光催化氧化反应器的研究进展
- 格式:pdf
- 大小:238.62 KB
- 文档页数:4
关于光催化氧化技术的综述研究光催化氧化技术被广泛应用于污染物治理领域。
该技术利用光催化剂将光能转化为化学反应能,使污染物在光催化剂和氧气的作用下发生氧化反应,降解成低毒、低浓度的物质。
该技术具有高效及无二次污染等特点,特别是在不易降解的有机物的处理上有着很好的应用。
光催化氧化技术的发展历程:1996年,光催化氧化技术被应用于废水处理。
1998年,日本出现了第一款商业化的光催化空气净化器。
2000年,国内开始研究光催化空气净化技术。
之后,国内外对光催化氧化技术的研究逐渐深入,应用领域也不断扩大。
目前,光催化氧化技术应用领域涉及悬浮颗粒、颗粒状物质、有机物、气体及水等领域的治理。
催化剂的选择:目前,常用的催化剂有TiO2、CdS、ZnO等。
在这些催化剂中,TiO2应用最广泛,其在紫外光照射下可以吸收大部分的紫外光谱。
CdS和ZnO的吸收较弱,但对可见光和紫外光的响应能力较强。
其中,CdS在光催化反应中表现出了很好的性能,被广泛应用于处理有机物和硫化物。
催化剂改性包括材料的掺杂和表面的改变等。
当掺杂物被引入催化剂时,掺杂物会与催化剂的晶格相互作用,从而改变催化剂的吸收和反应特性。
例如,Ag/TiO2催化剂的反应活性可提高4倍以上,掺杂Co的TiO2相对于纯TiO2催化剂反应活性提高了5-10倍。
光源选择:光催化氧化技术需要用到光源,目前在实验中使用的光源包括汞灯、钨灯、UV LED等。
其中,UV LED在光源选择中应用最广泛,其稳定性高,寿命长,同时还可以针对红外波段进行镀膜实现波长选择,具有很大的发展前景。
过程控制:光催化氧化技术需要对处理过程进行控制。
其中的光源强度、反应时间、催化剂浓度、溶液pH等因素都会影响反应效果。
此外,反应器的照射方式、反应器的形状等因素也会影响反应效果。
总体而言,光催化氧化技术在污染治理领域拥有广阔的应用前景。
虽然在研究过程中仍有一些问题需要解决,如光催化剂的选择、改性、光源选择、过程控制等,但通过不断的探索和创新,我们相信这一技术将会在未来得到进一步的发展。
光催化氧化催化剂载体的研究进展孙 俭1,郭永成2,肖雅婷1,吕振波1,李 剑1,杨丽娜1(1. 辽宁石油化工大学 石油化工学院,辽宁 抚顺 113001;2. 中国石油 抚顺石化分公司洗化厂,辽宁 抚顺 113001)[摘要]综述了近年来负载型光催化氧化催化剂载体的研究进展,并对不同类型载体(包括硅基、碳基、金属及金属骨架类载体等)的特性进行了分析总结。
硅胶、活性炭、金属氧化物等常见载体,经提纯、改性后,负载的催化剂均表现出较好的光催化氧化性能。
介孔分子筛类载体凭借高比表面积以及丰富独特的孔道结构成为研究热点;金属有机骨架材料作为一种新兴材料,在光催化氧化方面具有极大潜力。
[关键词] 光催化氧化;催化剂;脱硫;载体[文章编号]1000-8144(2021)01-0088-06 [中图分类号]TQ 426 [文献标志码]AResearch progress of photocatalytic oxidation catalyst carrierSun Jian 1,Guo Yongcheng 2,Xiao Yating 1,Lü Zhenbo 1,Li Jian 1,Yang Lina 1(1. Institute of Petroleum and Chemical Engineering ,Liaoning Shihua University ,Liaoning Fushun 113001,China ;2. Washing Plant of PetroChina Fushun Petrochemical Company ,Liaoning Fushun 113001,China )[Abstract ]Photocatalysis technology has become a research hotspot of many scholars. The research progress of supported photocatalytic oxidation catalyst carriers in recent years were reviewed ,and the