热回收型风冷式热泵冷热水机组用于空调及全年生活热水供应
- 格式:doc
- 大小:42.00 KB
- 文档页数:3
某浴场中心项目风冷模块主机夏季热回收方案与传统燃气锅炉,空气源热泵经济性对比,热回收节能效果限制,投资回报周期短,方案最优。
一系统方案1、项目概况本项目位于平湖市,集洗浴,餐饮,休闲娱乐为一体的综合性洗浴中心。
建筑面积约5000m2,地上4层,整个洗浴中心需要中央空调和全年24小时生活热水供应。
2、设计概况本系夏季免费生活热水方案的热水源为热回收型风冷模块式冷水机组。
①制热原理:热回收式冷水机组在制冷循环时,将制冷工质冷凝放热过程放出的热量利用起来制备热水,不但可以减少冷凝热对环境造成废热排放,而起还大大的节省了能源。
空调带热回收原理如图所示,空调带热回收的原理与普通空调制冷循环原理相同,只是在冷凝器的进口前多加入一个热水换热器,;冷水直接进入热水器入水口,通过逆流循环吸收压缩机排除的高温高压制冷剂释放出的热量,这是不但达到了加热冷水的目的同时也提高冷凝系统的效率,加热后热水(50-55℃)直接进入保温水箱一备生活热水之用。
由于冷凝热在空调制冷运行时视为废热,要求采取措施排到室外空气中,因此,该热回收空调技术在节能方面的效果相当显著。
①系统方案设计中央空调采用130模块机4台和65台风冷模块机组(带热回收)联合运行,夏季供冷的同时热水收的到免费的生活热水。
(设备性能参数见附录1)空调末端采用个卧式风机盘管,气流组织形式为风机盘管侧送下回风的方式。
水系统为二管制,水管管路为同程式布置,管材采用镀锌钢管,冷凝水管采用PVC管,冷冻水管和冷凝水管均采用B1级橡塑保温材料保温。
在需要空调的季节风冷模块机组开启制冷或制热模式,向房间供冷或供热。
热水方案考虑经济,节能,环保等要求,采用热回收式风冷模块空调机组+空气源热泵热水机供应热水,解决全天候供应水温在50-55℃的热水,根据热水量计算,需要4台风冷模块机组带热回收模式。
空调制冷运行,利用空调热回收制热水,大量节省夏季热水制取费用,满足热回收和集中热水供应需求,热水系统设计两个不到锈钢保温水箱。
风冷式冷热水机组是以空气作为冷(热)源,以水作为传热介质的中央空调机组。
传统的风冷热泵机组在制冷时将大量冷凝热作为废热排放到大气中,造成较大的能源浪费,并且存在对周围环境的热污染。
从节能角度来看,建筑物本身需要大量的生活热水供应,如果能将冷凝热全部或部分回收来加热生活热水,不但可以减少冷凝热对环境的污染,而且还可以节省能源。
热回收机组就是利用换热器来实现这一功能。
由于风冷热回收机组冷凝温度高,可以得到较高温度的回收水温,可广泛应用于:医院、酒店、宾馆、工厂、洗浴中心、会所等。
作为世界上最早设计和生产大型风冷热泵机组的专业空调公司,麦克维尔一直致力于技术的改进和创新,创造了风冷热泵机组技术发展史上的诸多第一。
MHS 便是针对中国市场需求,推出的新型风冷热泵机组。
麦克维尔将领先全球的单螺杆压缩机技术应用于风冷热泵机组,并融合先进的控制技术,采用高效制冷剂,使之成为世界上同类产品中最高效、最节能、运行最安静的环保型空调机组之一。
同时,麦克维尔建有大型1600kW全性能试验室,确保每台机组的质量和性能。
低噪声、低振动麦克维尔热回收机组采用整体式机组设计,结构紧凑,机座均衡负担压缩机、风侧换热器、干式壳管式水侧换热器、板式热回收侧换热器、油分离器及连接管的重量,出厂外配弹簧减振器,消除振动和噪声。
专利新型单螺杆压缩机, 运动部件少, 载荷平衡, 振动小 ;风侧换热器风扇采用翼状镰形高效螺旋式风机,直接驱动,噪声小; MCS/MHS100.1F~MCS/MHS380.2F 机组标准配置压缩机隔声箱, 有效降低压缩机运行噪声。
防腐防锈、适应性强麦克维尔热回收机组外壳采用优质钢板并经静电粉末防腐喷涂,有效防止锈蚀,可适应各种室外恶劣条件;机组能适应宽广的气温范围。
