地震数据处理 反褶积
- 格式:ppt
- 大小:12.26 MB
- 文档页数:142
地震盲源反褶积方法及其应用摘要:反褶积是地震信号处理中的重要环节之一。
本文采用的地震盲源反褶积方法将独立分量分析这一信号处理工具引入到地震信号处理中,可以实现地震子波和反射系数的同时估计,消除传统反褶积方法受假设条件的限制。
实际资料的处理结果表明,方法能较好地适应非最小相位系统,得到原始反射系数的最优估计,算法稳定,收敛速度快,是提高地震资料分辨率的有效手段。
关键词:反射系数非最小相位盲源反褶积独立分量分析1 引言反褶积技术是地震信号处理中提高分辨率的主要手段。
传统的反褶积方法对地震子波和反射系数序列做了一定的限制,即假设反射系数是白噪序列,地震子波是最小相位的,从而用地震记录的自相关代替地震子波的自相关来估计子波特性,进而进行子波压缩处理。
基于这些假设条件的反褶积方法在实际应用中取得了一定的效果,但是往往不符合地下介质的实际情况。
近几十年来,很多学者把注意力集中在反射系数序列的随机性上[1],反射系数序列的非高斯性使反射系数和地震子波在一定条件下具备独立分量分析褶积混合模型的特点,从而可以利用独立分量分析进行盲源反褶积处理[2]。
与传统反褶积方法相比,盲源反褶积方法弱化了对子波和反射系数的先验条件,克服了传统反褶积方法对最小相位子波和高斯白噪反射系数假设的依赖[3]。
2 地震盲源反褶积方法的基本理论和实现过程作为信号非高斯程度的度量,负熵是任意概率密度函数和具有同样方差的高斯型概率密度函数间的KL散度,负熵值越大表示信号距离高斯分布越远。
3 实际资料应用从图2到图4实际资料处理的对比看,盲源反褶积处理有效提高了地震记录的分辨率,微构造信息更加清晰,同时较好的保持了地震资料的振幅相对关系。
从剖面窗口部位的频谱分析看,相较于传统反褶积方法,盲反褶积能更有效的拓宽地震资料的频带。
4 结论从盲源反褶积方法的实际应用看,方法能够有效的拓宽地震资料的频带,突出细节部位的地质信息,在地震资料处理中有很好的应用前景。
第一章概述1.1 地震数据处理的目的是对地震采集数据做各种处理提高反射波数据的信噪比、分辨率和保真度以便于解释。
地震数据处理主要包括地震反褶积、叠加和偏移成像三大技术。
地震反褶积是通过压缩地震子波提高地震时间分辨率;叠加的目的是压制随机噪声提高地震信噪比;偏移成像包括射线偏移和波动方程偏移两大类,主要目的是实现反射界面的空间归位和恢复反射界面空间的波场特征、振幅变化和反射系数,提高地震空间分辨率和地震保真度。
1.2地震数据处理包括预处理、常规处理和特殊处理三个阶段。
常规处理包括反褶积、叠加和偏移三大技术。
预处理是把野外数据格式转换成适合计算机处理的格式并对数据做相应编辑和校正。
它包括数据解编、格式转换、编辑、几何扩散校正、建立野外观测系统和野外静校正等。
数据解编:把按时分道的数据记录方式变换成按道分时的数据记录方式。
道编辑:噪音道、带有瞬变噪音的道或单频信号道都要删除;极性反转的道要改正。
几何扩散校正:通过给数据加一增益恢复函数,以校正波前(球面)扩散对振幅的影响。
野外静校正:对路上资料,把所有炮点和接收点位置均校正到一个公共基准面上,以消除高程、低降速带和井深对旅行时的影响。
反褶积的基础是最佳维纳滤波。
特殊处理主要包括T-P变换、小波变换、三维叠前深度偏移、子波处理、属性分析和反演等。
T-P变换:将偏移距-时间域变换到射线参数-截距时间域,可用来压制面波和多次波。
