2010年高考试题--数学文(江西卷)解析版
- 格式:docx
- 大小:252.31 KB
- 文档页数:19
绝密★启用前2010年普通高等学校招生全国统一考试及答案第I 卷一.选择题 (1)复数3223i i+=-(A)i (B)i - (C)12-13i (D) 12+13i1.A 【命题意图】本小题主要考查复数的基本运算,重点考查分母实数化的转化技巧.【解析】32(32)(23)694623(23)(23)13i i i i i i ii i +++++-===--+.(2)记cos(80)k -︒=,那么tan 100︒=A.21k k- B. -21k k- C.21k k- D. -21k k-2.B 【命题意图】本小题主要考查诱导公式、同角三角函数关系式等三角函数知识,并突出了弦切互化这一转化思想的应用. 【解析】222sin 801cos 801cos (80)1k=-=--=-,所以tan 100tan 80︒=-2sin 801.cos 80k k-=-=-(3)若变量,x y 满足约束条件1,0,20,y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则2z x y =-的最大值为(A)4 (B)3 (C)2 (D)13.B 【命题意图】本小题主要考查线性规划知识、作图、识图能力及计算能力.【解析】画出可行域(如右图),由图可知,当直线l 经过点A(1,-1)时,z 最大,且最大值为m ax 12(1)3z =-⨯-=.0x y += 1Oy x =y20x y --=xA 0:20l x y -=2-2A(4)已知各项均为正数的等比数列{n a },123a a a =5,789a a a =10,则a a a=(A) 52(B) 7 (C) 6 (D) 424.A 【命题意图】本小题主要考查等比数列的性质、指数幂的运算、根式与指数式的互化等知识,着重考查了转化与化归的数学思想.【解析】由等比数列的性质知31231322()5a a a a a a a === ,37897988()a a a a a a a ===10,所以132850a a =,所以13336456465528()()(50)52a a a a a a a a a =====(5)353(12)(1)x x +-的展开式中x 的系数是(A) -4 (B) -2 (C) 2 (D) 45.B 【命题意图】本小题主要考查了考生对二项式定理的掌握情况,尤其是展开式的通项公式的灵活应用,以及能否区分展开式中项的系数与其二项式系数,同时也考查了考生的一些基本运算能力.【解析】35533(12)(1)(16128)(1)x x x x x x x +-=+++-故353(12)(1)x x +-的展开式中含x的项为333551()1210122C x xC x x x ⨯-+=-+=-,所以x的系数为-2.(6)某校开设A 类选修课3门,B 类选择课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有 (A) 30种 (B)35种 (C)42种 (D)48种6.A 【命题意图】本小题主要考查分类计数原理、组合知识,以及分类讨论的数学思想.【解析】:可分以下2种情况:(1)A 类选修课选1门,B 类选修课选2门,有1234C C 种不同的选法;(2)A 类选修课选2门,B 类选修课选1门,有2134C C 种不同的ABC DA 1B 1C 1D 1 O选法.所以不同的选法共有1234C C +2134181230C C =+=种.(7)正方体ABCD-1111A B C D 中,B 1B 与平面AC 1D 所成角的余弦值为 A23B33C 23D637.D 【命题意图】本小题主要考查正方体的性质、直线与平面所成的角、点到平面的距离的求法,利用等体积转化求出D 到平面AC 1D 的距离是解决本题的关键所在,这也是转化思想的具体体现.【解析】因为BB 1//DD 1,所以B 1B 与平面AC 1D 所成角和DD 1与平面AC 1D 所成角相等,设DO ⊥平面AC1D ,由等体积法得11D A C D D A C DV V --=,即111133A C D A C D S D O S D D ∆∆⋅=⋅.设DD 1=a,则12211133sin 60(2)2222AC D S AC AD a a ∆==⨯⨯=,21122A C D S A D C D a ∆==.所以1312333AC DAC DS D D aD O a S a∆∆===,记DD 1与平面AC1D 所成角为θ,则13sin 3D O D D θ==,所以6cos 3θ=.(8)设a=3log 2,b=In2,c=125-,则A a<b<c Bb<c<a C c<a<b D c<b<a8.C 【命题意图】本小题以指数、对数为载体,主要考查指数函数与对数函数的性质、实数大小的比较、换底公式、不等式中的倒数法则的应用. 【解析】 a=3log 2=21log 3, b=In2=21log e,而22log 3log 1e >>,所以a<b,c=125-=15,而2252log 4log 3>=>,所以c<a,综上c<a<b.(9)已知1F 、2F 为双曲线C:221x y -=的左、右焦点,点p 在C 上,∠1F p 2F =060,则P 到x 轴的距离为 (A)32(B)62(C) 3 (D) 69.B 【命题意图】本小题主要考查双曲线的几何性质、第二定义、余弦定理,考查转化的数学思想,通过本题可以有效地考查考生的综合运用能力及运算能力.【解析】不妨设点P 00(,)x y 在双曲线的右支,由双曲线的第二定义得21000||[()]12a P F e x a e x x c=--=+=+,22000||[)]21aPF e x ex a x c=-=-=-.由余弦定理得 cos ∠1F P 2F =222121212||||||2||||P F P F F F P F P F +-,即cos 0602220000(12)(21)(22)2(12)(21)x x x x ++--=+-,解得2052x =,所以2200312y x =-=,故P 到x 轴的距离为06||2y =(10)已知函数F(x)=|lgx|,若0<a<b,且f(a)=f(b),则a+2b 的取值范围是 (A)(22,)+∞ (B)[22,)+∞ (C)(3,)+∞ (D)[3,)+∞10.A 【命题意图】本小题主要考查对数函数的性质、函数的单调性、函数的值域,考生在做本小题时极易忽视a 的取值范围,而利用均值不等式求得a+2b 222a a=+>,从而错选A,这也是命题者的用苦良心之处.【解析】因为 f(a)=f(b),所以|lga|=|lgb|,所以a=b(舍去),或1b a=,所以a+2b=2a a+又0<a<b,所以0<a<1<b ,令2()f a a a=+,由“对勾”函数的性质知函数()f a 在a ∈(0,1)上为减函数,所以f(a)>f(1)=1+21=3,即a+2b 的取值范围是(3,+∞).(11)已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为俩切点,那么PA PB ∙的最小值为 (A) 42-+(B)32-+(C) 422-+ (D)322-+11.D 【命题意图】本小题主要考查向量的数量积运算与圆的切线长定理,着重考查最值的求法——判别式法,同时也考查了考生综合运用数学知识解题的能力及运算能力. 【解析】如图所示:设PA=PB=x (0)x >,∠APO=α,则∠APB=2α,APO=21x +,21sin 1xα=+,||||cos 2P A P B P A P B α∙=⋅ =22(12sin )x α-=222(1)1x x x -+=4221x x x -+,令PA PB y ∙= ,则4221x xy x -=+,即42(1)0x y x y -+-=,由2x 是实数,所以2[(1)]41()0y y ∆=-+-⨯⨯-≥,2610y y ++≥,解得322y ≤--或322y ≥-+.故min ()322PA PB ∙=-+.此时21x =-.(12)已知在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为 (A)233(B)433(C) 23 (D)83312.B 【命题意图】本小题主要考查几何体的体积的计算、球的性质、异面直线的距离,通过球这个载体考查考生的空间想象能力及推理运算能力.【解析】过CD 作平面PCD ,使AB ⊥平面PCD,交AB 与P,设点P 到CD 的距离为h ,则有A B C D 11222323V h h =⨯⨯⨯⨯=四面体,当直径通过AB 与CD 的中点时,22max 22123h =-=,故max 433V =.第Ⅱ卷二.填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上. (注意:在试题卷上作答无效)(13)不等式2211x x +-≤的解集是 .13.[0,2] 【命题意图】本小题主要考查根式不等式的解法,利用平方去掉根号是解根式不等式的基本思路,也让转化与化归的数学思想体现得淋漓尽致. 解析:原不等式等价于2221(1),10x x x ⎧+≤+⎨+≥⎩解得0≤x ≤2.(14)已知α为第三象限的角,3cos 25α=-,则tan(2)4πα+= .14.17-【命题意图】本小题主要考查三角函数值符号的判断、同角三角函数关系、和角的正切公式,同时考查了基本运算能力及等价变换的解题技能.12x =y=1xy aO12x =-414a y -=2y x x a=-+【解析】因为α为第三象限的角,所以2(2(21),2(21))(k k k Z απππ∈+++∈,又3c o s 25α=-<0, 所以2(2(21),2(21))()2k k k Z παπππ∈++++∈,于是有4sin 25α=,sin 24tan 2cos 23ααα==-,所以tan(2)4πα+=41tantan 2134471tantan 2143παπα-+==--+.(15)直线1y =与曲线2y x x a =-+有四个交点,则a 的取值范围是 .15.(1,5)4【命题意图】本小题主要考查函数的图像与性质、不等式的解法,着重考查了数形结合的数学思想.