:CD = 2CE。
专题02 全等三角形做辅助线六种方法大全几何探究类问题一直属于考试压轴题范围,在三角形这一章,压轴题主要考查是证明三角形各种模型,或证明线段数量关系等,接来下我们针对其做出详细分析与梳理。
类型一、倍长中线模型中线倍长法:将中点处的线段延长一倍。
目的:①构造出一组全等三角形;②构造出一组平行线。
将分散的条件集中到一个三角形中去。
例1.如图,AD 为ABC V 中BC 边上的中线()AB AC >.(1)求证:2AB AC AD AB AC -<<+;(2)若8cm AB =,5cm AC =,求AD 的取值范围.【变式训练1】(1)如图1,已知ABC V 中,AD 是中线,求证:2AB AC AD +>;(2)如图2,在ABC V 中,D ,E 是BC 的三等分点,求证:AB AC AD AE +>+;(3)如图3,在ABC V 中,D ,E 在边BC 上,且BD CE =.求证:AB AC AD AE +>+.【变式训练2】(1)方法学习:数学兴趣小组活动时,张老师提出了如下问题:如图1,在△ABC中,AB=8,AC=6,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法(如图2),①延长AD到M,使得DM=AD;②连接BM,通过三角形全等把AB、AC、2AD转化在△ABM中;③利用三角形的三边关系可得AM的取值范围为AB﹣BM<AM<AB+BM,从而得到AD的取值范围是 ;方法总结:上述方法我们称为“倍长中线法”.“倍长中线法”多用于构造全等三角形和证明边之间的关系.(2)请你写出图2中AC与BM的数量关系和位置关系,并加以证明.(3)深入思考:如图3,AD是△ABC的中线,AB=AE,AC=AF,∠BAE=∠CAF=90°,请直接利用(2)的结论,试判断线段AD与EF的数量关系,并加以证明.【变式训练3】如图,在ABCV中,AD是BC边上的中线,过C作AB的平行线交AD的延长线于E点.若6AB=,2AC=,试求AE的取值范围.类型二、截长补短模型截长补短法使用范围:线段和差的证明(往往需证2次全等)例1.如图,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是边BC、CD上的点,且∠EAF=12∠BAD.求证:EF=BE+FD.【变式训练1】(1)问题背景:如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点,且∠EAF=60°,请探究图中线段BE,EF,FD之间的数量关系是什么?小明探究此问题的方法是:延长FD到点G,使DG=BE,连结AG.先证明△ABE≌△ADG,得AE=AG;再由条件可得∠EAF=∠GAF,证明△AEF≌△AGF,进而可得线段BE,EF,FD之间的数量关系是 .(2)拓展应用:如图2,在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=12∠BAD.问(1)中的线段BE,EF,FD之间的数量关系是否还成立?若成立,请给出证明;若不成立,请说明理由.【变式训练2】已知四边形ABCD中,AB⊥AD,BC⊥CD,AB=BC,∠ABC=120°,∠MBN=60°,∠MBN绕B点旋转,它的两边分别交AD,DC(或它们的延长线)于E,F.(1)当∠MBN绕B点旋转到AE=CF时(如图1),求证:△ABE≌△CBF.(2)当∠MBN绕点B旋转到AE≠CF时,如图2,猜想线段AE,CF,EF有怎样的数量关系,并证明猜想.(3)当∠MBN绕点B旋转到图3这种情况下,猜想线段AE,CF,EF有怎样的数量关系,并证明你的猜想.【变式训练3】在V ABC和V ADE中,∠BAC=∠DAE=90°,且AB=AC,AD=AE.(1)如图1,如果点D在BC上,且BD=5,CD=3,求DE的长.(2)如图2,AD与BC相交于点N,点D在BC下方,连接BD,且AD垂直BD,连接CE并延长与BA的延长线交于点F,点M是CA延长线上一点,且CM=AF,求证:CF=AN+MN.类型三、做平行线证明全等例1.如图,在△ABC中,∠ABC=∠ACB,D,E分别是AC和AC的延长线上的点,连接BD,BE,若AB=CE,∠DBC=∠EBC。
全等三角形六种辅助线方法全等三角形是指具有相同形状和大小的三角形。
在解决与全等三角形相关的问题时,辅助线是一种常用的方法,可以帮助我们更好地理解和解决问题。
下面将介绍全等三角形的六种辅助线方法。
一、垂直辅助线法垂直辅助线法是指通过某个顶点引一条垂直线与对边相交,从而将三角形分割成两个直角三角形。