小波变换:小波变换与多尺度分析可用于去噪、数据压缩、提高分辨率处理、信号增强和解波动方程等。
第二章数字滤波2.1 滤波器可以分为模拟滤波器和数字滤波器采样定理时域实参数的滤波器,其频率振幅谱是偶对称的,而相位谱是奇对称的。
一个滤波器如果是稳定的,这是指当输入信号为有限信号时,其输出也是有限信号。
最小相位,在时间域中也称最小能量延迟,在频率域则常称为最小相位滞后。
纯振幅滤波器也称零相位滤波器。
又称为理想滤波器。
2.2 理想滤波器常设计成四种类型:低通滤波器、带通滤波器、带陷滤波器和高通滤波器。
论反褶积的概念及类型论文提要地震勘探技术在油气田勘探开发中起着重要作用。
地震勘探包括地震采集、处理和解释三大部分。
地震采集是利用野外地震采集系统获取地震数据处理所需的反射波数据;地震数据处理的目的是对地震采集数据做各种处理提高反射波数据的信噪比、分辨率和保真度以便于解释;地震解释分为构造和岩性解释,目的是确定地震反射波数据的地质特征和意义。
地震数据处理依赖于地震采集数据的质量,处理结果直接影响解释的正确性和精确度。
探讨地震处理的基本原理和基本方法有助于全面利用采集数据,充分利用处理方法,为地震解释提供可靠的处理成果剖面。
正文地震数据处理主要包括地震反褶积、叠加和偏移成像三大技术。
地震反褶积是通过压缩地震子波提高地震时间分辨率;叠加的目的是压制随机噪声提高地震信噪比;偏移成像包括射线偏移和波动方程偏移两大类,主要目的是实现反射界面的空间归位和恢复反射界面空间的波场特征、振幅变化和反射系数,提高地震空间分辨率和地震保真度。
反褶积是地震资料最常用和最重要的处理方法之一。
反褶积可在叠前做也可在叠后做。
叠前反褶积的目的是把地震子波压缩成尖脉冲来改进时间分辨率。
叠后的预测反褶积主要是消除海上鸣震(交混回响)等多次波干扰,突出有效波,提高地震资料的信噪比。
在常规处理中反褶积的基础是最佳维纳滤波。
反褶积后要用某种类型的道均衡,以使数据达到通常的均方根振幅水平。
一、反褶积的概念(一)反褶积问题的提出实际地震记录由于受复杂子波的作用和干扰的影响,分辨能力较低,地质界面上各反射波互相叠加、彼此干涉,成为一复杂的形式,不能通过地质资料的解释,得到准确的地质界面。
反褶积的目的就是要通过某种数学方法,压缩地震子波,使地震记录分辨率提高,从而近似反射系数剖面,得到地下介质精确的反射结构。
假定地震记录不含干扰,何以得到x(t)=b(t)*ξ(t) (1-1)对应的频率域形式X(ω)=B(ω)×Ξ(ω)(1-2)令A(ω)=1/ B(ω)(1-3)则可得到Ξ(ω)= A(ω)×X(ω)(1-4)写成时间域形式ξ(t)=a(t)* x(t)(1-5)由x(t)=b(t)* ξ(t) 和ξ(t)=a(t)* x(t)可以看到:前者由子波和反射系数得到地震记录,是一褶积过程;后者则反过来,由一函数与地震记录褶积得到反射系数,这一过程可被称为反褶积。
地震子波处理的二步法反褶积方法研究
地震子波处理的二步法反褶积方法研究
针对玛湖斜坡区三块三维地震资料和赛汉塔拉凹陷二块三维地震资料连片处理中的特点,结合地质任务和处理目标要求,提出了地震数据连片处理中的地震子波处理的方法.该方法主要体现了两次反褶积,一次是采用地表一致性反褶积,将不同震源的频带拓宽到一个标准上;再一次采用相位校正反褶积,将不同震源的数据校正到相同相位上.为了保证提取的相位校正反褶积算子稳定,采用叠后地震道提取(主要考虑到叠后地震道信噪比高,算子稳定性强),然后将该算子应用到叠前地震道,进行相位校正.