advantages and disadvantages of different types of carriers including silicon-based ,carbon-based ,metal and metal frameworks and other carriers ,were analyzed and summarized. Common carriers such as silica gel ,attapulgite ,activated carbon ,etc.,after certain purification and modification ,the supported catalysts all show good photocatalytic oxidation performance. The mesoporous molecular sieve carrier has become a research focus due to its high specific surface area and rich and unique pore structure. As an emerging material ,metal organic framework materials have great potential in photocatalytic oxidation.[Keywords ]photocatalytic oxidation ;catalyst ;desulfurization ;carrierDOI :10.3969/j.issn.1000-8144.2021.01.015[收稿日期]2020-08-06;[修改稿日期]2020-10-09。
光催化剂在环保领域的应用摘要:光催化是一种新型的环境治理方法。
文章首先分析了光催化的反应机理,对光催化在水处理、气体处理以及其他环保方面的研究和应用进行了综述。
最后,指出了当前阻碍这一技术发展的难题。
Application of Photocatalyst to Contaminants DegradationAbstract: The photocatalysis was a new technology of environment treatment. The principle and mechanism of photocatalysis reaction was analyzed, firstly. Then the application of thistechnology was discussed in waste water, air and others area. At last, the mainproblems of photocatalysis were indicated at present.1 引言自1972年Fujishima和Honda[1]发现了TiO2作为催化剂,在太阳光的作用下可以分解水制得氢气以来,光催化反应开始得到了普遍的关注。
经多年深入的研究,逐步掌握了该反应的机理[2-3]。
在此基础上,研究者发现光催化反应可以有效的分解有机物、杀灭细菌和消除异味,并且光催化技术拥有多方面的优势,如反应温度是室温,光催化剂自身无毒、无害、无腐蚀性,也不会有二次污染等。
因此和传统的高温、常规催化、吸附等技术相比,光催化在环保领域的应用有很多明显的优势,近些年来取得了长足的发展[4-7]。
本文就这一技术在环保领域的应用做一个综合评述,以期为相关的研究提供参考。
2 反应机理光催化是以n型半导体的能带理论为基础,以n型半导体作催化剂的一种光敏氧化法。
半导体粒子具有能带结构,一般由填满电子的低能价带(V alence Band,VB)和空的高能导带(Conduction Band,CB)构成,价带和导带之间存在一个区域为禁带,区域的大小通常称为禁带宽度(Eg)。