机组直接与大气进行热交换,没有环境污染,满足环保要求。
安装方便、操作简单麦克维尔热回收机组只需要用户通电供水便可运行使用。
不需要重建机房或购置冷却塔等其它辅助设备。
EKAC系列环保制冷剂型(热回收)模块式风冷冷水(热泵)机组佚名
【期刊名称】《上海节能》
【年(卷),期】2022()2
【摘要】1基本信息产品名称:EKAC系列环保制冷剂型(热回收)模块式风冷冷水(热泵)机组规格型号:EKAC250BR1LH、EKAC500BR1LH、EKAC230BR1SR、EKAC460BR1SR、EKAC230BR1、EKAC460BR1产品类型:制冷与空调类生产企业:广东欧科空调制冷有限公司。
2企业介绍意大利EUROKLIMAT集团成立于1963年,广东欧科空调制冷有限公司(简称EK)是中国航天科工集团(前身是国防部第五研究院)。
【总页数】2页(P243-244)
【正文语种】中文
【中图分类】F42
【相关文献】
1.麦克维尔隆重推出大型风冷单螺杆式冷水/热泵热回收机组
2.出水温度对采用电子膨胀阀的风冷热泵冷(热)水模块机组制冷性能的影响
3.麦克维尔五月连推新品--MAC-XE系列风冷模块机组及模块式空气源热泵热水机MHA系列
4.约克YCAE 模块式风冷冷水/空气源热泵机组在水新城售楼部中的应用
5.约克YCAE模块式风冷冷水/空气源热泵机组在新家园售楼部中的应用
因版权原因,仅展示原文概要,查看原文内容请购买。
附件关于冷水机组热回收技术的说明1、热回收的原理及介绍背景资料在酒店、宾馆、医院、浴足、桑拿等场所,既需要热水供应,又要制冷空调。
一方面要用燃煤/燃气锅炉生产热水,另一方面要用冷却塔(或地下水、风冷风机等形式)把空调在制冷过程中产生的冷凝热散失到大气中,产生污染的同时浪费能源。
热水与制冷空调两套方案相互独立,致使制冷空调的余热得不到充分利用,甚是可惜!空调压缩机产生的冷凝热量等于空调系统从制冷空间吸收总热量加上压缩机的发热量,约为制冷量的115%以上。
目前绝大部分的空调设计,这部分的热量不但没有利用,还要消耗水泵、冷却塔、风冷风机等动力电能,将这部分热量排到大气环境(或地下环境)中去。
如果把这一部分热量利用起来,变废为宝,免费获取生活热水,实现空调系统的单向能耗,双向输出,在制冷的同时又产生热水,岂不美哉。
冷水机组热回收技术介绍常规制冷空调用压缩机的出口处的制冷剂温度在65℃~95℃之间,冷凝管的表面热的烫手,空调热回收技术就是利用这部分的冷凝废热资源,来产生热水的。
1.2.1部分热回收如下图:蒋海洋31部分热回收设计原理制冷剂温度变化曲线冷却水温度变化曲线温度时间热水温度变化曲线排气过热段冷凝器冷凝段40度65度30度35度30度50度热回收量高达25%热回收器冷凝器部分热回收(100%+30%的换热铜管)双管束换热器:制冷剂侧共用一个回路,水侧上下分层。
蒸发热回收装冷凝压缩膨胀出水进水出水进水水水夏季:提供用户免费的生活热水.2全部热回收全热回收(100%+100%的换热铜管) 双管束冷凝器:制冷剂侧共用一个回路,水侧左右分层。
2、热回收量热回收温度一般不高于60℃ 对于水冷螺杆机组的部分热回收量① R22机组: 60度热水,回收量最大10%; 55度热水,回收量最大15%;50度热水,回收量最大30%;45度热水,回收量最30℃45℃制冷剂℃℃冷却水大50% 。
②R134a机组:60度热水,回收量最大8%;55度热水,回收量最大14%;50度热水,回收量最大29%;45度热水,回收量最大50%。
风冷热泵热回收的原理-概述说明以及解释1.引言1.1 概述风冷热泵热回收技术是一种有效利用余热、节约能源的环保技术。
随着全球能源危机和环境污染问题的日益严重,热回收技术成为了节能减排的重要途径之一。