作者:王西文胡自多田彦灿王红旗王述江肖明图马建华WANG Xi-wen HU Zi-duo TIAN Yan-can WANG Hong-qi WANG Shu-jiang Xiao Ming-tu Ma Jian-hua 作者单位:中国石油勘探开发研究院西北分院,兰州,730020 刊名:地球物理学进展ISTIC PKU英文刊名:PROGRESS IN GEOPHYSICS 年,卷(期):2006 21(4) 分类号:P631 关键词:连片处理子波处理地表一致性反褶积相位校正。
反褶积是地震资料最常用和最重要的处理方法之一,它可用于叠前,也可用于叠后。
反褶积的主要作用是压缩地震子波、提高地震资料的分辨率,从而提高地震资料的解释精度。
为油田精细勘探和开发服务。
另外,反褶积还可以消除短周期鸣震和其他多次波干扰,突出有效波,提高地震资料的信躁比。
反褶积的主要方法有:最小平方反褶积、预测反褶积、子波提取与子波整行反褶积、同态反褶积、地表一致性反褶积等。
做反褶积是为了得到一个反射系数序列,反射系数可以反映层的位置、层的反射能力及层之间差异。
总之,反褶积的目的是通过某种数学方法使地震纪录的分辨率提高从而近似放射系数剖面得到地下精确的反结构。
正文一、反褶积的概念(一)理想模型若地震波以脉冲形式激发经过地层时无吸收、透射和多次反射等因素的影响,而且整个过程不存在随即干扰,这样就可以得到理想的输出:x(t)=bδ(t)*ξ(t)=bξ(t) 这时得到的输出实际上就是反射系数序列,做反褶积就是为了得到它,为了讨论问题方便起见,我们先假定不含干扰波,由此我们可以从以上的式子中得到x(t)=b(t)*ξ(t) 设计反滤波因子a(t),在时间域上a(t)是b(t)的逆,即有:a(t)*x(t)=ξ(t) (二)实际地震纪录实际地震纪录x(t)由有效波s(t)和干扰波n(t)组成:x(t)=s(t)+n(t) 有效波是指一次反射波,对反射波地震看探而言,除一次反射波以外的一切波都是干扰波,一次反射波可以用以下褶积模型表示:s(t)=b(t)*ξ(t) b(t)称为地震子波;§(t)称为反射系数序列。
严格意义上讲,地震子波同震源子波o(t)概念还是有区别的:b(t)=o(t)*g(t)*τ(t)*d(t)*i(t) =a(t)*f g(t)*f d(t) 式中:g(t)-------地层响应τ(t)--------透射响应d(t)--------地面接收响应i(t)---------仪器响应() t f g = g(t)* τ(t) (大地滤波器) ()t f d = d(t)*i(t) (接收滤波器) 式中干扰波并不是单单的随机干扰,有非激发干扰()t n 0、背景噪声()t n 1及规则干扰N(t)叠加而成:n(t)= ()t n 0 +()t n 1+ N(t) 规则干扰分为两类:一类与地质结构有关,包括多次波、转换波、断面波、绕射波、伴随波、折射波、瑞利波、勒夫波和斯通利波等,这类波在特定的条件下可能转化为有效波;另一类与地质结构无关,如水中鸣震、气泡效应、地表及海面散射等。
第二章 反褶积将地震记录看成是反射系数序列与地震子波的褶积,反褶积就是要消除这种褶积过程,从地震记录得到反射系数序列。
一般说来,反褶积的目的是消除某种已知的或未知的褶积过程的运算。
反褶积也可能用来消除震源信号或者记录仪器的响应。
反褶积也可能是用另一种褶积过程代替原来的褶积过程。
反褶积是一种滤波。
与一般滤波的区别有两点:一是着眼点在改变子波,而不是衰减噪声。
二是方法上是根据需要达到的目标由地震资料自动推导滤波器,而不是通过试验选择滤波器。
反褶积是子波级的处理,是常规处理中最精细的环节。
一 子波与反褶积原始记录上的子波不管如何千变万化,必然是单边子波。
可控震源原始记录上的子波也是单边的,即扫描信号,经过相关以后才变成双边子波。
