应用光学第一章习题库
- 格式:doc
- 大小:423.50 KB
- 文档页数:4
应用光学习题应用光学习题.第一章 : 几何光学基本原理 ( 理论学时: 4 学时 )讨论题:几何光学和物理光学有什么区别它们研究什么内容思考题:汽车驾驶室两侧和马路转弯处安装的反光镜为什么要做成凸面,而不做成平面一束光由玻璃( n= )进入水( n= ),若以45 ° 角入射,试求折射角。
证明光线通过二表面平行的玻璃板时,出射光线与入射光线永远平行。
为了从坦克内部观察外界目标,需要在坦克壁上开一个孔。
假定坦克壁厚为 200mm ,孔宽为 120mm ,在孔内部安装一块折射率为n= 的玻璃,厚度与装甲厚度相同,问在允许观察者眼睛左右移动的条件下,能看到外界多大的角度范围一个等边三角棱镜,若入射光线和出射光线对棱镜对称,出射光线对入射光线的偏转角为40 °,求该棱镜材料的折射率。
构成透镜的两表面的球心相互重合的透镜称为同心透镜,同心透镜对光束起发散作用还是会聚作用?共轴理想光学系统具有哪些成像性质第二章 : 共轴球面系统的物像关系 ( 理论学时: 10 学时,实验学时: 2 学时 )讨论题:对于一个共轴理想光学系统,如果物平面倾斜于光轴,问其像的几何形状是否与物相似为什么思考题:符合规则有什么用处为什么应用光学要定义符合规则有一放映机,使用一个凹面反光镜进行聚光照明,光源经过反光镜以后成像在投影物平面上。
光源高为 10mm ,投影物高为 40mm ,要求光源像高等于物高,反光镜离投影物平面距离为600mm ,求该反光镜的曲率半径等于多少试用作图法求位于凹的反光镜前的物体所成的像。
物体分别位于球心之外,球心和焦点之间,焦点和球面顶点之间三个不同的位置。
试用作图法对位于空气中的正透镜()分别对下列物距:求像平面位置。
试用作图法对位于空气中的负透镜()分别对下列物距:求像平面位置。
已知照相物镜的焦距毫米,被摄景物位于距离米处,试求照相底片应放在离物镜的像方焦面多远的地方?设一物体对正透镜成像,其垂轴放大率等于-1 ,试求物平面与像平面的位置,并用作图法验证。
第一章例题1.P20习题1(部分):已知真空中的光速c=3Í108m/s,求光在火石玻璃(n=1.65)和加拿大树胶(n=1.526)中的光速。
解:根据折射率与光速的关系 vcn =可求得 火石玻璃 )/(10818.165.11038811s m n c v ⨯=⨯==加拿大树胶 )/(10966.1526.11038822s m n c v ⨯=⨯==3.P20习题5,解:设水中一点A 发出的光线射到水面。
若入射角为I 0(sinI 0=n 空/ n 水 ),则光线沿水面掠射;据光路可逆性,即与水面趋于平行的光线在水面折射进入水中一点A ,其折射角为I 0(临界角)。
故以水中一点A 为锥顶,半顶角为I 0 的 圆锥范围内,水面上的光线可以射到A 点(入射角不同)。
因此,游泳者向上仰 望,不能感觉整个水面都是明亮的,而只 能看到一个明亮的圆,圆的大小与游泳者 所在处水深有关,如图示。
满足水与空 气分界面的临界角为 75.033.11sin 0==I 即 '36480︒=I , 若水深为H ,则明亮圆的半径 R = H tgI 0 4. ( P20习题7 )解:依题意作图如图按等光程条件有:''''1OA n O G n MA n GM n ⋅+⋅=⋅+⋅即.1)100(5.11221+=+-⋅++O G y x x O G所以x y x -=+-⋅150)100(5.122两边平方得222)150(])100[(25.2x y x -=+-2223002250025.245022500x x y x x +-=++- 025.225.115022=++-y x x0120101822=-+x x y ——此即所求分界面的表达式。