【解析】如图,在同一直角坐标系内画出直线1y =与曲线2y x x a =-+,观图可知,a 的取值必须满足1,4114a a >⎧⎪⎨-<⎪⎩解得514a <<.(16)已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于点D ,且BF 2FD =uu r uur,则C 的离心率为 . 16.23【命题意图】本小题主要考查椭圆的方程与几何性质、第二定义、平面向量知识,考查了数形结合思想、方程思想,本题凸显解析几何的特点:“数研究形,形助数”,利用几何性质可寻求到简化问题的捷径. 【解析】如图,22||BF b c a =+=,作1D D y ⊥轴于点D 1,则由BF 2FD =uu r uur,得1||||2||||3O F BF D D BD ==,所以133||||22D D O F c ==,即32D c x =,由椭圆的第二定义得2233||()22ac cFD e a ca=-=-又由||2||BF FD =,得232c c a a=-,整理得22320c a ac -+=.xO yBF1DD两边都除以2a ,得2320e e +-=,解得1()e =-舍去,或23e =.三.解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分10分)(注意:在试题卷上作答无效............) 已知A B C V 的内角A ,B 及其对边a,b 满cot cot a b a A b B +=+,求内角C .17. 【命题意图】本小题主要考查三角恒等变形、利用正弦、余弦定理处理三角形中的边角关系,突出考查边角互化的转化思想的应用.【解析】(18)(本小题满分12分)(注意:在试题卷上作答无效.........).投到某杂志的稿件,先由两位初审专家进行评审.若能通过两位初审专家的评审, 则予以录用;若两位初审专家都未予通过,则不予录用;若恰能通过一位初审专家的评 审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录 用.设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3. 各专家独立评审.(I)求投到该杂志的1篇稿件被录用的概率;(II)记X 表示投到该杂志的4篇稿件中被录用的篇数,求X 的分布列及期望. 【命题意图】本题主要考查等可能性事件、互斥事件、独立事件、相互独立试验、分布列、数学期望等知识,以及运用概率知识解决实际问题的能力,考查分类与整合思想、化归与转化思想.【解析】(18)解:(Ⅰ)记 A 表示事件:稿件能通过两位初审专家的评审; B 表示事件:稿件恰能通过一位初审专家的评审; C 表示事件:稿件能通过复审专家的评审; D 表示事件:稿件被录用. 则 D=A+B·C,()0.50.50.25,()20.50.50.5P A P B P C=⨯==⨯⨯== ()()P D P A B C=+=()()P A P B C + =()()()P A P B P C + =0.25+0.5×0.3 =0.40.(Ⅱ)~(4,0.4)X B ,其分布列为: 4(0)(10.4)0.1296,P X ==-= 134(1)0.4(10.4)0.3456,P X C ==⨯⨯-= 2224(2)0.4(10.4)0.3456,P X C ==⨯⨯-= 334(3)0.4(10.4)0.1536,P X C ==⨯⨯-=4(4)0.40.0256.P X === 期望40.4 1.6E X =⨯=.(19)(本小题满分12分)(注意:在试题卷上作答无效.........) 如图,四棱锥S-ABCD 中,SD ⊥底面ABCD ,AB//DC ,AD ⊥DC ,AB=AD=1,DC=SD=2,E 为棱SB 上的一点,平面EDC ⊥平面SBC .(Ⅰ)证明:SE=2EB ;(Ⅱ)求二面角A-DE-C 的大小 .【命题意图】本小题主要考查空间直线与直线、直线与平面、平面与平面的位置关系,二面角等基础知识,考查空间想象能力、推理论证能力和运算能力. (19) 【解析】解法一:(Ⅰ)连接BD,取DC 的中点G ,连接BG,由此知 1,DG GC BG ===即A B C ∆为直角三角形,故B C B D ⊥.又ABCD,BC SD SD ⊥⊥平面故,所以,BC ⊥⊥平面BDS,BC DE .作BK ⊥EC,EDC SBC K ⊥为垂足,因平面平面,(Ⅱ) 由225,1,2,,SA SD AD AB SE EB AB SA =+===⊥知22121,AD =133AE SA AB ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭又. 故AD E ∆为等腰三角形.取ED 中点F,连接A F ,则226,3AF D E AF AD D F⊥=-=.连接F G ,则//,FG EC FG DE ⊥.所以,A F G ∠是二面角A D E C --的平面角. 连接AG,AG=2,2263FG D G D F=-=,2221cos 22AF FG AGAFG AF FG+-∠==-,所以,二面角A D E C --的大小为120°.解法二:以D 为坐标原点,射线D A 为x 轴的正半轴,建立如图所示的直角坐标系D xyz -,由,m D E m D C⊥⊥,得m D E⊥=,0m DC⊥=故20,20 111x y zyλλλλλ++==+++.令2x=,则(2,0,)mλ=-.(20)(本小题满分12分)(注意:在试题卷上作答无效.........) 已知函数()(1)ln 1f x x x x =+-+.(Ⅰ)若2'()1xf x x ax ≤++,求a 的取值范围; (Ⅱ)证明:(1)()0x f x -≥ .【命题意图】本小题主要考查函数、导数、不等式证明等知识,通过运用导数知识解决函数、不等式问题,考查了考生综合运用数学知识解决问题的能力以及计算能力,同时也考查了函数与方程思想、化归与转化思想. 【解析】20.解: (Ⅰ)11()ln 1ln x f x x x xλ+'=+-=+,()l n 1x f x x x '=+, 题设2()1xf x x ax '≤++等价于ln x x a -≤.令()ln g x x x =-,则1()1g x x'=-当01x <<,'()0g x >;当1x ≥时,'()0g x ≤,1x =是()g x 的最大值点,()(1)1g x g =-≤ 综上,a 的取值范围是[)1,-+∞.(Ⅱ)有(Ⅰ)知,()(1)1g x g =-≤即ln 10x x -+≤.当01x <<时,()(1)ln 1ln (ln 1)0f x x x x x x x x =+-+=+-+≤; 当1x ≥时,()l n (l n 1f x x x x x =+-+ 1l n (l n 1)x x x x=++- 11ln (ln 1)x x x x=--+0≥所以(1)()0x f x -≥(21)(本小题满分12分)(注意:在试题卷上作答无效.........) 已知抛物线2:4C y x =的焦点为F ,过点(1,0)K -的直线l 与C 相交于A 、B 两点,点A 关于x 轴的对称点为D . (Ⅰ)证明:点F 在直线BD 上;(Ⅱ)设89F A F B = ,求B D K ∆的内切圆M 的方程 .【命题意图】本小题为解析几何与平面向量综合的问题,主要考查抛物线的性质、直线与圆的位置关系,直线与抛物线的位置关系、圆的几何性质与圆的方程的求解、平面向量的数量积等知识,考查考生综合运用数学知识进行推理论证的能力、运算能力和解决问题的能力,同时考查了数形结合思想、设而不求思想.【解析】(21)解:设11(,)A x y ,22(,)B x y ,11(,)D x y -,l 的方程为1(0)x my m =-≠.(Ⅱ)由①知,21212(1)(1)42x x m y m y m +=-+-=- 1212(1)(1) 1.x x m y m y =--=因为 11(1,),FA x y =-uu r 22(1,)FB x y =-uur,212121212(1)(1)()1484FA FB x x y y x x x x m ⋅=--+=-+++=-uu r uur故 28849m -=,解得 43m =±所以l 的方程为3430,343x y x y ++=-+=又由①知 2214(4)4473y y m -=±-⨯=±故直线BD 的斜率21437y y =±-,因而直线BD 的方程为3730,3730.x y x y +-=--=因为KF 为BK D ∠的平分线,故可设圆心(,0)(11)M t t -<<,(,0)M t 到l 及BD 的距离分别为3131,54t t +-. 由313154t t +-=得19t =,或9t =(舍去),故 圆M 的半径31253t r +==.所以圆M 的方程为2214()99x y -+=.(22)(本小题满分12分)(注意:在试题卷上作答无效.........) 已知数列{}n a 中,1111,n na a c a +==-.(Ⅰ)设51,22n n c b a ==-,求数列{}n b 的通项公式;(Ⅱ)求使不等式13n n a a +<<成立的c 的取值范围 .【命题意图】本小题主要考查数列的通项公式、等比数列的定义、递推数列、不等式等基础知识和基本技能,同时考查分析、归纳、探究和推理论证问题的能力,在解题过程中也渗透了对函数与方程思想、化归与转化思想的考查. 【解析】(Ⅱ)12211,1, 2.a a c a a c ==->>由得 用数学归纳法证明:当2c >时1n n a a +<. (ⅰ)当1n =时,2111a c a a =->,命题成立;。