单边子波是物理可实现的,双边子波是非物理可实现的。
单边子波可以是最小相位子波、最大相位子波或混合相位子波。
判别方法可以有很多,对于下面的讨论来说,用Z 变换大概是最方便的。
将子波的各个样点值作为系数、样点序号作为Z 的幂次,写成Z 多项式,如果Z 多项式的根的模全部大于1,即根全部在单位圆外,就是最小相位子波;如果Z 多项式的根全部在单位圆内,就是最大相位子波;如果Z 多项式的根有一些在单位圆外,有一些在单位圆内,就是混合相位子波。
Z 多项式可以因式分解,每个因式有01=+bZ 形式,它代表有一个根Z 1-=。
(b 可以是实数,也可以是复数。
如是复数,必然共轭成对出现。
)可见当1<b 时,这个因式是最小相位的;当1>b 时,这个因式是最大相位的。
如果所有因式是最小相位的,子波就是最小相位的;如果所有因式是最大相位的,子波就是最大相位的;如果有一部分因式是最小相位的,有一部分因式是最大相位的,子波就是混合相位的。
因此,最小相位子波的尾点的绝对值必然小于其首点的绝对值,最大相位子波的尾点的绝对值必然大于其首点的绝对值,混合相位子波则可以是任何情形。
根据这个简单规则,至少在看到尾点的绝对值大于首点的绝对值的子波时,立刻就能判断它绝对不可能是最小相位子波。
151信噪比和反褶积属于地震资料中的重要组成部分,通过对相位子波进行分析可以发现,其主要是以时间域为重要基础,在引入最小平方反滤波基本原理以后,可以对反褶积的算子进行计算,通过对地震资料进行整体的反褶积,可以使得剖面信噪比得到有效降低,同时,还可以对反子波能量产生的影响进行合理的验证[1]。
为了充分提高地震资料的处理效果,需要明确信噪比与反褶积之间的关系,同时,还需要对白噪化问题进行着重研究,此时才能采取相关措施对地震资料的信噪比进行合理控制,并对白噪添加的策略进行合理的选择[2]。
本次研究将从信噪比的概念、反褶积的概念以及反褶积的作用等角度出发,对两者的概念进行分析,从反褶积对信噪比的影响、不同相位子波反褶积前后信噪比的变化以及反褶积中白噪化分析等角度出发,对地震资料处理中信噪比与反褶积的关系进行分析,为推动我国地震资料处理领域的进一步发展奠定基础。
1 地震资料处理中信噪比与反褶积的概念分析1.1 信噪比的概念信噪比又可以被称为讯噪比,其主要指的是电子设备在使用的过程中,信号与噪声之间的比例关系,其中的信号主要指的是由外部进入到电子设备的信号,电子设备可以对这些信号进行处理,在处理的过程中将会产生大量的噪声,事实上,对于大多数电子设备而言,其并不存在无规则的信号,同时,在原信号产生变化时,电子设备中的有效信号将会不出现变化。
信噪比的计量单位为dB,其主要的计算公式为101*g*(PS/PN),在计算公式中,PS表示信号的有效功率,PN表示噪声的有效功率,两者之间的关系也可以被看作为电压幅值的比例关系,一般情况下,在电子设备信噪比相对较大的前提下,有效信号中混杂的噪声量越小,此时有效信号的质量将会大幅提升,在进行地震勘探作业的过程中,需要将信噪比控制在70~100dB区间范围内。
1.2 反褶积的概念反褶积又可以被称为反滤波,同时,也可以将其称为解卷积,反褶积从本质上属于消除滤波作用的重要方法,在进行反褶积的过程中,主要是对基本的子波进行压缩处理,进而使得地震资料的垂向分辨率可以得到一定的提升,事实上,地震资料处理中信噪比与反褶积的关系分析马方正中石化石油物探技术研究院有限公司 江苏 南京 211103摘要:为了解地震资料处理中信噪比与反褶积的关系,本次研究首先对信噪比与反褶积的概念进行简单分析,在此基础上,开展地震资料处理中信噪比与反褶积的关系研究,为间接提高地震资料的处理质量奠定基础。
第二章反褶积反褶积是借助压缩基本地震子波来改善时间分辨率的一种处理过程。
为搞清这一过程要求综合研究正演问题,即必须首先研究记录的地震道的积木式分段单元。