第二章例题1.(P53习题1)一玻璃棒(n =1.5),长500mm ,两端面为半球面,半径分别为50mm 和100mm ,一箭头高1mm ,垂直位于左端球面顶点之前200mm 处的轴线上,如图所示。
《物理光学与应⽤光学》习题及选解2《物理光学与应⽤光学》习题及选解第⼀章习题1-1. ⼀个线偏振光在玻璃中传播时,表⽰为:i E ))65.0(10cos(10152t cz-??=π,试求该光的频率、波长,玻璃的折射率。
1-2. 已知单⾊平⾯光波的频率为z H 1014=ν,在z = 0 平⾯上相位线性增加的情况如图所⽰。
求f x , f y , f z 。
1-3. 试确定下列各组光波表⽰式所代表的偏振态: (1))sin(0kz t E E x -=ω,)cos(0kz t E E y -=ω; (2) )cos(0kz t E E x -=ω,)4cos(0πω+-=kz t E E y ;(3) )sin(0kz t E E x -=ω,)sin(0kz t E E y --=ω。
1-4. 在椭圆偏振光中,设椭圆的长轴与x 轴的夹⾓为α,椭圆的长、短轴各为2a 1、2a 2,E x 、E y 的相位差为?。
求证:?αcos 22tan 220000y x y x E E E E -=。
1-5.已知冕牌玻璃对0.3988µm 波长光的折射率为n = 1.52546,11m 1026.1/--?-=µλd dn ,求光在该玻璃中的相速和群速。
1-6. 试计算下⾯两种⾊散规律的群速度(表⽰式中的v 表⽰是相速度):(1)电离层中的电磁波,222λb c v +=,其中c 是真空中的光速,λ是介质中的电磁波波长,b 是常数。
(2)充满⾊散介质()(ωεε=,)(ωµµ=)的直波导管中的电磁波,222/a c c v p -=εµωω,其中c 真空中的光速,a 是与波导管截⾯有关的常数。
1-7. 求从折射率n = 1.52的玻璃平板反射和折射的光的偏振度。
⼊射光是⾃然光,⼊射⾓分别为?0,?20,?45,0456'?,? 90。
1-8. 若⼊射光是线偏振的,在全反射的情况下,⼊射⾓应为多⼤⽅能使在⼊射⾯内振动和垂直⼊射⾯振动的两反射光间的相位差为极⼤?这个极⼤值等于多少?=501θ,n 1 = 1,n 2 = 1.5,则反射光的光⽮量与⼊射⾯成多⼤的⾓度?若?=601θ时,该⾓度⼜为多1-2题⽤图⼤?1-10. 若要使光经红宝⽯(n = 1.76)表⾯反射后成为完全偏振光,⼊射⾓应等于多少?求在此⼊射⾓的情况下,折射光的偏振度P t 。
《物理光学与应用光学》习题及选解(部分)第一章习题1-1. 一个线偏振光在玻璃中传播时,表示为:i E ))65.0(10cos(10152t cz-⨯⨯=π,试求该光的频率、波长,玻璃的折射率。
1-2. 已知单色平面光波的频率为z H 1014=ν,在z = 0 平面上相位线性增加的情况如图所示。
求f x , f y , f z 。
1-3. 试确定下列各组光波表示式所代表的偏振态: (1))sin(0kz t E E x -=ω,)cos(0kz t E E y -=ω; (2) )cos(0kz t E E x -=ω,)4cos(0πω+-=kz t E E y ;(3) )sin(0kz t E E x -=ω,)sin(0kz t E E y --=ω。
1-4. 在椭圆偏振光中,设椭圆的长轴与x 轴的夹角为α,椭圆的长、短轴各为2a 1、2a 2,E x 、E y 的相位差为ϕ。
求证:ϕαcos 22tan 220000y x y x E E E E -=。
1-5.已知冕牌玻璃对0.3988μm 波长光的折射率为n = 1.52546,11m 1026.1/--⨯-=μλd dn ,求光在该玻璃中的相速和群速。