2010年江西省高考数学试卷(文科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2010•江西)对于实数a,b,c,“a>b”是“ac2>bc2”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断;不等关系与不等式.【分析】不等式的基本性质,“a>b”⇒“ac2>bc2”必须有c2>0这一条件.【解答】解:主要考查不等式的性质.当C=0时显然左边无法推导出右边,但右边可以推出左边故选B【点评】充分利用不等式的基本性质是推导不等关系的重要条件.2.(5分)(2010•江西)若集合A={x||x|≤1,x∈R},B={y|y=x2,x∈R},则A∩B=()A.{x|﹣1≤x≤1} B.{x|x≥0} C.{x|0≤x≤1} D.∅【考点】交集及其运算.【分析】考查集合的性质与交集以及绝对值不等式运算.常见的解法为计算出集合A、B的最简单形式再运算.【解答】解:由题得:A={x|﹣1≤x≤1},B={y|y≥0},∴A∩B={x|0≤x≤1}.故选C.【点评】在应试中可采用特值检验完成.3.(5分)(2010•江西)(1﹣x)10展开式中x3项的系数为()A.﹣720 B.720 C.120 D.﹣120【考点】二项式定理的应用.【专题】计算题.【分析】利用二项展开式的通项公式求出第r+1项,令x的指数为3求出展开式中x3项的系数.【解答】解:二项展开式的通项为T r+1=C10r(﹣x)r=(﹣1)r C10r x r,令r=3,得展开式中x3项的系数为(﹣1)3C103=﹣120.故选项为D【点评】考查二项式定理展开式中特定项问题,解决此类问题主要是依据二项展开式的通项,4.(5分)(2010•江西)若f(x)=ax4+bx2+c满足f′(1)=2,则f′(﹣1)=()A.﹣4 B.﹣2 C.2 D.4【考点】导数的运算.【专题】整体思想.【分析】先求导,然后表示出f′(1)与f′(﹣1),易得f′(﹣1)=﹣f′(1),结合已知,即可求解.【解答】解:∵f(x)=ax4+bx2+c,∴f′(x)=4ax3+2bx,∴f′(1)=4a+2b=2,∴f′(﹣1)=﹣4a﹣2b=﹣(4a+2b)=﹣2,故选:B.【点评】本题考查了导数的运算,注意整体思想的应用.5.(5分)(2010•江西)不等式|x﹣2|>x﹣2的解集是()A.(﹣∞,2)B.(﹣∞,+∞)C.(2,+∞)D.(﹣∞,2)∪(2,+∞)【考点】绝对值不等式的解法.【专题】计算题.【分析】方法一:特殊值法,把x=1代入不等式检验,把x=3代入不等式检验.方法二:利用一个数的绝对值大于它本身,这个数一定是负数.【解答】解:方法一:特殊值法,把x=1代入不等式检验,满足不等式,故x=1在解集内,排除答案C、D.把x=3代入不等式检验,不满足不等式,故x=3 不在解集内,排除答案B,故答案选A.方法二:∵不等式|x﹣2|>x﹣2,∴x﹣2<0,即x<2∴解集为(﹣∞,2),故选答案A【点评】对于含绝对值不等式主要是去掉绝对值后再求解,可以通过绝对值的意义、零点分区间法、平方等方法去掉绝对值.6.(5分)(2010•江西)函数y=sin2x﹣sinx﹣1的值域为()A.[﹣1,1]B.[,﹣1]C.[,1] D.[1,]【考点】函数的值域;三角函数的最值.【专题】计算题;转化思想;换元法.【分析】令t=sinx,将函数y=sin2x﹣sinx﹣1的值域的问题变为求y=t2﹣t﹣1在区间[﹣1,1]上的值域的问题,利用二次函数的单调性求之.【解答】解:令sinX=t可得y=t2﹣t﹣1,t∈[﹣1,1]y=t2﹣t﹣1的对称轴是t=故≤y≤y(﹣1)即≤y≤1即值域为[,1]故应选C.【点评】本题考点是复合函数的单调性,考查求复合函数的值域,本题直接证明复合三角函数的单调性比较困难,故采取了换元法求值域的技巧,对于解复合函数的值域的问题,换元法是一个比较好的技巧.7.(5分)(2010•江西)等比数列{a n}中,|a1|=1,a5=﹣8a2,a5>a2,则a n=()A.(﹣2)n﹣1B.﹣(﹣2n﹣1)C.(﹣2)n D.﹣(﹣2)n【考点】等比数列的性质.【专题】计算题.【分析】根据等比数列的性质,由a5=﹣8a2得到等于q3,求出公比q的值,然后由a5>a2,利用等比数列的通项公式得到a1大于0,化简已知|a1|=1,得到a1的值,根据首项和公比利用等比数列的通项公式得到a n的值即可.【解答】解:由a5=﹣8a2,得到=q3=﹣8,解得q=﹣2,又a5>a2,得到16a1>﹣2a1,解得a1>0,所以|a1|=a1=1则a n=a1q n﹣1=(﹣2)n﹣1故选A【点评】此题考查学生灵活运用等比数列的性质及前n项和的公式化简求值,是一道中档题.8.(5分)(2010•江西)若函数y=的图象关于直线y=x对称,则a为()A.1 B.﹣1 C.±1 D.任意实数【考点】反函数.【专题】计算题.【分析】因为图象本身关于直线y=x对称故可知原函数与反函数是同一函数,所以先求反函数再与原函数比较系数可得答案.【解答】解:∵函数y=的图象关于直线y=x对称∴利用反函数的性质,依题知(1,)与(,1)皆在原函数图象上,(1,)与(,1)为不同的点,即a≠2;∴∴a=﹣1或a=2(舍去)故可得a=﹣1【点评】本题主要考查反函数,反函数是函数知识中重要的一部分内容.对函数的反函数的研究,我们应从函数的角度去理解反函数的概念,从中发现反函数的本质,并能顺利地应用函数与其反函数间的关系去解决相关问题.9.(5分)(2010•江西)有n位同学参加某项选拔测试,每位同学能通过测试的概率都是p (0<p<1),假设每位同学能否通过测试是相互独立的,则至少有一位同学通过测试的概率为()A.(1﹣Pp)n B.1﹣p n C.p n D.1﹣(1﹣)n【考点】互斥事件与对立事件;n次独立重复试验中恰好发生k次的概率.【专题】概率与统计.【分析】根据题意,“至少有一位同学通过测试”与“没有人通过通过测试”为对立事件,先由独立事件的概率乘法公式,可得“没有人通过通过测试”的概率,进而可得答案.【解答】解:根据题意,“至少有一位同学通过测试”与“没有人通过通过测试”为对立事件,记“至少有一位同学通过测试”为A.则=“没有人通过通过测试”,易得P()=(1﹣p)n,则P(A)=1﹣(1﹣p)n,故选D.【点评】本题考查对立事件的概率,一般在至多、最多、最少、至少等情况下运用对立事件的概率,可以简化运算.10.(5分)(2010•江西)直线y=kx+3与圆(x﹣3)2+(y﹣2)2=4相交于M,N两点,若|MN|≥2,则k的取值范围是()A.[﹣,0]B.C.[﹣]D.[﹣,0]【考点】直线与圆的位置关系;点到直线的距离公式;直线和圆的方程的应用.【专题】压轴题.【分析】先求圆心坐标和半径,求出最大弦心距,利用圆心到直线的距离不大于最大弦心距,求出k的范围.【解答】解:解法1:圆心的坐标为(3,2),且圆与x轴相切.当,弦心距最大,由点到直线距离公式得解得k∈;故选A.解法2:数形结合,如图由垂径定理得夹在两直线之间即可,不取+∞,排除B,考虑区间不对称,排除C,利用斜率估值,故选A.【点评】考查直线与圆的位置关系、点到直线距离公式,重点考查数形结合的运用.解法2是一种间接解法,选择题中常用.11.(5分)(2010•江西)如图,M是正方体ABCD﹣A1B1C1D1的棱DD1的中点,给出下列命题①过M点有且只有一条直线与直线AB、B1C1都相交;②过M点有且只有一条直线与直线AB、B1C1都垂直;③过M点有且只有一个平面与直线AB、B1C1都相交;④过M点有且只有一个平面与直线AB、B1C1都平行.其中真命题是()A.②③④ B.①③④ C.①②④ D.①②③【考点】直线与平面平行的性质;平面与平面垂直的性质.【专题】压轴题;数形结合.【分析】点M不在这两异面直线中的任何一条上,所以,过M点有且只有一条直线与直线AB、B1C1都相交,①正确.②过M点有且只有一条直线与直线AB、B1C1都垂直,正确.过M点有无数个平面与直线AB、B1C1都相交,③不正确.④过M点有且只有一个平面与直线AB、B1C1都平行,正确.【解答】解:直线AB与B1C1是两条互相垂直的异面直线,点M不在这两异面直线中的任何一条上,如图所示:取C1C的中点N,则MN∥AB,且MN=AB,设BN 与B1C1交于H,则点A、B、M、N、H 共面,直线HM必与AB直线相交于某点O.所以,过M点有且只有一条直线HO与直线AB、B1C1都相交;故①正确.过M点有且只有一条直线与直线AB、B1C1都垂直,此垂线就是棱DD1,故②正确.过M点有无数个平面与直线AB、B1C1都相交,故③不正确.过M点有且只有一个平面与直线AB、B1C1都平行,此平面就是过M点与正方体的上下底都平行的平面,故④正确.综上,①②④正确,③不正确,故选C.【点评】本题考查立体几何图形中直线和平面的相交、平行、垂直的性质,体现了数形结合的数学思想.12.(5分)(2010•江西)如图,四位同学在同一个坐标系中分别选定了一个适当的区间,各自作出三个函数y=sin2x,,的图象如下.结果发现其中有一位同学作出的图象有错误,那么有错误的图象是()A.B.C.D.【考点】正弦函数的图象.【专题】作图题.【分析】可采用排除法,取一个特殊点来观察,如当y=sin2x的图象取最高点时其他两函数对应的点一定不是最值点或零点,从而只有C不合适【解答】解:y=sin2x的图象取最高点时,x=kπ+,k∈Z此时,x+=kπ+,x﹣=kπ﹣∴,的函数值一定不是1或0,即y=sin2x的图象取最高点时,其他两函数对应的点一定不是最值点或零点,而C不适合,故选C【点评】本题考查了三角函数的图象及性质,y=Asin(ωx+φ)型函数的对称性,排除法解图象选择题二、填空题(共4小题,每小题4分,满分16分)13.(4分)(2010•江西)已知向量,满足||=2,与的夹角为60°,则在上的投影是1.【考点】向量的投影.【专题】常规题型;计算题.【分析】根据投影的定义,应用公式||cos<,>=求解.【解答】解:根据向量的投影定义,在上的投影等于||cos<,>=2×=1故答案为:1【点评】本题主要考查向量投影的定义及求解的方法,公式与定义两者要灵活运用.14.(4分)(2010•江西)将5位志愿者分成3组,其中两组各2人,另一组1人,分赴世博会的三个不同场馆服务,不同的分配方案有90种(用数字作答).【考点】排列、组合的实际应用.【专题】计算题.【分析】根据分组分配问题的思路,先将5人分成3组,计算可得其分组情况,进而将其分配到三个不同场馆,由排列公式可得其情况种数,由分步计数原理计算可得答案.【解答】解:根据题意,首先将5人分成3组,由分组公式可得,共有=15种不同分组方法,进而将其分配到三个不同场馆,有A33=6种情况,由分步计数原理可得,不同的分配方案有15×6=90种,故答案为90.【点评】本题考查排列组合里分组分配问题,注意一般分析顺序为先分组,再分配.15.(4分)(2010•江西)点A(x0,y0)在双曲线的右支上,若点A到右焦点的距离等于2x0,则x0=2.