风冷热泵热回收技术作为一种新兴的能源综合利用技术,日益受到人们的关注和重视。
风冷热泵是一种集供暖、制冷、热水供应等多功能于一体的设备,它通过从周围环境空气中吸收或排放热量来实现供热和制冷的效果。
而风冷热泵热回收技术则在此基础上进一步提高了能源的利用效率。
通过在风冷热泵系统中设置热交换装置,可以将从室外环境中吸收或排放的热量再利用起来,从而实现热能的回收和再利用。
热回收的原理是通过将从冷却过程中排放的低温热量传递给需要加热的介质,以实现能量的再利用。
对于风冷热泵系统来说,通过热回收技术可以将系统在制冷过程中产生的废热用于加热,提高了能源的利用效率,并减少了环境污染。
随着热回收技术的应用,风冷热泵不仅可以满足供暖和制冷的需求,还能够为热水供应提供可靠的能源支持。
风冷热泵热回收技术具有很高的经济效益和环境效益。
一方面,通过回收废热,可以节约能源,降低运行成本,提高能源利用效率。
另一方面,风冷热泵热回收技术也减少了燃煤、燃气等传统能源的使用,减少了对环境的污染和压力。
因此,风冷热泵热回收技术在建筑能源节约和环境保护方面具有重要意义。
本文将深入探讨风冷热泵热回收技术的基本原理、意义和作用。
希望通过对该技术的研究和分析,能够为人们更好地了解和应用风冷热泵热回收技术提供参考和指导。
同时,也为未来的研究和发展提供了一些思路和方向。
通过不断创新和改进,风冷热泵热回收技术将在能源领域发挥更大的作用,为建筑能源利用和环境保护做出更大的贡献。
1.2文章结构文章结构部分的内容可以如下所示:1.2 文章结构本文将围绕风冷热泵热回收的原理展开详细的介绍和阐述。
文章将分为三个主要部分,包括引言、正文和结论。
在引言部分,我们将对风冷热泵热回收的原理进行一个概述,介绍它的基本概念和工作原理。
热回收风冷模块和空气源热泵热水机的综合应用方案1.工程概况本工程为湖南某综合大楼的中央空调,属于舒适性空调。
空调使用建筑面积约为3600m2。
层数为9层,具体各层功能是:一层为接待大厅和商业店铺,二、三层为娱乐、餐饮场所,四、五层为办公,六至九层均为客房。
同时本工程需要24小时有生活热水供应,热水用量为15m3/天。
根据整幢大楼的实际应用情况及功能划分,以及对空调和热水的要求,考虑经济、节能、环保等方面,在工程设计中采用热回收风冷模块空调机组和空气源热泵热水机组综合应用方案。
在夏季满足室内空调要求的同时,充分利用空调热回收获得免费的热水;在冬季或过渡季节采暖或空调不用时,采用空气源热泵热水机组提供生活热水,从而保证了在任何气候条件下全天候均实现制冷、制热和制热水三种功能,满足业主空调和热水的要求。
2.系统原理热回收系统是利用空调系统排到环境的冷凝热,来加热将空调系统中产生的低品位热量有效地利用起来,达到了节约能源的目的。
空调带热回收的原理如图(图1)所示,在冷凝器的进口前多加入一个热水换热器,冷水直接进入热水换热器,吸收压缩机排出的高温高压的制冷剂释放出来的热量,这时冷水被加热,加热后的热水被送进保温水箱储存以备生活热水之用。
由于冷凝热在空调制冷运行时是视为废热,要采取措施排到室外空气中的,因此,热回收空调技术在节能方面的效果是相当显著的,在夏季制冷时所产生的热水是完全免费的。
空气源热泵热水机是专门制热水的设备,与目前市场上用电、燃气、燃油等热水器相比,具有安全、节能、寿命长、不排放毒气等诸多优点。
它是利用热泵的工作原理,从低温空气中吸收热量,然后转移到低温水中加热热水。
其工作原理是,当所要加热的热水温度达到所设定的温度(控制终温)时,机组停止运行,反之,当热水温度降到所设定热水温度时,压缩机启动运行,将热水箱中的热水温度提高,使其温度恒定在一定的范围。
3.综合应用的优势3.1.使用热回收系统,用户省去了热水加热系统,从而也简化了系统的运行管理。