㊀2019年4月J o u r n a l o fG r e e nS c i e n c e a n dT e c h n o l o g y第8期收稿日期:2019G03G18作者简介:余㊀臻(1987 ),女,硕士,助教,研究方向为水污染控制.光催化氧化技术在水处理中的应用及研究进展余臻(四川建筑职业技术学院,四川德阳618000)摘要:指出了光催化氧化技术是一种新型的水处理技术,与传统水处理技术相比在难降解有机物㊁微污染有机物㊁饮用水等处理中有很大优势,介绍了光催化氧化技术的作用机理㊁常用的催化剂T i O 2特点及其一般的改性方法,探讨了光催化氧化技术在废水和饮用水中的应用及研究进展.关键词:光催化氧化;T i O 2;水处理中图分类号:X 703㊀㊀㊀㊀㊀㊀文献标识码:A㊀文章编号:1674G9944(2019)8G0062G021㊀引言光催化氧化技术是一种新型的水处理技术.光催化氧化技术具有反应条件温和(一般在常规条件下即可实现)㊁能耗低(可利用太阳能作为光源)㊁操作简便等优点.与传统的水处理工艺相比,在难降解有机物㊁微污染有机物㊁饮用水等处理中有很大优势2㊀光催化氧化机理光催化氧化机理目前研究并不完善,一般认为光催化氧化法是以紫外光㊁模拟太阳光或者自然光等光源,以半导体材料T i O 2㊁Z n O ㊁WO 3等作为催化剂,一般认为光催化反应的原理可以用半导体的能带理论来解释,这些半导体粒子的能带结构一般由填满电子的价带和空的高能导带构成,价带和导带直接存在禁带,当受到等于或大于禁带宽度的光照射到半导体时,价带表面的电子被激发跃迁到导带上形成光生电子,而在价带上就会产生光生空穴,这样就在半导体的内部形成电子空穴对,在电场作用下或者扩散的方式运动,会使得电子空穴对迁移到粒子的表面.空穴因具有极强的氧化性,可将其表面吸附的有机物或者催化剂或OH-及H 2O 分子氧化成羟基自由基 OH ,OH 生成会立即与有机化合物发生反应,反应时消耗 OH 而有机物被氧化而矿化,随之被分解,应用在水体中即可使水得到净化.3㊀T i O 2光催化剂的特点T i O 2是一种常见的催化剂,在众多的光催化剂中,是目前认为的最有效的半导体材料有锐钛矿型㊁金红石型和板钛矿型3种,一般同样条件下锐钛矿型催化活性是最好的.其化学稳定性高,氧化还原性强,且耐酸碱和光化学腐蚀,对太阳光紫外光部分能加以利用,便宜而且无毒.由于以上特点在光催化反应中一般多用作为T i O 2催化剂,一般能够达到很好的效果.但是由于T i O 2能够吸收的波长范围较窄,光吸收阈值小于400n m ,对太阳光的利用率不算高,所以针对于此对T i O 2的改性进行了一些研究,主要有:①通过使不同禁带宽度的半导体材料的复合提高电荷的分散效果,从而扩大吸收波长,②掺杂金属离子,用来捕获导带中的电子.4㊀光催化氧化技术在废水中的应用4.1㊀焦化废水焦化废水是煤高温干馏㊁煤气净化㊁副产品回收与精制过程中产生的工业有机废水,组分复杂㊁污染物浓度高㊁毒性大等是其主要特点,是一种难降解的工业废水.肖俊霞等[1],研究发现以T i O 2为氧化剂光催化氧化降解焦化废水外排水,T i O 2投加量4g/L ,不改变溶液p H 值的条件下,反应3h ,T O C 的去除率可达53.40%,有机物种类由66种下降至23种.4.2㊀农药废水农药废水一般成分复杂㊁难降解㊁且含有大量的无机盐,一般农药废水的水质水量变化大.蒋裕平等[2]研究发现,通过对水体中的T O C ㊁B O D 5㊁石油类物质的含量进行光催化氧化降解反应发现,控制农药废水p H 值为9,铁碳比为1ʒ1,催化剂T i O 2的投加量为1g /L 时,处理农药废水效果最好.施帆君等[3]研究发现,用T i O 2光催化氧化法处理农药废水,以C O D C r 的去除率处理效果作为研究对象,发现在p H 值为9,反应时间120m i n ,T i O 2投加量为2.64g /L 时达到最好处理效果.4.3㊀染料废水印染废水是印染工业生产过程中染料的流失占全部染料总产量的约15%和各工序的废水混合而成,具有排放量大㊁有机物含量高㊁水质变化大等特点,是工业废水中的主要来源之一.吴兆美等[4],用掺硼氧化银为氧化剂在可见光下,光催化氧化降解甲基橙及印染废水混合物,发现可在120s 内实现甲基橙完全降解,p H 值为5~10,印染废水混合物在25m i n 内可完全降解.王智[5]用光催化氧化法用含有柠檬酸铁的水溶液降解结晶紫,可以利用太阳能光解过程使得C O D 去除率达到85%以上的.