【考点】双曲线的简单性质.【专题】计算题;压轴题.【分析】由题设条件先求出a,b,由此能求出x0的值.【解答】解:a=2.c=6,∴右焦点F(6,0)把A(x0,y0)代入双曲线,得y02=8x02﹣32,∴|AF|=∴.故答案为:2.【点评】本题考查圆锥曲线的基本概念和第二定义的转化,解题时要注意公式的合理运用.16.(4分)(2010•江西)长方体ABCD﹣A1B1C1D1的顶点均在同一个球面上,AB=AA1=1,BC=,则A,B两点间的球面距离为.【考点】球面距离及相关计算.【专题】计算题;压轴题.【分析】考查球面距离的问题,可先利用长方体三边长求出球半径,在三角形中求出球心角,再利用球面距离公式得出答案.【解答】解:设球的球心为O,球的直径即为长方体的对角线长,即2R=,∴R=1,在等腰三角形OAB中,球心角∠AOB=,∴利用球面距离公式得出:距离公式=.答案:.【点评】本题主要考查球的性质、球面距离,属于基础题.三、解答题(共6小题,满分74分)17.(12分)(2010•江西)设函数f(x)=6x3+3(a+2)x2+2ax.(1)若f(x)的两个极值点为x1,x2,且x1x2=1,求实数a的值;(2)是否存在实数a,使得f(x)是(﹣∞,+∞)上的单调函数?若存在,求出a的值;若不存在,说明理由.【考点】利用导数研究函数的极值;利用导数研究函数的单调性.【专题】计算题.【分析】(1)先求原函数的导函数,根据导函数在极值点处的值为零建立等式关系,求出参数a即可;(2)根据二次函数的判别式进行判定能否使导函数恒大于零,如果能就存在,否则就不存在.【解答】解:f′(x)=18x2+6(a+2)x+2a(1)由已知有f′(x1)=f′(x2)=0,从而,所以a=9;(2)由△=36(a+2)2﹣4×18×2a=36(a2+4)>0,所以不存在实a,使得f(x)是R上的单调函数.【点评】本题主要考查函数利用导数处理函数极值单调性等知识,是高考中常考的问题,属于基础题.18.(12分)(2010•江西)某迷宫有三个通道,进入迷宫的每个人都要经过一扇智能门.首次到达此门,系统会随机(即等可能)为你打开一个通道.若是1号通道,则需要1小时走出迷宫;若是2号、3号通道,则分别需要2小时、3小时返回智能门.再次到达智能门时,系统会随机打开一个你未到过的通道,直至走出迷宫为止.(1)求走出迷宫时恰好用了1小时的概率;(2)求走出迷宫的时间超过3小时的概率.【考点】相互独立事件的概率乘法公式.【专题】计算题.【分析】(1)由题意知本题是一个等可能事件的概率,试验发生包含的所有事件数为3,而满足条件的事件数是1,根据古典概型的概率公式得到结果.(2)走出迷宫的时间超过3小时这一事件,包括三种情况,且这三种情况是互斥的,一是进入2号通道,回来后又进入3号通道,二是进入3号通道,回来后又进入2号通道,三是进入3号通道,回来后又进入1号通道的概率,根据相互独立事件和互斥事件的概率公式得到结果.【解答】解:(1)由题意知本题是一个等可能事件的概率∵试验发生包含的所有事件数为3,而满足条件的事件数是1,设A表示走出迷宫时恰好用了1小时这一事件,∴P(A)=.(2)设B表示走出迷宫的时间超过3小时这一事件,本事件包括三种情况,且这三种情况是互斥的,一是进入2号通道,回来后又进入3号通道的概率是=二是进入3号通道,回来后又进入2号通道的概率是=三是进入3号通道,回来后又进入1号通道的概率是=则P(B)==.【点评】考查数学知识的实际背景,重点考查相互独立事件的概率乘法公式计算事件的概率、随机事件的数学特征和对思维能力、运算能力、实践能力的考查.19.(12分)(2010•江西)已知函数f(x)=(1+cotx)sin2x﹣2sin(x+)sin(x﹣).(1)若tanα=2,求f(α);(2)若x∈[,],求f(x)的取值范围.【考点】同角三角函数基本关系的运用;正弦函数的定义域和值域.【专题】三角函数的图像与性质.【分析】(1)利用正切化为正弦、余弦,利用两角和与差的三角函数展开,二倍角公式的应用化为,通过tanα=2,求出sin2α,cos2α,然后求出f(α);(2)化简函数为:,由x∈[,],求出2x+的范围,然后求f(x)的取值范围.【解答】解:(1)∵f(x)=(1+cotx)sin2x﹣2sin(x+)sin(x﹣)=sin2x+sinxcosx+cos2x=+=∵tanα=2,∴sin2α=2sinαcosα===,cos2α==所以.(2)由(1)得由得,所以从而.【点评】三角函数的化简,包括降幂扩角公式、辅助角公式都是高考考查的重点内容,另外对于三角函数的化简到最简形式一定要求掌握.熟练利用正余弦函数的图象求形如y=Asin (ωx+φ)性质.20.(12分)(2010•江西)如图,△BCD与△MCD都是边长为2的正三角形,平面MCD⊥平面BCD,AB⊥平面BCD,AB=2.(1)求直线AM与平面BCD所成的角的大小;(2)求平面ACM与平面BCD所成的二面角的正弦值.【考点】与二面角有关的立体几何综合题;直线与平面所成的角.【专题】计算题.【分析】(1)取CD中点O,连OB,OM,延长AM、BO相交于E,根据线面所成角的定义可知∠AEB就是AM与平面BCD所成的角,在三角形AEB中求出此角即可;(2)CE是平面ACM与平面BCD的交线,作BF⊥EC于F,连AF,根据二面角的平面角的定义可知∠AFB就是二面角A﹣EC﹣B的平面角,在三角形AFB中求出此角的正弦值,从而求出二面角的正弦值.【解答】解:(1)取CD中点O,连OB,OM,则OB⊥CD,OM⊥CD.又平面MCD⊥平面BCD,则MO⊥平面BCD,所以MO∥AB,A、B、O、M共面.延长AM、BO相交于E,则∠AEB就是AM与平面BCD所成的角.OB=MO=,MO∥AB,则,,所以,故∠AEB=45°.(2)CE是平面ACM与平面BCD的交线.由(1)知,O是BE的中点,则BCED是菱形.作BF⊥EC于F,连AF,则AF⊥EC,∠AFB就是二面角A﹣EC﹣B的平面角,设为θ.因为∠BCE=120°,所以∠BCF=60°..所以,所求二面角的正弦值是.【点评】本题主要考查了考查立体图形的空间感、线面角、二面角、空间向量、二面角平面角的判断有关知识,同时也考查了空间想象能力和推理能力.21.(12分)(2010•江西)已知抛物线C1:x2+by=b2经过椭圆C2:+=1(a>b>0)的两个焦点.(1)求椭圆C2的离心率;(2)设Q(3,b),又M,N为C1与C2不在y轴上的两个交点,若△QMN的重心在抛物线C1上,求C1和C2的方程.【考点】圆锥曲线的综合;椭圆的简单性质.【专题】计算题;综合题;压轴题;方程思想;待定系数法.【分析】(1)根据椭圆C2:+=1写出其焦点坐标,代入抛物线C1:x2+by=b2,求得b,c的方程,由a2=b2+c2,可求得椭圆C2的离心率;(2)联立抛物线C1的方程椭圆C2的方程,求出M,N的坐标,求出△QMN的重心坐标,代入抛物线C1,即可求得C1和C2的方程.【解答】解:(1)因为抛物线C1经过椭圆C2的两个焦点F1(﹣c,0),F2(c,0),所以c2+b×0=b2,即c2=b2,由a2=b2+c2=2c2得椭圆C2的离心率.(2)由(1)可知a2=2b2,椭圆C2的方程为:联立抛物线C1的方程x2+by=b2得:2y2﹣by﹣b2=0,解得:或y=b(舍去),所以,即,所以△QMN的重心坐标为(1,0).因为重心在C1上,所以12+b×0=b2,得b=1.所以a2=2.所以抛物线C1的方程为:x2+y=1,椭圆C2的方程为:.【点评】此题是个中档题,考查椭圆和抛物线的定义、基本量,通过交点三角形来确认方程.22.(14分)(2010•江西)正实数数列{a n}中,a1=1,a2=5,且{a n2}成等差数列.(1)证明数列{a n}中有无穷多项为无理数;(2)当n为何值时,a n为整数,并求出使a n<200的所有整数项的和.【考点】数列的求和;等差数列的性质.【专题】压轴题;创新题型.【分析】(1)由a1=1,a2=5且{a n2}成等差数列,求出a n2的通项公式,由通项公式分析出无理数;(2)由a n的表达式讨论使a n<200的整数项,从而求出所有整数项的和.【解答】(1)证明:由已知有:a n2=1+24(n﹣1),从而,方法一:取n﹣1=242k﹣1,则用反证法证明这些a n都是无理数.假设为有理数,则a n必为正整数,且a n<24k,故a n﹣24k≥1.a n﹣24k>1,与(a n﹣24k)(a n+24k)=1矛盾,所以都是无理数,即数列a n中有无穷多项为无理数;(2)要使a n为整数,由(a n﹣1)(a n+1)=24(n﹣1)可知:a n﹣1,a n+1同为偶数,且其中一个必为3的倍数,所以有a n﹣1=6m或a n+1=6m当a n=6m+1时,有a n2=36m2+12m+1=1+12m(3m+1)(m∈N)又m(3m+1)必为偶数,所以a n=6m+1(m∈N)满足a n2=1+24(n﹣1)即(m∈N)时,a n为整数;同理a n=6m﹣1(m∈N+)有a n2=36m2﹣12m+1=1+12(3m﹣1)(m∈N+)也满足a n2=1+24(n﹣1),即(m∈N+)时,a n为整数;显然a n=6m﹣1(m∈N+)和a n=6m+1(m∈N)是数列中的不同项;所以当(m∈N)和(m∈N+)时,a n为整数;由a n=6m+1<200(m∈N)有0≤m≤33,由a n=6m﹣1<200(m∈N+)有1≤m≤33.设a n中满足a n<200的所有整数项的和为S,则S=(5+11+…+197)+(1+7+…+199)=【点评】对一个正整数数能否写成另一个整数的平方的形式,是难点;对整数的奇偶性分析也是难点;故此题是中档题.。