酒店空调和热水热回收方案实例分析计说明一、设计内容及设计依据:(一)设计内容及范围1、工程概况:建筑面积:910㎡,空调面积:660 ㎡。
2、设计内容:一、二、十层中央空调和客房中央热水。
(二)设计依据(1)《采暖通风与空气调节设计规范》GB50019-2003(2)《高层民用建筑设计防火规范》2001年版(GB50045-95)(3)《采暖通风与空调设计手册》GBJ16-87(4)《建筑设计防火规范》2001年版(GBJ16-97)(5)《建筑给水排水设计规范》GB50015—2003二、室内、外设计参数(一)室外空调设计参数:夏季空调计算干球温度:33.5 ℃夏季空调计算湿球温度:27.7 ℃夏季空调计算平均风速: 1.8 m/s冬季空调计算干球温度: 2.4℃冬季空调计算相对湿度: 70 %(二)室内空调设计参数:(三)卫生热水计算参数:温度:55℃;日平均用水量: 10 T /d;。
三、空调和热水方案的选择:根据建筑物使用上的特点,我司建议贵司采用如下空调和热水方案:空调主机采用风冷式冷热水机组+带热回收的风冷式冷热水机组作为供应酒店的冷暖空调和热水供应。
运行方式为:夏季机组制冷运行,热回收机组在制冷的同时为酒店提供免费的全部热水供应;冬季风冷式冷热水机组部分制热运行,带热回收机组专为客房供应热水。
客房室内机采用风机盘管,不接风管、侧送风下回风;四、方案的优越性:(一)、采用热回收风冷式冷热水机组可省掉锅炉设备的投入,即省掉设备的投资又节省了锅炉房的建筑面积;(二)、在夏季可节约全部的卫生热水的加热费用,即使是在冬季运行费用也只是锅炉的1/3,每年可为用户节省非常可观的锅炉运行费用;(三)、机组可安装在屋面、平台、地面等,不用占据建筑面积,可为用户节省可观的建筑面积;(四)、可根据工程进度和投入使用的时间不同分期投入主机的安装容量,有利于工程资金的合理使用,避免闲置空调设备占据大量资金;(五)、没有冷却水系统,省掉了冷却塔、水泵和冷却水管路系统的投资和安装工作,节约了此项的费用,在平时运行时节约了大量的冷却水耗;(六)、自动化程度高,负荷调节范围宽广,在不同季节和负荷下更能符合调节上的要求,具有常规中央空调无法比拟的负荷试用性,具有非常明显的节能性。
热回收型风冷式热泵冷热水机组用于空调及热水供应一、工程概况安庆供电局宾馆位于安庆市中心,是由老办公楼改造而成,建筑面积3500m2,客房50间,标准床位100个,并设有大、小餐厅及会议室等。
宾馆设有集中空调系统(夏、冬季运行)和全年性24小时生活热水供应系统,以屋面布置了2台LSQFR(H)-325型热回收型风冷式热泵冷热水机组,用于供应空调冷热水和生活热水。
2台机组互为备用。
二、系统运行分析宾馆空调系统运行(降温),同时需要生活热水供应。
机组成冷工况运行,为空调系统提供冷冻水,同时启动热回收装置,利用机组运行所产生的废热供应生活热水。
1、单台机组能够回收的热量为22×104kcal/h,而宾馆夏季生活热水每小时耗热量为14×104kcal/h。
因此,只要一台机组运行,所回收的热量也足够保证夏季生活热水使用。
2、冬季运行宾馆空调系统运行(采暖),同时需要生活热水供应。
机组热工况运行,既提供空调系统冬季采暖热源,同时也提供生活热水。
在不同的室外空气温度的条件下,一台热回收型风冷热泵冷热水机组的实际供热量为:室外进风温度为7℃,出水温度50℃,供热量为544380kcal/h;室外进风温度0℃,出水温度为50℃,供热量为398180kcal/h。
冬季空气调节热负荷:280000kcal/h。
冬季生活热水热负荷:190020kcal/h。
冬季宾馆用热总负荷:280000kcal/h+190020kcal/h=470020kcal/h。