1-6. 试计算下面两种色散规律的群速度(表示式中的v 表示是相速度):(1)电离层中的电磁波,222λb c v +=,其中c 是真空中的光速,λ是介质中的电磁波波长,b 是常数。
(2)充满色散介质()(ωεε=,)(ωμμ=)的直波导管中的电磁波,222/a c c v p -=εμωω,其中c 真空中的光速,a 是与波导管截面有关的常数。
1-7. 求从折射率n = 1.52的玻璃平板反射和折射的光的偏振度。
入射光是自然光,入射角分别为︒0,︒20,︒45,0456'︒,︒90。
1-8. 若入射光是线偏振的,在全反射的情况下,入射角应为多大方能使在入射面内振动和垂直入射面振动的两反射光间的相位差为极大?这个极大值等于多少?1-9. 电矢量振动方向与入射面成45°的线偏振光,入射到两种透明介质的分界面上,若入射角︒=501θ,n 1 = 1,n 2 = 1.5,则反射光的光矢量与入射面成多大的角度?若︒=601θ时,该角度又为多1-2题用图大?1-10. 若要使光经红宝石(n = 1.76)表面反射后成为完全偏振光,入射角应等于多少?求在此入射角的情况下,折射光的偏振度P t 。
习 题 第一章1、游泳者在水中向上仰望,能否感觉整个水面都是明亮的?(不能,只能感觉到一个明亮的圆,圆的大小与游泳都所在的水深有关,设水深H ,则明亮圆半径HtgIc R =)2、有时看到窗户玻璃上映射的太阳光特别耀眼,这是否是由于窗玻璃表面发生了全反射现象?答:是。
3、一束在空气中波长为nm 3.589=λ的钠黄光从空气射入水中时,它的波长将变为多少?在水中观察这束光时其颜色会改变吗?答:'λλ=n ,nm 442'=λ不变 4、一高度为m 7.1的人立于路灯边(设灯为点光源)m 5.1远处,路灯高度为m 5,求人的影子长度。
答:设影子长x ,有:57.15.1=+x x ∴x=0.773m 5、为什么金钢石比磨成相同形状的玻璃仿制品显得更加光彩夺目? 答:由于金钢石折射率大,所以其临界角小,入射到其中的光线大部分都能产生全反射。
6、为什么日出或日落时太阳看起来稍微有些发扁?(300例P1)答:日出或日落时,太阳位于地平线附近,来自太阳顶部、中部和底部的光线射向地球大气层的入射角依次增大(如图)。
同时,大气层密度不均匀,折射率水接近地面而逐渐增大。
当光线穿过大气层射向地面时,由于n逐渐增大,使其折射角逐渐减小,光线的传播路径就发生了弯曲。
我们沿着光线去看,看到的发光点位置会比其实际位置高。
另一方面,折射光线的弯曲程度还与入射角有关。
入射角越大的光线,弯曲越厉害,视觉位置就被抬得越高,因为从太阳上部到下部发出的光线,入射角依次增大,下部的视觉位置就依次比上部抬高的更多。
第二章1、如图2-65所示,请采用作图法求解物体AB的像,设物像位于同一种介质空间。
图2-652、如图2-66所示,'MM为一薄透镜的光轴,B为物点,'B为像点,试采用作图法求解薄透镜的主点及焦点的位置。
BMB'M′BM M′B'●●●●(a) (b)图2-663、如图2-67所示,已知物、像的大小及位置,试利用图解法求解出焦点的位置,设物、像位于同一种介质空间。
第一章例题1.P20习题1(部分):已知真空中的光速c=3Í108m/s,求光在火石玻璃(n=1.65)和加拿大树胶(n=1.526)中的光速。
解:根据折射率与光速的关系 vcn =可求得 火石玻璃 )/(10818.165.11038811s m n c v ⨯=⨯==加拿大树胶 )/(10966.1526.11038822s m n c v ⨯=⨯==3.P20习题5,解:设水中一点A 发出的光线射到水面。
若入射角为I 0(sinI 0=n 空/ n 水 ),则光线沿水面掠射;据光路可逆性,即与水面趋于平行的光线在水面折射进入水中一点A ,其折射角为I 0(临界角)。