双曲线单元复习测试一、选择题1.(09年高考全国卷二)已知双曲线()222210,0x y C a b a b-=>>:的右焦点为F ,过F 交C 于A B 、两点,若4AF FB =,则C 的离心率为 A .65B .75C .58D .95【答案解析】A解:设双曲线22221x y C a b-=:的右准线为l ,过A B 、分 别作AM l ⊥于M ,BN l ⊥于N , BD AM D ⊥于,由直线AB 知直线AB 的倾斜角为16060,||||2BAD AD AB ︒∴∠=︒=, 由双曲线的第二定义有1||||||(||||)AM BN AD AF FB e -==-11||(||||)22AB AF FB ==+. 又15643||||25AF FB FB FB e e =∴⋅=∴= 故选A2.(09年高考江西卷)设F 1和F 2为双曲线)0,0(12222>>=-b a by a x 的两个焦点, 若F 1,F 2,P(0,2b )是正三角形的三个顶点,则双曲线的离心率为 A .23B .2C .25 D .3【答案解析】B【解析】由tan623c b π==有2222344()c b c a ==-,则2c e a==,故选B. 3.(2008年高考数学试题全国卷2(理)全解全析)设1a >,则双曲线22221(1)x y a a -=+的离心率e 的取值范围是( )A .2)B .C .(25),D .(2【答案解析】【答案】B【解析】222222)11(1)1()(a aa a a c e ++=++==,因为a 1是减函数,所以当1a >时 110<<a,所以522<<e ,即52<<e 【高考考点】解析几何与函数的交汇点4.(2008年高考数学试题全国卷2(文)全解全析)设ABC △是等腰三角形,120ABC ∠=,则以A B,为焦点且过点C 的双曲线的离心率为( ) A .221+ B .231+ C . 21+ D .31+【答案解析】【答案】B【解析】由题意BC c =2,所以c c AC 3260sin 220=⨯⨯=,由双曲线的定义,有c a c c BC AC a )13(2322-=⇒-=-=,∴231131+=-==a c e 【高考考点】双曲线的有关性质,双曲线第一定义的应用5.(08年高考陕西卷)双曲线22221x y a b-=(0a >,0b >)的左、右焦点分别是12F F ,,过1F 作倾斜角为30的直线交双曲线右支于M 点,若2MF 垂直于x 轴,则双曲线的离心率为A BC D .3【答案解析】B6.(2008年高考数学海南、宁夏文数全解全析)双曲线221102x y -=的焦距为( )A .B .C .D .【答案解析】【标准答案】D【试题解析】由双曲线方程得22210,212==∴=a b c ,于是2==c c【高考考点】双曲线的标准方程及几何性质【易错提醒】将双曲线中三个量,,a b c 的关系与椭圆混淆,而错选B【全品备考提示】在新课标中双曲线的要求已经降低,考查也是一些基础知识,不要盲目拔高7.(08年高考四川卷)已知双曲线22:1916x y C -=的左右焦点分别为12,F F ,P 为C 的右支上一点,且212PF F F =,则12PF F ∆的面积等于A .24B .36C .48D .96【答案解析】C∵双曲线22:1916x y C -=中3,4,5a b c === ∴()()125,0,5,0F F - ∵212PF F F = ∴12261016PF a PF =+=+=作1PF 边上的高2AF ,则18AF = ∴26AF == ∴12PF F ∆的面积为12111664822PF PF ⋅=⨯⨯= 故选C 【解2】:∵双曲线22:1916x y C -=中3,4,5a b c === ∴()()125,0,5,0F F - 设()()000,0P x y x >,, 则由212PF F F =得()22200510x y -+=又∵P 为C 的右支上一点 ∴22001916x y -= ∴22001619x y ⎛⎫=- ⎪⎝⎭∴()22051611009x x ⎛⎫-+-= ⎪⎝⎭即20025908190x x +-=解得0215x =或03905x =-<(舍去)∴0485y ===∴12PF F ∆的面积为12011481048225F F y ⋅=⨯⨯= 故选B【点评】:此题重点考察双曲线的第一定义,双曲线中与焦点,准线有关三角形问题;【突破】:由题意准确画出图象,解法1利用数形结合,注意到三角形的特殊性;解法2利用待定系数法求P 点坐标,有较大的运算量;8.(08年高考浙江卷)若双曲线12222=-by a x 的两个焦点到一条准线的距离之比为3:2,则双曲线的离心率是 A .3B .5C .3D .5【答案解析】D9.(09年高考山东卷)设双曲线12222=-by a x 的一条渐近线与抛物线y =x 2+1 只有一个公共点,则双曲线的离心率为 A .45B . 5C .25 D .5【答案解析】D【解析】:双曲线12222=-b y a x 的一条渐近线为x a b y =,由方程组21b y x ay x ⎧=⎪⎨⎪=+⎩,消去y,得210b x x a -+=有唯一解,所以△=2()40ba-=,所以2b a =,2c e a a ====故选D.答案:D.10.(2008年高考数学福建文数全解全析)若双曲线()222213x y a o a -=>的离心率为2,则a 等于A . 2B .C.32D . 1【答案解析】解析解析由222123x y a -===c可知虚轴e=a,解得a=1或a=3,参照选项知而应选D.11.(09年高考湖北卷)已知双曲线12222=-y x 的准线过椭圆14222=+b y x 的焦点,则直线y=kx +2与椭圆至多有一个交点的充要条件是 A .K ]21,21[-∈B .K ),21[]21,(+∞⋃--∞∈C.K ]22,22[-∈D .),22[]22,(+∞⋃-∞∈K 【答案解析】A【解析】易得准线方程是2212a xb =±=±=±所以222241c a b b =-=-= 即23b =所以方程是22143x y +=联立 2 y kx =+可得22 3+(4k +16k)40x x +=由0∆≤可解得A12.(08年高考重庆卷)已知双曲线22221x y a b-=(a >0,b >0)的一条渐近线为y =kx (k >0),离心率e ,则双曲线方程为A .22x a-224y a =1B .222215x y a a -= C.222214x y b b -=D .222215x y b b-=【答案解析】C二、填空题13.(2010年高考试题(江西卷)解析版(文))点00(,)A x y 在双曲线221432x y -=的右支上,若点A 到右焦点的距离等于02x ,则0x = ;【答案解析】【答案】2【解析】考查双曲线的比值定义,利用点A 到右焦点比上到右准线的距离等 于离心率得出0x =214.(09年高考湖南卷)过双曲线C :22221(0,0)x y a b a b-=>>的一个焦点作圆x 2+y 2=2a 的两条切线,切点分别为A ,B ,若∠AOB=120°(O 是坐标原点),则双曲线线C 的离心率为 【答案解析】12060302AOB AOF AFO c a ∠=⇒∠=⇒∠=⇒=, 2.ce a∴== 15.(2010年高考试题(北京卷)解析版(理))已知双曲线22221x y a b-=的离心率为2,焦点与椭圆221259x y +=的焦点相同,那么双曲线的焦点坐标为 ;渐近线方程为 。
2010年高考试题——(陕西卷)解析版文科数学(必修+选修Ⅱ)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共10小题,每小题5分,共50分). 1.集合A ={x -1≤x ≤2},B ={xx <1},则A ∩B =[D](A){x x <1}(B ){x-1≤x ≤2} (C) {x-1≤x ≤1}(D) {x-1≤x <1}解析:本题考查集合的基本运算 由交集定义得{x -1≤x ≤2}∩{xx <1}={x-1≤x <1} 2.复数z =1ii+在复平面上对应的点位于[A] (A)第一象限 (B )第二象限 (C )第三象限(D )第四象限解析:本题考查复数的运算及几何意义1i i +i i i 21212)1(+=-=,所以点()21,21位于第一象限 3.函数f (x )=2sin x cos x 是 [C](A)最小正周期为2π的奇函数 (B )最小正周期为2π的偶函数 (C)最小正周期为π的奇函数 (D )最小正周期为π的偶函数解析:本题考查三角函数的性质f (x )=2sin x cos x=sin2x ,周期为π的奇函数4.如图,样本A 和B 分别取自两个不同的总体,它们的样本平均数分别为A B x x 和,样本标准差分别为s A 和s B ,则[B](A) A x >B x ,s A >s B (B) A x <B x ,s A >s B (C) A x >B x ,s A <s B (D) A x <B x ,s A <s B解析:本题考查样本分析中两个特征数的作用A x <10<B x ;A 的取值波动程度显然大于B ,所以s A >s B5.右图是求x 1,x 2,…,x 10的乘积S 的程序框图,图中空白框中应填入的内容为 [D] (A)S =S*(n +1) (B )S =S *x n +1 (C)S =S *n (D)S =S *x n解析:本题考查算法S =S *x n 6.“a >0”是“a >0”的[A](A)充分不必要条件 (B )必要不充分条件(C )充要条件 (D )既不充分也不必要条件 解析:本题考查充要条件的判断00,00>⇒>>⇒>a a a a ,∴ a >0”是“a >0”的充分不必要条件7.下列四类函数中,个有性质“对任意的x >0,y >0,函数f (x )满足f (x +y )=f (x ) f (y )”的是 [C] (A )幂函数 (B )对数函数 (C )指数函数 (D )余弦函数 解析:本题考查幂的运算性质 )()()(y x f a a a y f x f y x y x +===+8.若某空间几何体的三视图如图所示,则该几何体的体积是[B](A )2 (B )1 (C )23(D )13解析:本题考查立体图形三视图及体积公式 如图,该立体图形为直三棱柱 所以其体积为122121=⨯⨯⨯9.已知抛物线y 2=2px (p >0)的准线与圆(x -3)2+y 2=16相切,则p 的值为[C](A )12(B )1 (C )2 (D )4解析:本题考查抛物线的相关几何性质及直线与圆的位置关系 法一:抛物线y 2=2px (p >0)的准线方程为2p x -=,因为抛物线y 2=2px (p >0)的准线与圆(x -3)2+y 2=16相切,所以2,423==+p p221法二:作图可知,抛物线y 2=2px (p >0)的准线与圆(x -3)2+y 2=16相切与点(-1,0) 所以2,12=-=-p p10.