应用光学 第一章
- 格式:ppt
- 大小:2.15 MB
- 文档页数:69
1应用光学与设计第一章几何光学基本原理1-1 光波和光线1. . 光的本质电磁波(10nm~1mm )核心区域可见光380nm~780nm 2应用光学与设计第一章几何光学基本原理1-1 光波和光线可见光单色光复色光766.50706.52656.28589.29587.57486.13435.83434.05546.07404.66单位: nm 750700650600550500450400620590570475495450红橙黄绿青蓝紫颜色分界线典型谱线A ’b C Dd e F g G ’h 及波长可见光色谱带及典型谱线C ’643.9备注: 颜色的分界线有不同定义, 也与照度有关.3应用光学与设计第一章几何光学基本原理1-1 光波和光线2.波动光学的简单回顾真空中光速82.99810m sc =×介质中光速cn=v 光波在不同介质中传播,频率不变。
ν频率与波长和光速的关系cνλ=波面、波前与波线*4应用光学与设计第一章几何光学基本原理1-1 光波和光线3. 从波动光学到几何光学波线→光线λ→光线表示光波的传播方向, 在各向同性、均匀的介质中, 光线总垂直于波面. (马吕斯定律)*5应用光学与设计第一章几何光学基本原理1-1 光波和光线波面和光束的类型球面波同心光束S会聚光束S发散光束平面波平行光束6应用光学与设计第一章几何光学基本原理1-1 光波和光线非球面波像散光束7应用光学与设计第一章几何光学基本原理1-2 几何光学基本定律1.直线传播定律光在均匀透明的介质中按直线传播.2.反射定律折射定律光在两种均匀介质分界面上的规律.8应用光学与设计第一章几何光学基本原理1-2 几何光学基本定律I I ′R −角度正负的规定由光线转到法线:顺时针为正逆时针为负光路图中一律标正值. O 入射光线介质1介质2折射率n 折射率n ′N N ′折射光线反射光线sin sin n I n I ′′=I R=−入射光线、反射光线、折射光线与入射点处界面法线在同一平面内.反射可视为折射的特例:n n′=−9应用光学与设计第一章几何光学基本原理1-4 光路可逆和全反射一、光路可逆二、全反射三、费马原理四、马吕斯定律10应用光学与设计第一章几何光学基本原理1-5 基本定律的向量形式I I ′R −O 入射光线介质1介质2折射率n 折射率n ′N N ′折射光线反射光线单位矢量0Q 单位矢量′′Q 0′Q 单位矢量单位法线0N n n ′′×=×0000Q N Q N 即()00n n ′′−×=00Q Q N sin , sin , I I ′′×=×=∴0000Q N Q N ∵上式数值成立矢乘等式表明三个矢量和它们代表的三条光线共面.1.折射定律的向量形式11应用光学与设计第一章几何光学基本原理1-5 基本定律的向量形式折射定律的向量形式n n ′′×=×0000Q N Q N 令, n n ′′′==00Q Q Q Q ′×=×00Q N Q N 得()0′−×=0Q Q N 即表明与方向一致:()′−Q Q 0N 偏向系数Γ′−=0Q Q N ()cos cos n I n I Γ′′′=−=−0Q Q N i ()2222222222222cos sin sin cos n I n n I n n I n n n In n ′′′′′=−′=−′=−+′=−+0N Q ∵i ()222n n Γ′∴=−+−00N Q N Qi i Γ′=+0Q Q N 12应用光学与设计第一章几何光学基本原理1-5 基本定律的向量形式反射定律的向量形式cos cos n I n I Γ′′=−Γ′=+0Q Q N 2.直线传播定律的向量形式直线传播定律可视为折射定律的特例.n n ′=3.