利用直角三角形的性质,我们可以更方便地求解各种问题。
二、角平分线法角平分线法是指通过某个顶点引一条角平分线与对边相交,将三角形分割成两个等角的三角形。
利用等角三角形的性质,我们可以更容易地求解各种问题。
三、高线法高线法是指通过某个顶点引一条垂直于底边的线段,将三角形分割成一个直角三角形和一个等腰三角形。
利用这两个三角形的性质,我们可以更快速地解决问题。
四、中线法中线法是指连接三角形的两个顶点和底边中点,将三角形分割成三个相似的三角形。
利用相似三角形的性质,我们可以更高效地解决问题。
五、中垂线法中垂线法是指通过三角形的每条边的中点引一条垂直于对边的线段,将三角形分割成三个直角三角形。
利用直角三角形的性质,我们可以更轻松地解决问题。
六、对称线法对称线法是指通过三角形的某个顶点引一条对称线,将三角形分割成两个全等的三角形。
利用全等三角形的性质,我们可以更直接地解决问题。
通过以上六种辅助线方法,我们可以更灵活地分析和解决与全等三角形相关的问题。
这些方法使得计算更加简便,推理更加直观,提高了问题解决的效率。
同时,这些方法也加深了我们对全等三角形的理解,拓宽了我们的数学思维。
在实际应用中,我们可以根据具体问题的要求选择合适的辅助线方法,以便更好地解决问题。
全等三角形的六种辅助线方法是垂直辅助线法、角平分线法、高线法、中线法、中垂线法和对称线法。
这些方法在解决与全等三角形相关的问题时起到了重要的作用,使我们能够更快速、准确地解决问题。
希望通过这篇文章的介绍,能够帮助大家更好地理解和应用这些方法。
三角形作辅助线方法大全1.在利用三角形的外角大于任何和它不相邻的内角证明角的不等关系时,如果直接证不出来,可连结两点或延长某边,构造三角形,使求证的大角在某个三角形外角的位置上,小角处在内角的位置上,再利用外角定理证题.例:已知D 为△ABC 内任一点,求证:∠BDC >∠BAC证法(一):延长BD 交AC 于E ,∵∠BDC 是△EDC 的外角,∴∠BDC >∠DEC同理:∠DEC >∠BAC ∴∠BDC >∠BAC 证法(二):连结AD ,并延长交BC 于F ∵∠BDF 是△ABD 的外角, ∴∠BDF >∠BAD 同理∠CDF >∠CAD∴∠BDF +∠CDF >∠BAD +∠CAD 即:∠BDC >∠BAC2.有角平分线时常在角两边截取相等的线段,构造全等三角形.例:已知,如图,AD 为△ABC 的中线且∠1 = ∠2,∠3 = ∠4,求证:BE +CF >EF证明:在DA 上截取DN = DB ,连结NE 、NF ,则DN = DC在△BDE 和△NDE 中,DN = DB ∠1 = ∠2ED = ED ∴△BDE ≌△NDE∴BE = NE同理可证:CF = NF在△EFN 中,EN +FN >EF ∴BE +CF >EF3. 有以线段中点为端点的线段时,常加倍延长此线段构造全等三角形.例:已知,如图,AD 为△ABC 的中线,且∠1 = ∠2,∠3 = ∠4,求证:BE +CF >EF证明:延长ED 到M ,使DM = DE ,连结CM 、FM△BDE 和△CDM 中, BD = CD ∠1 = ∠5 ED = MD∴△BDE ≌△CDM ∴CM = BE又∵∠1 = ∠2,∠3 = ∠4∠1+∠2+∠3 + ∠4 = 180oFABC DE D C B A4321NF E DC B A∴∠3 +∠2 = 90o 即∠EDF = 90o∴∠FDM = ∠EDF = 90o△EDF 和△MDF 中 ED = MD ∠FDM = ∠EDFDF = DF ∴△EDF ≌△MDF ∴EF = MF∵在△CMF 中,CF +CM >MF BE +CF >EF(此题也可加倍FD ,证法同上)4. 在三角形中有中线时,常加倍延长中线构造全等三角形.例:已知,如图,AD 为△ABC 的中线,求证:AB +AC >2AD证明:延长AD 至E ,使DE = AD ,连结BE∵AD 为△ABC 的中线 ∴BD = CD 在△ACD 和△EBD 中BD = CD ∠1 = ∠2AD = ED∴△ACD ≌△EBD∵△ABE 中有AB +BE >AE ∴AB +AC >2AD5.截长补短作辅助线的方法截长法:在较长的线段上截取一条线段等于较短线段; 补短法:延长较短线段和较长线段相等. 这两种方法统称截长补短法.