某学校要招开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于..6.时再增选一名代表.那么,各班可推选代表人数y 与该班人数x 之间的函数关系用取整函数y =[x ]([x ]表示不大于x 的最大整数)可以表示为[B](A )y =[10x] (B )y =[310x +] (C )y =[410x +] (D )y =[510x +] 解析:法一:特殊取值法,若x=56,y=5,排除C 、D ,若x=57,y=6,排除A ,所以选B 法二:设)90(10≤≤+=ααm x ,,时⎥⎦⎤⎢⎣⎡==⎥⎦⎤⎢⎣⎡++=⎥⎦⎤⎢⎣⎡+≤≤10103103,60x m m x αα 1101103103,96+⎥⎦⎤⎢⎣⎡=+=⎥⎦⎤⎢⎣⎡++=⎥⎦⎤⎢⎣⎡+≤<x m m x αα时当,所以选B 二、填空题:把答案填在答题卡相应题号后的横线上(本大题共5小题,每小题5分,共25分).11.观察下列等式:13+23=(1+2)2,13+23+33=(1+2+3)2,13+23+33+43=(1+2+3+4)2,…,根据上述规律,第四个等式.....为13+23+33+43+53=(1+2+3+4+5)2(或152).解析:第i 个等式左边为1到i+1的立方和,右边为1到i+1和的完全平方所以第四个等式.....为13+23+33+43+53=(1+2+3+4+5)2(或152).12.已知向量a =(2,-1),b =(-1,m ),c =(-1,2)若(a +b )∥c ,则 m = -1 .解析:0)1()1(21//)(),1,1(=-⨯--⨯+-=+m c b a m b a 得由,所以m=-113.已知函数f (x )=232,1,,1,x x x ax x +<⎧⎨+≥⎩若f (f (0))=4a ,则实数a = 2 .解析:f (0)=2,f (f (0))=f(2)=4+2a=4a ,所以a=214.设x ,y 满足约束条件24,1,20,x y x y x +≤⎧⎪-≤⎨⎪+≥⎩,则目标函数z =3x -y 的最大值为 5 .解析:不等式组表示的平面区域如图所示,当直线z =3x -y 过点C (2,1)时,在y 轴上截距最小 此时z 取得最大值515.(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)A.(不等式选做题)不等式21x -<3的解集为{}12x x -<<.解析:213123312<<-⇔<-<-⇔<-x x xB.(几何证明选做题)如图,已知Rt △ABC 的两条直角边AC ,BC 的长分别为3cm ,4cm ,以AC 为直径的圆与AB 交于点D ,则BD =165cm. 解析:AB CD ⊥ ,由直角三角形射影定理可得516BD 5,BA 4,BC ,2===⋅=所以又BA BD BCC.(坐标系与参数方程选做题)参数方程cos ,1sin x y αα=⎧⎨=+⎩(α为参数)化成普通方程为x 2+(y -1)2=1.解析:1sin cos )1(2222=+=-+ααy x 三、解答题:解答应写出文字说明、证明过程或演算步骤(本大题共6小题,共75分). 16.(本小题满分12分)已知{a n }是公差不为零的等差数列,a 1=1,且a 1,a 3,a 9成等比数列.(Ⅰ)求数列{a n }的通项; (Ⅱ)求数列{2an}的前n 项和S n . 解 (Ⅰ)由题设知公差d ≠0, 由a 1=1,a 1,a 3,a 9成等比数列得121d +=1812dd++, 解得d =1,d =0(舍去), 故{a n }的通项a n =1+(n -1)×1=n .(Ⅱ)由(Ⅰ)知2ma =2n,由等比数列前n 项和公式得S m =2+22+23+ (2)=2(12)12n --=2n+1-2.17.(本小题满分12分)在△ABC 中,已知B=45°,D 是BC 边上的一点, AD=10,AC=14,DC=6,求AB 的长.解 在△ADC 中,AD=10,AC=14,DC=6,由余弦定理得cos ∠2222AD DC AC AD DC +-=10036196121062+-=-⨯⨯,∴∠ADC=120°, ∠ADB=60°在△ABD 中,AD=10, ∠B=45°, ∠ADB=60°,由正弦定理得sin sin AB ADADB B=∠,∴AB=310sin10sin60256 sin sin4522AD ADBB⨯∠︒===︒.18.(本小题满分12分)如图,在四棱锥P—ABCD中,底面ABCD是矩形PA⊥平面ABCD,AP=AB,BP=BC=2,E,F 分别是PB,PC的中点.(Ⅰ)证明:EF∥平面PAD;(Ⅱ)求三棱锥E—ABC的体积V.解(Ⅰ)在△PBC中,E,F分别是PB,PC的中点,∴EF∥BC.又BC∥AD,∴EF∥AD,又∵AD⊄平面PAD,E F⊄平面PAD,∴EF∥平面PAD.(Ⅱ)连接AE,AC,EC,过E作EG∥PA交AB于点G,则BG⊥平面ABCD,且EG=12 PA.在△PAB中,AD=AB,∠PAB°,BP=2,∴AP=AB=2,EG=22.∴S△ABC=12AB·BC=12×2×2=2,∴V E-AB C=13S△ABC·EG=13×2×22=13.19 (本小题满分12分)为了解学生身高情况,某校以10%的比例对全校700名学生按性别进行出样检查,测得身高情况的统计图如下:()估计该校男生的人数;()估计该校学生身高在170~185cm之间的概率;()从样本中身高在180~190cm 之间的男生中任选2人,求至少有1人身高在185~190cm之间的概率。
绝密★启用前2011年普通高等学校招生全国统一考试文科数学(必修+选修I)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3至4页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.3.第Ⅰ卷共l2小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的. 一、选择题(1)设集合U={}1,2,3,4,{}1,2,3,M ={}2,3,4,N =则U =(M N )I ð (A ){}12, (B ){}23, (C ){}2,4 (D ){}1,4 【答案】D【命题意图】本题主要考查集合交并补运算. 【解析】{2,3},(){1,4}U M N M N =∴=ðQ I I (2)函数0)y x =≥的反函数为(A )2()4x y x R =∈ (B )2(0)4x y x =≥(C )24y x =()x R ∈ (D )24(0)y x x =≥ 【答案】B【命题意图】本题主要考查反函数的求法.【解析】由原函数反解得24y x =,又原函数的值域为0y ≥,所以函数0)y x =≥的反函数为2(0)4x y x =≥. (3)设向量,a b 满足||||1a b ==,12a b ⋅=-r r ,则2a b +=(A(B(C(D【答案】B【命题意图】本题主要考查平面向量的数量积与长度的计算方法.【解析】2221|2|||44||14()432a b a a b b +=+⋅+=+⨯-+=r r r r r u r ,所以2a b +=r r (4)若变量x ,y 满足约束条件63-21x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则=23z x y +的最小值为(A )17 (B )14 (C )5 (D )3 【答案】C【命题意图】本题主要考查简单的线性规划.【解析】作出不等式组表示的可行域,从图中不难观察当直线=23z x y +过直线x=1与x-3y=-2的交点(1,1)时取得最小值,所以最小值为5. (5)下面四个条件中,使a b >成立的充分而不必要的条件是(A )1a b +> (B )1a b -> (C )22a b > (D )33a b > 【答案】A【命题意图】本题主要考查充要条件及不等式的性质.【解析】即寻找命题P ,使P a b ⇒>,且a b >推不出P ,逐项验证知可选A.(6)设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,224k k S S +-=,则k =(A )8 (B )7 (C )6 (D )5 【答案】D【命题意图】本题主要考查等差数列的基本公式的应用. 【解析】解法一2(2)(1)(1)[(2)12][12]442422k k k k k k S S k k k +++--=+⨯+⨯-⨯+⨯=+=,解得5k =.解法二: 221[1(1)2](12)4424k k k k S S a a k k k +++-=+=++⨯++⨯=+=,解得5k =.(7)设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于(A )13(B )3 (C )6 (D )9 【答案】C【命题意图】本题主要考查三角函数的周期性与三角函数图像变换的关系.【解析】由题意将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,说明了3π是此函数周期的整数倍,得2()3k k Z ππω⨯=∈,解得6k ω=,又0ω>,令1k =,得min 6ω=.(8)已知直二面角l αβ--,点A α∈,AC l ⊥,C 为垂足,B β∈,BD l ⊥,D 为垂足,若2,1AB AC BD ===,则CD =(A ) 2 (B (C (D )1 【答案】C【解析】因为l αβ--是直二面角, AC l ⊥,∴AC ⊥平面β,AC BC ∴⊥BC ∴=又BD l ⊥,CD ∴=(9) 4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有(A) 12种 (B) 24种 (C) 30种 (D)36种 【答案】B【命题意图】本题主要考查两个原理与排列组合知识,考察考生分析问题的能力.【解析】第一步选出2人选修课程甲有246C =种方法,第二步安排剩余两人从乙、丙中各选1门课程有22⨯种选法,根据分步计数原理,有6424⨯=种选法.(10) 设()f x 是周期为2的奇函数,当01x ≤≤时,()f x =2(1)x x -,则5(2f -= (A) -12 (B)1 4- (C)14 (D)12【答案】A【命题意图】本题主要考查利用函数的周期性和奇偶性求函数值的方法. 关键是把通过周期性和奇偶性把自变量52-转化到区间[0,1]上进行求值.【解析】由()f x 是周期为2的奇函数,利用周期性和奇偶性得:5511111()(2)()()2(1)2222222f f f f -=-+=-=-=-⨯⨯-=-(11)设两圆1C 、2C 都和两坐标轴相切,且都过点(4,1),则两圆心的距离12C C =(A)4 (B)(C)8 (D)【答案】C【命题意图】本题主要考查圆的方程与两点间的距离公式.【解析】由题意知圆心在直线y=x 上并且在第一象限,设圆心坐标为(,)(0)a a a >,则a =,即210170a a -+=,所以由两点间的距离公式可求出128C C ===.(12)已知平面α截一球面得圆M ,过圆心M 且与α成060二面角的平面β截该球面得圆N .若该球面的半径为4,圆M 的面积为4π,则圆N 的面积为(A)7π (B)9π (C)11π (D)13π 【答案】D【命题意图】本题主要考查二面角的概念与球的性质.【解析】如图所示,由圆M 的面积为4π知球心O 到圆M 的距离OM =,在Rt OMN ∆中,30OMN ︒∠=,∴12ON OM ==,故圆N 的半径r ==,∴圆N 的面积为213S r ππ==.第Ⅱ卷注意事项:1答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考 证号填写清楚,然后贴好条形码。