可以看出,当室外进风温度不低于7℃时,二台机组同时运行能够完全满足冬季空调及生活热水的总负荷:当室外进风温度0℃时,尚短缺470020kcal/h-398180kcal/h=71840kcal/h。
考虑到宾馆生活用水高峰时间多集中在晚上,并且建筑物自身具有一定的蓄热性,所以即使短时间内挤占一部分空调用热(约占25%左右),对房间内温度的影响也不大。
3、过度季节运行宾馆空调系统停止运行,只需要提供生活热水供应。
热泵式热回收型溶液调湿新风机组热泵式热回收型溶液调湿新风机组(HVF)是一种以调湿溶液为工质的空气处理设备。
机组采用先进的溶液除湿技术,通过溶液向空气吸收或释放水分,实现对空气湿度的调节。
它不是普通意义上的新风机组,它是集冷热源、全热回收、空气加湿、除湿、过滤段、风机段为一体的新风处理设备,它具备对空气冷却、加热、除湿、加湿、净化等多种功能,独立运行即可满足全年新风处理要求。
机组无需额外的辅助设备,应用灵活,操作简单,适用于所有需要新风供应的场合。
【适用条件】◆适用于空气-水系统,建议和其它干式末端装置,如干式风机盘管配合使用;◆室内排风可利用,且排风量≥70%送风量;◆应用环境:-5℃≤室外新风温度≤36℃。
【适用场所】热泵式热回收型溶液调湿新风机组(HVF)适用于办公类建筑、星级酒店建筑、高档住宅及公寓等需要提供新风的场所。
【工作原理】夏季工况,高温潮湿的新风在全热回收单元中以溶液为媒介和排风进行全热交换,新风被初步降温除湿,然后进入除湿单元中进一步降温、除湿到达送风状态点。
调湿单元中,调湿溶液吸收水蒸气后,浓度变稀,为重新具有吸水能力,稀溶液进入再生单元进行浓缩。
热泵循环的制冷量用于降低溶液温度以提高除湿能力和对新风降温,冷凝器排热量用于浓缩再生溶液,能源利用效率高。
新风机组夏季运行原理演示如下:冬季工况,只需切换四通阀改变制冷剂循环方向,便可实现空气的加热加湿功能。
新风机组冬季运行原理演示如下:【机组性能参数】注:1. 名义制冷除湿工况:新风干球温度36℃,相对湿度65%;回风干球温度26℃,相对湿度60%;送风干球温度18℃,含湿量8.0g/kg。
2. 名义制热加湿工况:新风干球温度-5℃,相对湿度50%;回风干球温度20℃,相对湿度50%;送风干球温度18℃,含湿量8.0g/kg。
3. *此数据为风机配置变频器时的新风量范围。
全热回收风冷热泵机组在酒店中的应用分析摘要:本文通过对全热回收风冷热泵机组的介绍和解析,让更多的人了解这一新型设备并促进其在酒店中的应用。
关键词全热回收风冷热泵机酒店应用分析一、全热回收风冷热泵机组在酒店中的应用情况概述近几年来,随着科技的发展和进步,中央空调和热水供应设备在酒店和宾馆非常广泛,但随着而来的问题也日益突出,如中央空调耗能高,维护和维修费用高,不易于清洗和消毒,容易造成空气污染等问题,以及锅炉供水设备在高峰时段供应不足导致客户投诉,油价不断上升导致酒店供水系统耗费较大等情况。
在这样的情况下,部分三星级以上宾馆开始逐步摒弃传统的中央空调和热水供应系统,转而选用全热回收风冷热泵机组来达到供冷和供热同步到位,热气回收利用缩小耗能的目的。
但是,由于全热回收风冷热泵机组的应用要求酒店在初期投入的资金较大,许多酒店考虑到资金压力的缘故,对应用这一新设备还存在许多的顾虑,因此,我国酒店应用全热回收风冷热泵机组的情况还不是十分普遍和乐观。
但是,从环境保护和酒店的长远发展来看,提高全热回收风冷热泵机组在酒店中的应用具有必要性和迫切性。
二、全热回收风冷热泵机组的运作原理解析全热回收风冷热泵机组从其构造和运作部位来区分,这一机组主要是由冷热泵机和全热回收装置两部分组成,冷热泵机的运作方式和主要作用类似于中央空调,而全热回收装置是将冷热泵机在运作过程中的废热进行回收和利用,进而使得供气(暖气和冷气)与供水(热水)同步进行。