孙广垠等[6]在p H 值为6.0,光照时间120m i n ,H 2O 2投加量未3.0mm o l /L ,以T i O 2为催化剂投26㊀余㊀臻:光催化氧化技术在水处理中的应用及研究进展环境与安全加量0.5g/L的条件下,采用光催化氧化降解印染废水发现C O D和色度去除率分别为76.8%和89%.4.4㊀造纸废水造纸废水是一种含有大量的纤维素㊁木质素㊁松香酸等难降解有机物,可生化性差,污染物浓度高,C O D 含量高,排放量大的一种废水.韩沛等[7]研究发现,用溶胶-凝胶法制备纳米T i O2为催化剂用量10g/L,光照反应时间1h,造纸废水的C O D和色度的去除率分别在70%和75%以上,深度处理麦草造纸废水,可达标排放.高治国等[8]研究发现,用经过双元素(F e和C e)掺杂改性的催化剂T i O2,对光的利用率高于未掺杂的催化剂,在用其处理造纸废水经过180m i n,脱色率和C O D C r的去除率分别在90%和83%以上.5㊀光催化氧化技术在饮用水处理中的应用5.1㊀微量有机污染物饮用水的微量有机污染物有很多种,一般存在有动植物在自然循环中分解所产生的物质如腐殖质等,水处理中产生的消毒副产物如三卤甲烷等,还有工业废水和农业排水所含的一些物质.吴伟等[9]使用市售P25(粒径21n m,比表面积50m2/g)作为光催化剂浓度为0.5g/L,在p H值为6.25,腐殖酸的初始浓度为20m g/L,光照时间180m i n的条件下,腐殖酸几乎完全脱色, T O C去除率高达97.9%,而消毒副产物C H3C l3从初始浓度326.2μg/L下降到10.4μg/L,去除率达到95%以上.杨敏[10]研究发现,利用溶胶凝胶法合成纳米T i O2/S e复合催化剂,用其进行光催化氧化反应,在p H 值为6.5,催化剂投加量为1.5g/L,初始浓度为10m g/ L的条件下,用20w紫外灯光照反应3h,腐殖酸的去除率最佳达到78.8%.5.2㊀藻毒素水体中由于水体富营养化带来了许多藻类,藻类爆发性的繁殖会带来藻毒素的污染,而藻毒素本身就目前研究而言是一种潜在的致癌物质.姚杭永等[11]在研究中发现,M C L R溶液浓度为100μg/L,加入负载一次的催化剂3g/L,反应15m i n M C L R的去除率为94%,20m i n后可被完全去除.杨静等[12]研究发现,用可见光照射用溶胶凝胶法合成的氮掺杂的催化剂N-T i O2降解M C-L R,在反应条件下,反应14hM C-L R的去除率可达100%,20h矿化度可达59%.郭燕飞等[13]以合成碳氮共掺杂的二氧化钛(C,N-T i O2)为催化剂,反应10h后对叶绿素a的去除率达到83%,反应6h对M C -L R的去除率可达89.9%.5.3㊀饮用水中的细菌在饮用水处理中,如果含有水微生物可能会导致传染病等的出现,用光催化氧化可以破坏细菌的细胞壁㊁破坏遗传物质.与传统氯气消毒技术相比,传统消毒只能消除30%~90%的水体微生物,且会造成二次污染,而光催化氧化不仅可以杀灭细菌㊁病毒还可以将其分解,避免水微生物死亡后释放出有毒成分.肖娜等[14]研究发现在太阳光下,用杂化的T i O2-N薄膜处理饮用水中的大肠杆菌其灭菌率可达57.7%,在杂化的T i O2-N薄膜上掺杂A g,可使得大肠杆菌的灭菌率达到90%以上.A b e l e d o等[15]研究发现用T i O2光催化剂和H2O2在模拟太阳光照的情况下,发现水中的隐孢子虫卵囊的生命特征大幅下降.6㊀展望光催化氧化技术是一种高效㊁节能㊁无二次污染的新型的水处理技术,但目前对其机理的研究并不完善还有待进一步的研究证明.在最常用的催化剂T i O2的应用中发现,为了尽可能的利用太阳光,需扩大其波长的吸收范围,需要进一步对T i O2的改性寻找更经济㊁合成更便利㊁利用率越高㊁降解效果越好的改性催化剂.参考文献:[1]肖俊霞,吴贤格.焦化废水外排水的T i O2光催化氧化深度处理及有机物组分分析[J].环境科学研究,2009,22(9):1049~1055.[2]蒋裕平,陈少宏.铁碳法和光催化氧化法处理富含农药农业废水的效果[J].江苏农业科学,2013,41(5):363~365.[3]施帆君,崔康平,杨㊀阳,等.F e n t o n试剂与T i O2光催化氧化农药废水研究[J].人民黄河,2010,32(11):62~64.[4]吴兆美,曾㊀娅,王晓燕,等.掺硼氧化银催化剂制备及降解模拟印染废水[J].