排列与组合 第一部 六年高考荟萃2010年高考题一、选择题 1.(2010年高考山东卷理科8)某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在第四位、节目乙不能排在第一位,节目丙必须排在最后一位,该台晚会节目演出顺序的编排方案共有 (A )36种 (B )42种 (C)48种 (D )54种 【答案】B【解析】分两类:第一类:甲排在第一位,共有44A =24种排法;第二类:甲排在第二位,共有1333A A =18⋅种排法,所以共有编排方案241842+=种,故选B 。
【命题意图】本题考查排列组合的基础知识,考查分类与分步计数原理。
2.( 2010年高考全国卷I 理科6)某校开设A 类选修课3门,B 类选择课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有(A) 30种 (B)35种 (C)42种 (D)48种2.A【命题意图】本小题主要考查分类计数原理、组合知识,以及分类讨论的数学思想.【解析】:可分以下2种情况:(1)A 类选修课选1门,B 类选修课选2门,有1234C C 种不同的选法;(2)A 类选修课选2门,B类选修课选1门,有2134C C 种不同的选法.所以不同的选法共有1234C C +2134181230C C =+=种.3.(2010年高考天津卷理科10)如图,用四种不同颜色给图中的A 、B 、C 、D 、E 、F 六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色。
则不同的涂色方法共有 (A ) 288种 (B )264种 (C ) 240种 (D )168种 【答案】B【解析】分三类:(1)B 、D 、E 、F 用四种颜色,则有441124A ⨯⨯=种方法; (2)B 、D 、E 、F 用三种颜色,则有3422A ⨯⨯+34212192A ⨯⨯⨯=种方法; (3)B 、D 、E 、F 用二种颜色,则有242248A ⨯⨯=,所以共有不同的涂色方法24+192+48=264种。
绝密★启用前2011年普通高等学校招生全国统一考试(江西卷)文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分. 第I 卷1至2页,第Ⅱ卷3至4页,满分150分,考试时间120分钟. 考生注意:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上,考生要认真核对答题卡粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致. 2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.第Ⅱ 3.考试结束,监考员将试题卷、答题卡一并收回.参考公式:样本数据1122(,),(,),...,(,)n n x y x y x y 的回归方程:y a bx =+其中()()()121niii nii x x y y b x x ==--=-∑∑,a y bx =- 锥体体积公式其中S 为底面积,h 为高第I 卷一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.若()2,,x i i y i x y R -=+∈,则复数x yi +=( ) A.2i -+ B.2i + C.12i - D.12i + 答案:B解析: ()iyi x x y iy i xi i y i i x +=+∴==∴+=-+=-22,12,222.若全集{1,2,3,4,5,6},{2,3},{1,4}U M N ===,则集合{5,6}等于( ) A.M N ⋃ B.M N ⋂ C.()()U U C M C N ⋃ D.()()U U C M C N ⋂答案:D 解析:{}4,3,2,1=⋃N M ,Φ=⋂N M ,()(){}6,5,4,3,2,1=⋃N C M C U U ,()(){}6,5=⋂N C M C U U 3.若121()log (21)f x x =+,则()f x 的定义域为( )A.1(,0)2-B.1(,)2-+∞ C.1(,0)(0,)2-⋃+∞ D.1(,2)2-答案:C 解析:()()+∞⋃⎪⎭⎫⎝⎛-∈∴≠+>+∴≠+,00,21112,012,012log 21x x x x4.曲线xy e =在点A (0,1)处的切线斜率为( ) A.1 B.2 C.e D.1e答案:A 解析: 1,0,0'===e x e y x5.设{n a }为等差数列,公差d = -2,n S 为其前n 项和.若1011S S =,则1a =( ) A.18 B.20 C.22 D.24答案:B 解析:20,100,1111111110=∴+==∴=a d a a a S S6.观察下列各式:则234749,7343,72401===,…,则20117的末两位数字为( )A.01B.43C.07D.49答案:B 解析:()()()()()()343***2011,200922011168075,24014,3433,492,7=∴=-=====f f f f f x f x7.为了普及环保知识,增强环保意识,某大学随即抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分值的中位数为e m ,众数为o m ,平均值为x ,则( ) A.e o m m x== B.e o m m x =<C.e o m m x <<D.o e m m x <<8.为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下: 父亲身高x (cm ) 174 176 176 176 178 儿子身高y (cm ) 175 175176177177则y 对x 的线性回归方程为A.y = x-1B.y = x+1C.y = 88+12x D.y = 176 C 线性回归方程bx a y +=,()()()∑∑==---=ni i ni iix x y y x x b 121,x b y a -=9.将长方体截去一个四棱锥,得到的几何体如右图所示,则该几何体的左视图为( ) 答案:D 左视图即是从正左方看,找特殊位置的可视点,连起来就可以得到答案。
一•选择题:本大题共 12小题,每小题 5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
2 21 •对于实数 a, b,c ,aa b ”是“ ac • be ” 的A .充分不必要条件B .必要不充分条件 C.充要条件 D .既不充分也不必要条件 【答案】B【解析】主要考查不等式的性质。
当C=0时显然左边无法推导出右边,但右边可以推出左边 2.若集合 A={x|x| 兰 1},B=(xx 启 0},则 A A B =A . {x —1E x ^1}B . {xx 王。
}C {x0 兰 x ^1}D . 0【答案】C【解析】考查集合与简单不等式。
解决有关集合的问题关键是把握住集合中的元素, 由题知集合A 是由大于等于-1小于等于1的数构成的集合,所以不难得出答案A . -720B . 720C. 120D . -120绝密★启用前 2010年普通高等学校招生全国统一考试(江西卷)文科数学本试卷分第I 卷(选择题)和第n 卷(非选择题)两部分,第I 卷 至4页,共150分。
1至2页,第n 卷3考生注意: 1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上,考生要认真核对答题 卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是 否一致。
2. 第I 卷每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑,如需 改动,用橡皮擦干净后,再选涂其他答案标号。
第n 卷用黑色墨水签字笔在答题卡 上作答。
若在试题卷上作答,答案无效。
3. 考试结束,监考员将试题卷、答题卡一并收回。
参考公式如果事件A,B 互斥,那么P(A B) =P(A) P(B)如果事件A, B ,相互独立,那么球的表面积公式2S = 4 二 R其中R 表示球的半径 P(A B) =P(A) P(B)如果事件A 在一次试验中发生的概率是 p ,那么球的体积公式n 次独立重复试验中恰好发生 k 次的概率其中R 表示球的半径P n (k)P k (1 - P)n _k【答案】D【解析】考查二项式定理展开式中特定项问题,解决此类问题主要是依据二项展开式的通项,由4 .若f (x) = ax4 bx2 c 满足f (1) = 2,则f (「1)=A. -4B. -2C. 2D. 4【答案】B【解析】考查函数的奇偶性,求导后导函数为奇函数,所以选择B5. 不等式X—2 AX—2的解集是A. ( -::, 2)B. (-::, - )C. (2,…)D. (-::,2) (2,::)【答案】A【解析】考查含绝对值不等式的解法,对于含绝对值不等式主要是去掉绝对值后再求解,可以通过绝对值的意义、零点分区间法、平方等方法去掉绝对值。