当已知或求证中涉及到线段a 、b 、c 、d 有下列情况之一时用此种方法: ①a >b ②a ±b = c ③a ±b = c ±d例:已知,如图,在△ABC 中,AB >AC ,∠1 = ∠2,P 为AD 上任一点,求证:AB -AC >PB -PC证明:⑴截长法:在AB 上截取AN = AC ,连结PN在△APN 和△APC 中, AN = AC∠1 = ∠2AP = AP ∴△APN ≌△APC ∴PC = PN ∵△BPN 中有PB -PC <BNMABC D E F12345 12E DB AP 12N DCB A∴PB -PC <AB -AC⑵补短法:延长AC 至M ,使AM = AB ,连结PM 在△ABP 和△AMP 中 AB = AM ∠1 = ∠2 AP = AP∴△ABP ≌△AMP ∴PB = PM 又∵在△PCM 中有CM >PM -PC ∴AB -AC >PB -PC练习:1.已知,在△ABC 中,∠B = 60o ,AD 、CE 是△ABC 的角平分线,并且它们交于点O求证:AC = AE +CD2.已知,如图,AB ∥CD ∠1 = ∠2 ,∠3 = ∠4. 求证:BC = AB +CD6.证明两条线段相等的步骤:①观察要证线段在哪两个可能全等的三角形中,然后证这两个三角形全等。
几何证明-常用辅助线(一)中线倍长法:例1 、求证:三角形一边上的中线小于其他两边和的一半。
已知:如图,△ABC 中,AD 是BC 边上的中线,求证:AD ﹤21(AB+AC)分析:要证明AD ﹤21(AB+AC),就是证明AB+AC>2AD ,也就是证明两条线段之和大于第三条线段,而我们只能用“三角形两边之和大于第三边”,但题中的三条线段共点,没有构成一个三角形,不能用三角形三边关系定理,因此应该进行转化。
待证结论AB+AC>2AD 中,出现了2AD ,即中线AD 应该加倍。
证明:延长AD 至E ,使DE=AD ,连CE ,则AE=2AD 。
在△ADB 和△EDC 中,AD =DE ∠ADB =∠EDC BD =DC∴△ADB ≌△EDC(SAS) ∴AB=CE又 在△ACE 中,AC+CE >AE∴AC+AB >2AD ,即AD ﹤21(AB+AC)小结:(1)涉及三角形中线问题时,常采用延长中线一倍的办法,即中线倍长法。
它可以将分居中线两旁的两条边AB 、AC 和两个角∠BAD 和∠CAD 集中于同一个三角形中,以利于问题的获解。
课题练习:ABC ∆中,AD 是BAC ∠的平分线,且BD=CD ,求证AB=AC例2: 中线一倍辅助线作法△ABC 中延长AD 到E ,AD 是BC 边中线DE=AD ,连接BE 方式2:间接倍长 作CF ⊥AD 于延长MD 到N ,作BE ⊥AD 使DN=MD ,连接连接CD例3:△ABC 中,AB=5,AC=3例4:已知在△ABC 中,AB=AC ,D 在AB 上,E 在AC 的延长线上,DE 交BC 于F ,且DF=EF ,求证:BD=CE课堂练习:已知在△ABC 中,AD 是BC 边上的中线,E ,延长BE 交AC 于F ,求证:AF=EF例5:已知:如图,在ABC ∆中,AC AB ≠,D 、E 在BC 上,且DE=EC ,过D 作BA DF //交AE 于点F ,DF=AC. 求证:AE 平分BAC ∠ C 第 1 题图ADBCE图2-1课堂练习:已知CD=AB ,∠BDA=∠BAD ,AE 是△ABD 的中线,求证:∠C=∠BAE 作业:1、在四边形ABCD 中,AB ∥DC ,E 为BC 边的中点,∠BAE=∠EAF ,AF 与DC 的延长线相交于点F 。
ED F CB A一、截长补短1.如图1,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB.求证:AC=AE+CD.分析:要证AC=AE+CD,AE、CD不在同一直线上.故在AC上截取AF=AE,则只要证明CF=CD.证明:在AC上截取AF=AE,连接OF.∵AD、CE分别平分∠BAC、∠ACB,∠ABC=60°∴∠1+∠2=60°,∴∠4=∠6=∠1+∠2=60°.显然,△AEO≌△AFO,∴∠5=∠4=60°,∴∠7=180°-(∠4+∠5)=60°在△DOC与△FOC中,∠6=∠7=60°,∠2=∠3,OC=OC∴△DOC≌△FOC,CF=CD∴AC=AF+CF=AE+CD.二、倍长中线(线段)造全等2:如图,△ABC中,E、F分别在AB、AC上,DE⊥DF,D是中点,试比较BE+CF与EF的大小.解:延长FD于K,使得DK=DF∵DE⊥DF ∴∠EDK=∠EDF=90º又∵DK=DF ED为公共边∴⊿EDK≌⊿EFD∴EK=EF三、作平行线3.如图3,在等腰△ABC中,AB=AC,在AB上截取BD,在AC延长线上截取CE,且使CE=BD.