反射定律的向量形式′=Q Q反射定律可视为折射定律的特例.n n ′=−I I′=−()cos cos 2cos =2n I n I n I Γ∴=−−−=−−0N Qi ()2′=−00N Q N Q Q i ()222n n Γ′=−+−00N Q N Qi i13应用光学与设计第一章几何光学基本原理1-6 光学系统类别和成像的概念光轴共轴系统非共轴(离轴)系统光学系统各元件表面曲率中心在一条直线上.完善成像(点成像为点)的条件入射光是同心光束(球面波)时,出射光也是同心光束(球面波).共轴光学系统等价描述:共轭物像点间所有光线光程相等.14应用光学与设计第一章几何光学基本原理1-7 理想像和理想光学系统理想像对光学系统成像的要求清晰成像(视场内)所有物点都完善成像, 每一个物点都对应唯一的像点.理想光学系统的性质(1) 直线成像为直线.O O A QQA ’理想光学系统成理想像的光学系统.15应用光学与设计第一章几何光学基本原理1-7 理想像和理想光学系统理想光学系统的性质(2) 平面成像为平面.平面P A A’B’C’B C 平面P’F E E’F’16应用光学与设计第一章几何光学基本原理1-7 理想像和理想光学系统子午面共轴理想光学系统的性质(1) 由系统的对称性决定的性质:共轴光学系统O O’光轴上物点的共轭像点也在光轴上.A A’子午面过光轴的某一截面, 它的共轭像平面也必过光轴. 各子午面成像性质相同. 可用一个子午面代表一个共轴系统.共轭的子午面共面.17应用光学与设计第一章几何光学基本原理1-7 理想像和理想光学系统共轴光学系统O A B O’A’B’垂直于光轴的物平面,它的像平面也必然垂直于光轴.18应用光学与设计第一章几何光学基本原理1-7 理想像和理想光学系统共轴理想光学系统的性质(2) 垂直于光轴的平面物所成的共轭平面像,其几何形状完全与物相似.即垂直于光轴的同一平面上各部分放大率相同.共轴光学系统注意一般来说,共轴理想成像系统的物像空间中的物与像并不一定相似.O’P’Q’Q P O A B E’G H A’B’G’H’E19应用光学与设计第一章几何光学基本原理1-7 理想像和理想光学系统共轴理想光学系统的性质(3) 如果已知两对共轭面的位置和放大率; 或者一对共轭面的位置和放大率, 以及轴上两对共轭点的位置, 则其他一切物点的像点都可以确定.基面基点共轴光学系统O ’P ’P O D D ’A A ’B B ’共轴光学系统D D ’OA B Q P Q ’P ’O ’A ’B ’。
第一章 几何光学的基本定律§ 1-1 发光点、波面、光线、光束 返回本章要点 发光点 ---- 本身发光或被照明的物点。
既无大小又无体积但能辐射能量的几何点。
对于光学系统来说, 把一个物体看成由许多物点组成,把这些物点都看成几何点 ( 发光点 ) 。
把不论多大的物体均看作许多 几何点组成。
研究每一个几何点的成像。
进而得到物体的成像规律。
当然这种点是不存在的,是简化了的概念。
一个实际的光源总有一定大小才能携带能量,但在计算时,一 个光源按其大小与作用距离相比很小便可认为是几何点。
今后如需回到光的本质的讨论将特别指出。
波面 --- 发光点在某一时刻发出的光形成波面 如果周围是各向同性均匀介质,将形成以发光点为中心的球面波或平面波 第二章 球面和球面系统§ 2-1 什么是球面系统?由球面组成的系统称为球面系统。