1、全热回收风冷热泵机组的构造及运作介绍风冷热回收机组由风冷热泵系统与冷凝段热回收系统组成。
首先,机组制冷系统其工作原理与常规的空调制冷原理相同,在进行制冷运作时,压缩机将室内外高温高压的气体压缩进入板式换热器中进行热能释放,然后通过制冷机将空气温度降低然后排入室内,同时也将室内的高温高压气体进行吸收和排放;在进行制热运作时,将室内或室外的低温气体吸收压缩通过电加热的方式提高空气温度然后排入室内。
热泵型全热回收新风排风机组产品简介
热泵型全热回收新风排风机组是由空气-空气能量回收装置、风-风热泵系统及多种空气处理功能耦合组装而成,能同时向室内空调环境送新风和机械排风,具有从室内排风回收能量转移至新风,并对新风进行一种或多种空气处理的机组。
原理示意图如图1:
图1
该机组具有如下技术特点:
1、将空调环境所需新风、排风、冷热源和多种空气处理实现一体化的整体机。
2、对排风能量实现全热回收。
3、机组内含能全年处理新风的冷热源-热泵系统。
4、能向空调环境直接送入经过热、湿、净化等多种处理的新风,可完全满足空调环境所需新风要求。
5、能对空调环境实现有组织的机械排风。
6、机组内含二级热回收
7、由风-风热泵驱动第二级热回收
8、配置专用智能控制器,实现制冷、制热、通风、自动四种运行模式。
结合具体的工程系统,根据当地的气象条件、建筑物功能、室内负荷特点等,可对该类机组进行有针对性的、个性化的设计,以更好地满足实际工程应用要求。
一、项目介绍xxxx大酒店是以国际五星标准兴建,集休闲、商务于一体。
本项目为该酒店E3/E4区扩建工程。
夏季制冷量:3000kW,夏天制冷空调总面积约为22000㎡;冬季采暖量:600kW,冬天室外温度低于15℃时,客房区域需要供暖;日用水量:65吨55℃生活热水(实际计算热水量81吨,考虑同时使用系数0.8)项目配置:EKAC230BRSR全热回收型模块式热泵机组10台EKAC230BR模块式热泵机组5台水冷螺杆300RT 2台(原有)二、选型计算1、室外气象参数:2、计算过程:生活热水量:1、桑拿房按100L/人.次,每次2人,平均每天3次循环,共6人次计;2、客房为双人房,按100L/人.天计,共2人次计;由以上计算可知,桑拿房、客房每天热水使用量分别为:桑拿房:120×100×6 =72000L/天;客房:30×100×2=6000L/天;其他洗手盆:约3000L/天由以上计算可知,酒店每天55℃热水使用总量A约为:A=72000+6000+3000=81吨/天,考虑同时使用率情况,确定酒店每天使用热水量为65吨/天。
热水负荷Q=CMΔT=1.163×65×(55-15)=3023.8kW;EKAC230BRSR机组在冬季环境温度5℃、出水温度55℃制热水模式时制热量为Q’=54.5kW/h;机组冬天工作设定运行时间h=6小时;机组选型台数n=3032.8÷54.5÷6=9.3台≈10台。
空调制冷量:制冷空调面积约22000 m2,根据各功能区域空调使用时间及负荷特点,经计算,空调制冷装机总冷负荷为3000kWEKAC230BRSR在夏季环境温度33.5℃、冷冻水温度7℃、热回收侧出水温度45℃、运行热回收模式时制冷量Q=59.7kW/h10台EKAC230BRSR机组共提供制冷量Q’=59.7×10=597kW项目原有水冷螺杆提供的总冷量2台300RT=2×300×3.52=2112kW剩余制冷负荷Q”=3000-597-2112=291kWEKAC230BR在夏季环境温度33.5℃、冷冻水温度7℃时制冷量为66.4kWEKAC230BR机组台数n=291÷66.4=4.4台≈5台空调采暖量:空调供暖总热负荷约为596KWEKAC230BRSR\ EKAC230BR在冬季环境温度5℃、空调出水温度45℃运行制热模式制热量为65.2kW校核是否满足制热负荷(10+5)×65.2=978kW>596kW因此:机组选型为EKAC230BRSR 10台;EKAC230BR 5台满足项目制冷制热制热水需求。
