=
+
3+1
=
4
.
13
第三环节
学科素养提升
用数学归纳法证明整除问题
典例
用数学归纳法证明当n为正奇数时,xn+yn能被x+y整除.
证明:(1)当n=1时,xn+yn=x+y,显然能被x+y整除,命题成立.
(2)假设当n=k(k∈N*,且k为奇数)时,命题成立,
即xk+yk能被x+y整除.
那么当n=k+2时,xk+2+yk+2=x2(xk+yk)+yk+2-x2yk=x2(xk+yk)-yk(x+y)(x-y).
时命题也成立”.
只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立,
这种证明方法称为数学归纳法(mathematical induction).
温馨提示能使多米诺骨牌全部倒下需要以下两个条件:
(1)第一块骨牌倒下;
(2)任意相邻的两块骨牌,前一块倒下一定导致后一块倒下.
【知识巩固】
又根据假设,xk+yk能被x+y整除,
所以x2(xk+yk)能被x+y整除.
又yk(x+y)(x-y)能被x+y整除,
所以x2(xk+yk)-yk(x+y)(x-y)能被x+y整除,
即当n=k+2时,命题成立.
由(1)(2)可知,当n为正奇数时,xn+yn能被x+y整除.
解题心得用数学归纳法证明整除问题时,第一从要证的n=k+1的式子中拼
2
(1 + )