包括折射球面和反射球面反射面:n ' =-n.平面是半径为无穷大的球面,故讨论球面系统具有普遍意义折射系统折反系统§ 2-2 概念与符号规则•概念① 子午平面 —— 包含光轴的平面② 截距:物方截距 —— 物方光线与光轴的交点到顶点的距离像方截距 —— 像方光线与光轴的交点到顶点的距离③ 倾斜角:物方倾斜角 —— 物方光线与光轴的夹角像方倾斜角 —— 像方光线与光轴的夹角返回本章要点•符号规则返回本章要点因为分界面有左右、球面有凹凸、交点可能在光轴上或下,为使推导的公式具有普遍性,参量具有确切意 义,规定下列规则:a. 光线传播方向:从左向右b. 线段:沿轴线段 ( L,L',r ) 以顶点 O 为基准,左“ - ”右“ + ” 垂轴线段 ( h ) 以光轴为准,上“ + ”下“ - ” 间隔 d(O1O2) 以前一个面为基准,左“ - ”右“ + ” c. 角度:光轴与光线组成角度 ( U,U' ) 以光轴为起始边,以锐角方向转到光线,顺时针“ + ”逆时针“ - ”光线与法线组成角度 ( I,I' ) 以光线为起始边,以锐角方向转到法线,顺“ + ”逆“ - ”光轴与法线组成角度 ( φ ) 以光轴为起始边,以锐角方向转到法线,顺“ + ”逆“ - ”§ 2-3 折射球面返回本章要点•由折射球面的入射光线求出射光线已知: r, n, n',L, U 求: L', U',由 以上几个公式可得出 L' 是 U 的 函数这一结论, 不同 U 的光线经 折射后不能相交于一点点-》斑,不完善成像•近轴光线经折射球面折射并成像.1 .近轴光线:与光轴很靠近的光线,即 -U 很小 , sin(-U) ≈ -U ,此时用小写:sin(-U)= - usinI=iL=l 返回本章要点近轴光线所在的区域叫近轴区2 .对近轴光,已知入射光线求折射球面的出射光线:即由 l , u —> l ',u' , 以上公式组变为:当 u 改变时, l ' 不变!点 —— 》点,完善成像 此时 A , A' 互为物像,称共轭点近轴光所成像称为高斯像,仅考虑近轴光的光学叫高斯光学返回本章要点近轴光线经折射球面计算的其他形式(为计算方便,根据不同情况可使用不同公式)利用:可导出返回本章要点4 .(近轴区)折射球面的光焦度,焦点和焦距可见,当( n'-n )/r 一定时, l ' 仅与 l 有关。
应用光学第一章总结知识点一、基本概念1. 光的本质光是一种电磁波,具有双重性质,既能像波一样传播,又能像粒子一样照射。
2. 光的特性光具有波长、频率、速度和偏振等特性,光的波长决定了它的颜色,频率决定了它的亮度,速度取决于介质的折射率,偏振决定了光的方向性。
3. 光的传播光在真空中的传播速度是光速,而在不同介质中传播的速度和方向都会发生变化。
光的传播遵循光线理论和波动理论。
4. 光的干涉和衍射光的干涉和衍射是光学现象的重要表现形式,它们揭示了光的波动性。
干涉是指两束波相遇时相互干扰的现象,衍射是指波通过孔隙或物体边缘时发生的扩散和弯曲。
5. 光的吸收和发射光与物质相互作用时会发生吸收和发射,物质的吸收和发射特性与光的波长有关。
二、光学元件1. 透镜透镜是光学系统的重要组成部分,它能够折射光线,使光线汇聚或发散。
透镜有凸透镜和凹透镜之分,可以用在光学仪器中进行成像。
2. 镜面镜面是能够反射光线的表面,具有平面镜、球面镜等形式。
镜面的反射特性与入射角和反射角有关,根据镜子的曲率不同,反射出的光线会发生聚焦或发散。
3. 棱镜棱镜是一种类似透镜的光学元件,它能够使光线发生色散,将不同波长的光线分散成不同的方向。
4. 光栅光栅是一种利用周期性的结构使光发生衍射的光学元件,它可以分解光线,用于光谱仪等领域。
5. 波片波片是一种能够改变光线偏振状态的光学元件,常用于偏振光学和激光器件中。
6. 光阑光阑是一种用于控制光线传播的光学元件,它能够限制光线的传播范围,提高光学系统的分辨率。
7. 光学滤波器光学滤波器是一种通过选择性吸收或透射特定波长光线的光学元件,它可以应用于激光器件、摄像头和光学测量中。
8. 光学偏振元件光学偏振元件是一种能够改变光线偏振状态的光学元件,包括偏振片、偏光镜和偏振棱镜等。
三、光学系统1. 成像系统成像系统是由透镜、镜面和光学滤波器等组成,它能够将物体上的信息投影到成像平面上,形成清晰的图像。