水冷冷水机组热回收方式分类目前水冷冷水机组有冷却水热回收与排气热回收两种方式。
1)冷却水热回收是在冷却水出水管路中加装一个热回收换热器,如图1所示。
这样可以使“热水”从冷却水出水中回收一部分热量。
虽然热水的出水温度小于冷却水的出水温度,但是冷水机组的制冷量与COP基本不变。
2)采用排气热回收的冷水机组通常采用增加热回收冷凝器,在冷凝器中增加热回收管束以及在排气管上增加换热器的方法。
目前常见的是采用热回收冷凝器,如图2所示。
从压缩机排出的高温、高压的制冷剂气体会优先进入到热回收冷凝器中将热量释放给被预热的水。
冷凝器的作用是将多余的热量通过冷却水释放到环境中。
值得注意的是热水的出水温度越高,冷水机组的效率就越低,制冷量也会相应地减少。
3热回收冷水机组关注点1)最大热回收量热回收冷水机组的热回收量在理论上是制冷量和压缩机做功量之和,某些机组最大热回收量可达总冷量的10 0%。
在部分负荷下运行时,其热回收量随冷水机组的制冷量减少而减少。
2)最高热水温度热回收冷水机组以制冷为主,供热为辅。
热水温度越高,则冷水机组的COP越低,甚至会使机组运行不稳定。
一般需加其他热源提高热水温度3)热水温度/热量的控制热水回水温度控制方案:机组在部分负荷下运行时,热回收量减少,热水的回水温度不变而出水温度降低,使热水(冷却水)的平均温度降低,减少冷凝器与蒸发器压差,冷水机组的COP相对较高。
热水供水温度控制方案:效果相反,可能导致冷水机组运行不稳定。
4热水回水/供水温度控制方案比较如图3所示,比较热水回水/供水温度控制方案:1)在100%负荷时,冷却水的供、回水温度为41OC和35OC,其温差为6OC,平均温度为38OC。
2)在50%负荷时,冷却水的流量不变,供、回水温差是100%负荷温差的50%,即为3OC。
3)热水回水温度控制方案:冷却水的回水温度恒定为35OC,由于供、回水温差为3OC,故冷却水的供水温度变为38OC,供、回水的平均温度为36.5OC,比100%负荷时低1.5OC。
热回收型风冷式热泵冷热水机组用于空调及全年生活热水供应
简介:供电局宾馆位于某市中心,是由老办公楼改造而成,建筑面积3500m2,客房50间,标准床位100个,并设有大、小餐厅及会议室等。
宾馆设有集中空调系统(夏、冬季运行)和全年性24小时生活热水供应系统,以屋面布置了2台LSQFR(H)-325型热回收型风冷式热泵冷热水机组,用于供应空调冷热水和生活热水。
2台机组互为备用。
关键字:回收型风冷热泵冷热水机组
一、工程概况
某供电局宾馆位于某市中心,是由老办公楼改造而成,建筑面积3500m2,客房50间,标准床位100个,并设有大、小餐厅及会议室等。
宾馆设有集中空调系统(夏、冬季运行)和全年性24小时生活热水供应系统,以屋面布置了2台LSQFR(H)-325型热回收型风冷式热泵冷热水机组,用于供应空调冷热水和生活热水。
2台机组互为备用。
二、系统运行分析
宾馆空调系统运行(降温),同时需要生活热水供应。
机组成冷工况运行,为空调系统提供冷冻水,同时启动热回收装置,利用机组运行所产生的废热供应生活热水。
单台机组能够回收的热量为22×104kcal/h,而宾馆夏季生活热水每小时耗热量为14×104kcal/h。
因此,只要一台机组运行,所回收的热量也足够保证夏季生活热水使用。
2、冬季运行
宾馆空调系统运行(采暖),同时需要生活热水供应。
机组热工况运行,既提供空调系统冬季采暖热源,同时也提供生活热水。
在不同的室外空气温度的条件下,一台热回收型风冷热泵冷热水机组的实际供热量为:
室外进风温度为7℃,出水温度50℃,供热量为544380kcal/h;