连接DE交BC于F.求证:DF=EF.证明:作DH∥AE交BC于H.∴∠DHB=∠ACB,∵AB=AC,∴∠B=∠ACB∴∠DHB=∠B,DH=BD∵CE=BD ∴DH= CE又DH∥AE,∠HDF=∠E∠DFH=∠EFC(对顶角)∴△ DFH≌△EFC(AAS)∴DF=EF四、补全图形4.如图4,在△ABC中,AC=BC,∠B=90°,BD为∠ABC的平分线.若A点到直线BD的距离AD为a,求BE的长.证明:延长AD、BC相交于F.由BD为∠ABC的平分线,BD⊥AF.易证△ADB≌△FDB ∴FD= AD=a AF=2a ∠F=∠BAD又∠BAD+∠ABD=90°,∠F+∠FAC=90°∴∠ABD=∠FACFE DCB A ∵BD 为∠ABC 的平分线 ∴∠ABD=∠CBE∴∠FAC=∠CBE ,而∠ECB=∠ACF=90°,AC=BC∴△ACF ≌△BCE (ASA ) ∴BE=AF=2a五、利用角的平分线对称构造全等5.如图5,在四边形ABCD 中,已知BD 平分∠ABC ,∠A+∠C=180°.证明:AD=CD . 证明:在BC 上截取BE=BA ,连接DE .由BD 平分∠ABC ,易证△ABD ≌△EBD∴AD=DE ∠A=∠BED又∠A+∠C=180°,∠BED+∠DEC=180°∴∠DEC=∠C ,∴DE=CD∴AD=CD七、图形变换轴对称1.AD 为△ABC 的角平分线,直线MN ⊥AD 于A.E 为MN 上一点,△ABC 周长记为A P ,△EBC 周长记为B P .求证B P >A P .平移2:如图,在△ABC 的边上取两点D 、E ,且BD=CE ,求证:AB+AC>AD+AE.旋转1:正方形ABCD 中,E 为BC 上的一点,F 为CD 上的一点,BE+DF=EF ,求∠EAF 的度数.。
三角形问题中常见的辅助线的作法
总体思想:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二
个角之间的相等
1. 等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的
性质解题
2•倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形
3. 有角平分线:角分线上找一点垂角两边;角分线上找一点平行角一边
4. 垂直平分线联结线段两端
5. 用“截长法”或“补短法”:遇到有二条线段长之和等于第三条线段的长,
6. 图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形
7. 角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边
上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形
一、倍长中线(线段)造全等
例1、(“希望杯”试题)已知,如图△ ABC中,AB=5 AC=3则中线AD的取值范围是_____________
例2、如图,△ ABC中,E、F分别在AB AC上, DEL DF, D是中点,试比较BE+CF与EF的
大小.
例 3、女口图,△ ABC 中,BD=DC=AC E 是 DC 的中点,求证:AD 平分/
BAE.
、截长补短
1 如图, 心ABC 中,AB=2AC AD 平分 N BAC ,且 AD=BD 求证:CDL AC
3、如图,在四边形 ABCD 中, BC> BA,AD= CD BD 平分乙ABC ,
求证: 乙A =180°
2、如图, AD// BC, EA,EB 分别平分/ DAB,/ CBA CD 过点 E ,
C
C
4、如图在△ ABC 中,AB> AC, / 1 = Z 2, P 为 AD 上任意一点,求证;AB-AC > PB-PC
如亂在闷边形川MD 中,购"血,点EM 匕一个动点•若AH =BC, fl £ DEC =60倉判断40卜恥!;j BC 的关系井证期祢的结论•
解:
三、借助角平分线造全等
1、如图,已知在△ ABC 中,/ B=60° OE=OD
2、如图,△ ABC 中,AD 平分/ BAC DGL BC 且平分 BC, DEI AB 于 E , DF 丄 AC 于 F. (1)说明BE=CF 的理由;(2)如果AB=a , AC=b ,求AE 、BE 的长.
应用: ,△ ABC 的角平分线AD,CE 相交于点
C F
D
【下载本文档,可以自由复制内容或自由编辑修改内容,更多精彩文章,期待你的好评和关注,我将一如既往为您服务】。