但此题利用代值法会更好26. 函数y二sin x sin x「1的值域为5 5 5A. [-1,1]B. [ , -1]C. [ ,1]D.[-叱]4 4 4【答案】C【解析】考查二次函数型值域问题。
通过函数形状发现此函数很像二次函数,故令sinX=t 2可得y =t t -1从而求解出二次函数值域7. 等比数列{a n}中,1^1=185 - -8a2,a5 a2,则a n二A. (-2)2B. 4-2nJ)C. (-2)nD. -(-2)n【答案】A【解析】考查等比数列的通项公式。
用代特值法解决会更好。
ax&若函数y 的图像关于直线y = x对称,贝V a为1 +xA. 1B. -1C. -1D.任意实数【答案】B【解析】考查反函数,因为图像本身关于直线y二x对称故可知原函数与反函数是同一函数,所以先求反函数再与原函数比较系数可得答案。
或利用反函数的性质,依题知(1, a/2)与(a/2, 1)皆在原函数图故可得a=-19 .有n位同学参加某项选拔测试,每位同学能通过测试的概率都是p (0 ::: p < 1),假设每位同学能否通过测试是相互独立的,则至少有一位同学通过测试的概率为A. (1-p)nB. 1 - p nC. p nD. 1 -(10【答案】D【解析】考查n 次独立重复事件中 A 事件恰好发生 K 次的公式,可先求n 次测试中没有人通 过的概率再利用对立事件得答案D10.直线y =kx 与圆(x-2)2 • (y 一3)2 =4相交于M 、N 两点,若|MN| > 23 ,则k 的 取值范围是A . 【-4,0]4B -后,33]C. [-..3,..3]D . [一|,0]【答案】B【解析】考查相交弦问题。
法一、可联立方程组利用弦长公式求 | MN|再结合| MN| >2、3可得答案法二、禾U 用圆的性质知:圆心到直线的距离的平方加上弦长的一半的平方等于半径的BiCA-平方求出| MN|再结合| MN| > 2、、3可得答案11.如图,M 是正方体ABCD -ABQU 的棱DD 1的中点,给出下列命题① 过M 点有且只有一条直线与直线② 过M 点有且只有一条直线与直线③ 过M 点有且只有一个平面与直线④ 过M 点有且只有一个平面与直AB 、B i C i 都相交; AB 、EG 都垂直; AB 、B i C 1都相交; AB 、BG 都平行.C.①②④D .①②③【解析】考查立体几何图形中相交平行垂直性质12 •如图,四位同学在同一个坐标系中分别选定了一个适当的区间,各自作出三个函数y 二sin 2x ,Jiny 二sin(x ), y 二sin(x)的图像如下。
结果发现其中有一位同学作出的图像有 63错误,那么有错误 的图像是DBD i【答案】C【解析】考查三角函数图像,通过三个图像比较不难得出答案绝密★启用前2010年普通高等学校招生全国统一考试(江西卷)文科数学第口卷注意事项:第n卷2页,须用黑色墨水签字笔在答题卡上书写作答,若在试题上作答,答案无效。
二.填空题:本大题共4小题,每小题4分,共16分。
请把答案填在答题卡上13•已知向量a , b满足|b| = 2 , a与b的夹角为60,则b在a上的投影是________________【答案】1【解析】考查向量的投影定义,b在a上的投影等于b的模乘以两向量夹角的余弦值14•将5位志愿者分成3组,其中两组各2人,另一组1人,分赴世博会的三个不同场馆服务,不同的分配方案有___________________ 种(用数字作答);【答案】90【解析】考查排列组合里分组分配问题,2 215.点A(x0,y0)在双曲线—1的右支上,若点A到右焦点的距离等4 32于2x0,则X。
二_________ ;【答案】2【解析】考查双曲线的比值定义,利用点A到右焦点比上到右准线的距离等于离心率得出X0 =2D1 16 .长方体ABCD - AB1G D1的顶点均在同一个球面上,AB = AA = 1 ,BC =勺2,贝y A, B两点间的球面距离为 __________________【答案】—【解析】考查球面距离,可先利用长方体三边长求出球半径,在三角形中求出球心角,再利用球面距离公式得出答案三.解答题:本大题共6小题,共74分。
解答应写出文字说明,证明过程或演算步骤17. (本小题满分12分)设函数f(x) =6x3 3(a 2)x2 2ax.(1 )若f (x)的两个极值点为 x u x 2,且x 必=1,求实数a 的值;(2)是否存在实数a ,使得f (x)是(_::,•::)上的单调函数?若存在,求出a 的值;若不存 在,说明理由.【解析】考查函数利用导数处理函数极值单调性等知识2解:f (x)=18x 6(a 2)x 2aa (1 )由已知有 f (xj = f (x 2) =0,从而 x/2 1,所以 a =9 ;18(2)由,;=36(a 2)2 -4 18 2a =36(a 2 4) 0,所以不存在实数 a ,使得f (x)是R 上的单调函数.18. (本小题满分12分)某迷宫有三个通道,进入迷宫的每个人都要经过一扇智能门。
首次到达此门,系统会随 机(即等可能)为你打开一个通道 •若是1号通道,则需要1小时走出迷宫;若是 2号、3号通道,则分别需要 2小时、3小时返回智能门•再次到达智能门时,系统会随机打开 一个你未到过的通道,直至走出迷宫为止(1) 求走出迷宫时恰好用了 1小时的概率; (2) 求走出迷宫的时间超过 3小时的概率.【解析】考查数学知识的实际背景,重点考查相互独立事件的概率乘法公式计算事件的概率、 随机事件的数学特征和对思维能力、运算能力、实践能力的考查。
11小时这一事件,则 P(A) .31 1 13小时这一事件,则P(B)=6 6 619. (本小题满分12分)2n n已知函数 f (x) = (1 + cot x)sin 2 x - 2sin( x + —)sin( x ——).4 4(1) 若 tan : =2,求 f(:);n n(2)若x ,[,],求f (x)的取值范围.12 2【解析】考查三角函数的化简、三角函数的图像和性质、三角函数值域问题。
依托三角函数 化简,考查函数值域,作为基本的知识交汇问题,考查基本三角函数变换,属于中等题解:(1)设A 表示走出迷宫时恰好用了 (2)设B 表示走出迷宫的时间超过1 -cos2x 12解:(1)f(x)=sin x sinxcosx cos2x2 2sin2x cos2x1 1(sin 2x cos2x)2 22 . 2cos □ —sin a cos 2 2—sin t " cos :-1i f 2 応1(2)由(1 )得 f (x)二— (sin 2x cos2x) —- sin(2 x )-2 2 2 4 2, r , 5 二 5 二二 .2由 x [,]得 2x [,],所以 sin(2x) [ ,1]12 2 4 12 442-二1 1、2 从而 f (x)sin(2x)[0, ].242220. (本小题满分12 分)如图,ABCD 与.MCD 都是边长为2的正三角形,平面 MCD _平 面 BCD , AB —平面 BCD ,AB =2、3.(1) 求直线AM 与平面BCD 所成的角的大小; (2) 求平面ACM 与平面BCD 所成的二面角的正弦值.【解析】本题主要考查了考查立体图形的空间感、线面角、二面角、空间 向量、二面角平面角的判断有关知识,同时也考查了空间想象能力和推理 能力解法一:(1)取CD 中点O,连OB, OM ,贝U OB 丄CD, OM 丄CD. 又平面MCD —平面BCD ,则MO 丄平面BCD ,所以MO // AB , A 、B 、O 、M 共面•延长AM 、BO 相交于E ,则/ AEB 就是AM 与平面BCD 所成的 角•EO MO 1OB=MO=3 , MO // AB,则,EO = OB 二 \ 3 ,EB AB 2所以 EB = 2、、. 3 二 AB ,故 AEB = 45:.(2) CE 是平面ACM 与平面BCD 的交线. 由(1)知,O 是BE 的中点,贝U BCED 是菱形.作BF 丄EC 于F ,连AF ,贝U AF 丄EC / AFB 就是二面角 A-EG B 的 平面角,设为-.因为/ BCE=120°,所以/ BCF=60° .=2 得 sin 2 一2sin : cos: sin 2 展亠 cos 2:2ta n t 1 tan 2 :21 - tan 二 32 =——1 tan :5CEBF = BC sin 66 = p 3,tan J - AB = 2 , si n r -兰BF 5所以,所求二面角的正弦值是2i55解法二:取CD中点O,连OB, OM ,则OB丄CD,则MO丄平面BCD .以O为原点,直线OC、BO、OM为x轴,y轴,直角坐标系如图•OM丄CD,又平面z轴,建立空间OB=OM=・3,则各点坐标分别为O (0, 0, 0),M (0 , 0 , 3 ), B (0 , - . 3 , 0), A (0 , -「3 , 2,3 ),(1)设直线AM与平面BCD所成的角为:.因AM = (0 , 3, - 3 ),平面BCD的法向量为聲=(0,0,1).则有sin m = cos( AM , nC(1,0,0),=' 3-,所以-45 ...6 2CM =(一1,0,、、3), CA =(一1, 一、、3,2、.3).:=(x, y, z),由 $ 一勢得h丄CA设平面ACM的法向量为MCD _ 平面BCD ,-x 、3z =-x-、.3y 2 .3z=0•解得x =、、3z , y=z ,取 = ({ 3 , 1 ,.1又平面BCD 的法向量为n = ( 0 , 0,1 则设所求二面角为二,则sin^ =21.(本小题满分12分)已知抛物线G : x2■ by =b2经过椭圆C2 :22 2笃•爲=1(a b 0)的两个焦点.a b (1)求椭圆C 2的离心率; ⑵设Q(3,b),又M,N 为G 与C 2不在y 轴上的两个交点,若 QMN 的重心在抛物线G 上,求G 和C2的方程•【解析】考查椭圆和抛物线的定义、基本量,通过交点三角形来确认方程。