室外进风温度0℃,出水温度为50℃,供热量为398180kcal/h。
冬季空气调节热负荷:280000kcal/h。
冬季生活热水热负荷:190020kcal/h。
冬季宾馆用热总负荷:280000kcal/h+190020kcal/h=470020kcal/h。
可以看出,当室外进风温度不低于7℃时,二台机组同时运行能够完全满足冬季空调及生活热水的总负荷:当室外进风温度0℃时,尚短缺470020kcal/h-398180kcal/h=71840kcal/h。
考虑到宾馆生活用水高峰时间多集中在晚上,并且建筑物自身具有一定的蓄热性,所以即使短时间内挤占一部分空调用热(约占25%左右),对房间内温度的影响也不大。
3、过度季节运行
宾馆空调系统停止运行,只需要提供生活热水供应。
机组热工况运行提供生活热水,通过自动控制装置自动维持生活热水箱内的水温。
三、生活热水系统经济分析
1、每日65℃热水用水总量
按宾馆热水用量标准,每日每床65℃热水150-200L,南方地区取上限200L。
则每日使用65℃
热水总量为:200升/床*100床=20000升。
2、每日生活热水耗热总量
1)夏季
自来水温度按20℃计算
Qx=20000L*1kcal/kg·℃*(65℃-20℃)=9.0*105 kcal
2)冬季
自来水温度按5℃计算
Qd=20000L*1kcal/kg·℃*(65℃-20℃)=1.2*106 kcal
3)过渡季
自来水温度按15℃计算
Qg=20000L*1kcal/kg·℃*(65℃-20℃)=1.0*106 kcal
3、经济分析
以热回收型风冷热泵冷热水机组全年供应生活热水与采用电热锅炉供应生活热经济比较。
1)夏季
按运行4个月计算,由耗热量为:
ΣQx=Qx*(4*30)=9.0*105*(4*30)=1.08*108(kcal)
换算成电能则为:
(1.08*108)/860=125581(kW-h)
如果采用电热锅炉,电热锅炉的热效率按95%考虑,则需耗电:
125581/0.95=132191(kW-h)
夏季利用废热提供生活热水,所以不考虑另加电费。
按每度电0.40圆人民币计算,则四个月节约的电费为:
13291*0.40=52876(圆人民币)
2)冬季及过渡季
冬季按运行6个月计算,则耗热总量为:
ΣQd=Qd*(6*30)=1.20*106*(6*30)=2.16*108(kcal)
过渡季按2个月计算,则耗热总量为:
ΣQg=Qg*(2*30)=1.0*106*(2*30)=6.0*107(kcal)
过渡季和冬季用热总量为:
ΣQg+ΣQd=0.6*108+2.16*108=2.76*108(kcal)
换算电能则为:
(2.76*108)/860=320930(kW-h)
如果采用电热锅炉,电热锅炉的热效率按95%考虑,则需耗电:
320930/0.95=337821(kW-h)
按每度电0.40圆人民币计算,则可节约的电费为:
(337821-106977)*0.40=92338(圆人民币)
由以上计算可知,某供电局宾馆利用热回收型风冷式热泵冷热水机组提供空调冷冻(热)水和生活热水,与采用电热锅炉比较,每年可节约电费:
92338+52876=145214(圆人民币)
四、结论
某供电局宾馆原设计方案采用风冷式热泵型冷热水机组提供空调系统冷、热水,采用电热锅炉提供全年生活热水(参见经济分析表中的方案(1)。
)经过技术经济比较论证后,决定取消电热锅炉,采用热回收型风冷热泵冷热水机组,既提供空调系统冷水、热水,又提供宾馆所需要的全年生活热水供应(参见经济分析表中的方案(2))。
从经济分析表中可以看出,方案(2)比方案(1)不便总投资费用节约5.46万圆人民币。
并且每年还可节约电费14.5万(圆人民币)。
因此方案二的经济效益是显而易见的。