环境工程学报,2016,10(6):2847~2854.[5]王㊀智.光催化氧化法降解印染废水中结晶紫的实验研究[J].工业安全与环保,2014,40(8):70~71.[6]孙广垠,宋吉娜,张㊀娟.T i O2光催化氧化法深度处理印染废水的研究[J].工业水处理,2009,29(8):25~27.[7]韩㊀沛,龚文琪,杜金逵.纳米T i O2光催化氧化处理造纸废水的试验研究[J].武汉理工大学学报,2009,31(12):81~83.[8]高治国,陈文通,郑琳琳.光催化氧化处理造纸废水的试验研究[J].辽宁化工,2011,40(3):227~229.[9]吴㊀伟,H uJ i a n g y o n g,赵雅萍.T i O2光催化降解腐殖酸的实验研究[J].华东师范大学学报(自然科学版),2011(2):119~125.[10]杨㊀敏.纳米T i O2/S e复合催化剂光催化氧化处理水中腐殖酸的研究[D].苏州:苏州科技学院,2010.[11]姚永杭,夏良亮,闵㊀浩.活性炭负载T i O2光催化降解微囊藻毒素-L R[J].环保科技,2011,17(2):5~9.[12]杨㊀静,陈登霞,邓安平,等.掺氮二氧化钛可见光照射降解微囊藻毒素-L R[J].中国科学,2010,40(11):1688~1696.[13]郭燕飞,吴苏舒,胡晓东,等.可见光响应的碳氮共掺杂T i O2抑杀蓝藻和降解微囊藻毒素(M C-L R)的研究[J].环境工程,2018,36(6).[14]肖㊀娜,徐明芳,虞英杰,等.可见光响应氮杂化T i O2-N薄膜对水源水体的杀菌作用[J].安徽农业科学,2010,38(3):6781~6784.[15]A b e l e d oL MJ,A r e sE,G o m e zC H.E v a l u a t i o no f s o l a r p h o t oGc a t a l y s i s u s i n g T i O2s l u r r y i n t h e i n a c t i v a t i o n o f C r y p t o s p o r i d i u mp a r v u mo o c y s t s i nw a t e r[J].E n v i r o n.S c i.T e c h n o l.,2013(47):6463~6470.36。
gC3N4光催化性能的研究进展一、本文概述1、介绍gC3N4的基本性质和应用背景。
石墨相氮化碳(gC3N4)是一种新兴的二维纳米材料,因其独特的电子结构和物理化学性质,在光催化领域引起了广泛关注。
gC3N4具有类似于石墨烯的层状结构,但其组成元素为碳和氮,而非石墨烯中的纯碳。
这种结构赋予了gC3N4良好的化学稳定性和独特的光学特性。
在光照条件下,gC3N4能够有效吸收光能并转化为化学能,从而驱动光催化反应的发生。
近年来,随着环境污染问题的日益严重和能源需求的不断增长,光催化技术作为一种高效、环保的能源转换和污染物治理手段,受到了广泛研究。
gC3N4作为一种性能优异的光催化剂,在光解水产氢、有机物降解、二氧化碳还原等方面展现出巨大的应用潜力。
gC3N4还具有原料来源广泛、制备工艺简单、成本低廉等优点,使得其在光催化领域的应用前景十分广阔。
因此,对gC3N4光催化性能的研究不仅有助于推动光催化技术的发展,也为解决当前的环境和能源问题提供了新的思路和方法。
本文将对gC3N4光催化性能的研究进展进行综述,以期为相关领域的研究提供参考和借鉴。
2、阐述光催化技术的重要性和gC3N4在光催化领域的研究意义。
光催化技术,作为一种高效、环保的能源转换方式,近年来受到了广泛的关注和研究。
该技术利用光能激发催化剂产生电子-空穴对,进而驱动氧化还原反应的发生,实现光能向化学能的转换。
这种技术不仅可以在太阳能利用、环境治理、有机物合成等领域发挥重要作用,而且对于推动可持续发展和绿色化学的发展具有重要意义。
在众多光催化剂中,石墨相氮化碳(gC3N4)因其独特的结构和性质,成为了光催化领域的研究热点。
gC3N4是一种非金属半导体材料,具有合适的禁带宽度、良好的化学稳定性和丰富的表面活性位点,这些性质使得gC3N4在光催化领域具有广阔的应用前景。
gC3N4的制备原料丰富、成本低廉,且制备方法多样,这为其在实际应用中的推广提供了有力支持。