地层是由不同类型岩性的岩层组成的,每种岩石类型都有地球物理学家所可利用的某种物理特性。
至于地震勘探,则根据波传播速度和岩层密度确定岩层。
密度与速度的乘积称之为地震波阻抗,地震资料分析期望的最终成果就是地震波阻抗剖面。
我们有在井中直接检测岩层速度和密度的方法,这种方法能向我们提供地震波阻抗与深度的关系。
在地面上沿测线记录到的地震反射波就是由于两地层之间的波阻抗差引起的。
记录到的反射记录可通过反射率与震源子波的褶积来模拟。
下面分别对褶积模型、各种反滤波进行介绍,并给出应用实例。
2.1 褶积模型我们从图1给出的一个实际声测井记录入手,该声测井曲线是层速度与深度的关系图。
实际的速度测量是以 2英尺的采样间隔在1000-5400英尺之间的深度段内完成的。
借助简单的斜坡把速度函数外延至地面。
该声测井记录显示出明显突变和强低频趋势特征,这两者构成了总的速度变化。
实际上我们通常用CMP道集作速度分析进行估算的就是这种低频趋势。
对声测井曲线可通过人工分段提取其速度趋势,其结果可列表如下:由声测井记录确定的层速度趋势表1地层序号层速度(ft/s)深度范围(ft)1 21000 1000—20002 19000 ※2000—22503 18750 2250—25004 12650 2500—37755 19650 3775—5400※实际上该层速度是逐渐减小的。
我们所做的就是形成一组恒定层速度的层组。
把测井曲线进行这种分段多少有点类似于地质家对假想的地下模型所做的分层。
地质家是根据岩性分层,而我们根据声测井曲线的分段性质提取的分层则是以速度差为依据的。
下面对表1中所确定的地层的岩性分类:地层序号岩性1 2 3 灰岩泥质灰岩(泥岩含量逐渐增加) 泥质灰岩4 5 泥岩白云岩在声测井曲线的低频趋势上附加有高频分量。
反褶积处理方法论文提要反褶积即反滤波是常用的地震资料处理方法。
反褶积的目的是由地震数据恢复反射系数。
反滤波的作用主要是压缩地震反射脉冲的长度,提高反射地震记录的分辨能力,并进一步估计地下反射界面的反射系数。
这不仅是常规地震资料处理所需要的,而且是对直接找油找气的亮点技术和岩性研究的地层地震学的地震资料处理尤为重要。
另外,反滤波还可以清除短周期鸣震和多次波等干扰波。
当前地震资料处理解释已经基本实现了数据化、自动化,我国各大解释公司、研究所、高等院校都已有了较为先进数字化处理软件,在处理数字化的地震数据时表现出了很好的速度性和准确性。
反褶积可分为确定性反褶积和估计性反褶积两种。
目前常用的反褶积有最小平方反褶积、预测反褶积、同态反褶积、地表一致性反褶积、最大熵反褶积、变模反褶积、Q反褶积等等;特殊的反褶积有Noah反褶积、最小信息反褶积等。
正文一、反褶积(一)研究目的和意义1、研究目的(1)弄清各种反褶积处理方法的原理。
(2)弄清反褶积处理模块的参数意义。
(3)掌握地震资料数字处理的基本流程及处理方法。
(4)完善反褶积方法,提高地震资料处理的分辨率,保持信噪比,振幅均匀化。
2、研究意义反褶积是地震资料数字处理流程中最关键的一环,也是提高地震勘探分辨率最有效的方法。
一个处理流程包括许多处理步骤。
而每一个处理步骤又要涉及到好几个处理模块。
一个处理流程通常由预处理、叠前处理和叠后处理三部分组成。
其中反褶积是最重要的一个部分,如图1所示。
反褶积的目的就是为了分离子波和反射系数序列。
子波就像无线电中的载波,反射系数序列就像无线电中的声波。
只有消除高频载波才能提取声波。
子波在地层中传播,携带着反射系数序列这种有用的地质信息返回地面,只有消除子波才能恢复反射系数序列的本来面目。
反射系数序列中有波阻抗随时间变化的信息,这就提供了速度和密度随时间变化的信息,随之就可得到地层、岩性及构造在地下中间分布的信息。
在有利条件下还可得到岩石孔隙率、渗透率、孔隙流体性质(油、气、水)乃至地层压力的信息。