y y=x
y y = x2
y y = x3
y
y1 x
O
x
O
x
O
x
x
O
在某个区间(a,b)内,如果 f (x) 0 ,那么函数 y f (x)在这个区间内单调递增; 如果 f (x) 0 ,那
么函数 y f (x) 在这个区间内单调递减.
如果恒有 f '(x) 0 ,则 f (x) 是常数。
h
h
h
h
O
t
(A)
O
t
(B)
O
t
(C)
O
t
(D)
一般地, 如果一个函数在某一范围内导数 的绝对值较大, 那么函数在这个范围内变化得 快, 这时, 函数的图象就比较“陡峭”(向上 或向下); 反之, 函数的图象就“平缓”一些.
如图,函数 y f (x) 在 (0,b)或 (a,0)内的图 象“陡峭”,在(b,) 或(, a)
练习2
已知函数f(x)=2ax - x3,x (0,1],a 0,
若f(x)在(0,1]上是增函数,求a的取值范围。
[
3 2
,)
例3:方程根的问题
求证:方程 x 1 sin x 0 只有一个根。
2
f ( x ) x - 1 sin x,x ( , ) 2
f '( x ) 1 1 cos x 0 2
在(- ∞ ,1)上是减 函数,在(1, +∞)上 是增函数。
在(- ∞,+∞)上是 增函数
(1)函数的单调性也叫函数的增减性; (2)函数的单调性是对某个区间而言的,它是个局部概
念。这个区间是定义域的子集。 (3)单调区间:针对自变量x而言的。