故以水中一点A 为锥顶,半顶角为I 0 的 圆锥范围内,水面上的光线可以射到A 点(入射角不同)。
因此,游泳者向上仰 望,不能感觉整个水面都是明亮的,而只 能看到一个明亮的圆,圆的大小与游泳者 所在处水深有关,如图示。
满足水与空 气分界面的临界角为 75.033.11sin 0==I 即 '36480︒=I , 若水深为H ,则明亮圆的半径 R = H tgI 0 4. ( P20习题7 )解:依题意作图如图按等光程条件有:''''1OA n O G n MA n GM n ⋅+⋅=⋅+⋅即.1)100(5.11221+=+-⋅++O G y x x O G所以x y x -=+-⋅150)100(5.122两边平方得222)150(])100[(25.2x y x -=+-2223002250025.245022500x x y x x +-=++- 025.225.115022=++-y x x0120101822=-+x x y ——此即所求分界面的表达式。
第二章例题1.(P53习题1)一玻璃棒(n =1.5),长500mm ,两端面为半球面,半径分别为50mm 和100mm ,一箭头高1mm ,垂直位于左端球面顶点之前200mm 处的轴线上,如图所示。
应用光学习题、第一章 : 几何光学基本原理 ( 理论学时: 4 学时 )•讨论题:几何光学与物理光学有什么区别?它们研究什么内容?•思考题:汽车驾驶室两侧与马路转弯处安装的反光镜为什么要做成凸面,而不做成平面?•一束光由玻璃( n=1、5 )进入水( n=1、33 ),若以45 ° 角入射,试求折射角。
•证明光线通过二表面平行的玻璃板时,出射光线与入射光线永远平行。
•为了从坦克内部观察外界目标,需要在坦克壁上开一个孔。
假定坦克壁厚为 200mm ,孔宽为 120mm ,在孔内部安装一块折射率为 n=1、5163 的玻璃,厚度与装甲厚度相同,问在允许观察者眼睛左右移动的条件下,能瞧到外界多大的角度范围?•一个等边三角棱镜,若入射光线与出射光线对棱镜对称,出射光线对入射光线的偏转角为40 °,求该棱镜材料的折射率。
•构成透镜的两表面的球心相互重合的透镜称为同心透镜,同心透镜对光束起发散作用还就是会聚作用?•共轴理想光学系统具有哪些成像性质?第二章 : 共轴球面系统的物像关系 ( 理论学时: 10 学时,实验学时: 2 学时 )•讨论题:对于一个共轴理想光学系统,如果物平面倾斜于光轴,问其像的几何形状就是否与物相似?为什么?•思考题:符合规则有什么用处?为什么应用光学要定义符合规则?•有一放映机,使用一个凹面反光镜进行聚光照明,光源经过反光镜以后成像在投影物平面上。
光源高为10mm ,投影物高为 40mm ,要求光源像高等于物高,反光镜离投影物平面距离为 600mm ,求该反光镜的曲率半径等于多少?•试用作图法求位于凹的反光镜前的物体所成的像。
物体分别位于球心之外,球心与焦点之间,焦点与球面顶点之间三个不同的位置。
•试用作图法对位于空气中的正透镜( )分别对下列物距:求像平面位置。
•试用作图法对位于空气中的负透镜( )分别对下列物距:求像平面位置。
•已知照相物镜的焦距毫米,被摄景物位于距离米处,试求照相底片应放在离物镜的像方焦面多远的地方?•设一物体对正透镜成像,其垂轴放大率等于- 1 ,试求物平面与像平面的位置,并用作图法验证。
应用光学第一章习题库第一章几何光学基本原理一.典型例题例1 . 游泳者在水中向上仰望,能否感觉整个水面都是亮的?解:本题是全反射现象和光路可逆现象的综合运用。
水的折射率n 水=1.33,空气的折射率n 空=1.当光线由水进入空气,是由高折射率介质进入低折射率介质,可以发生全反射,即由水中发出的光线射到水面上时,如果入射角达到临界角,出射光线将掠过分界面。
换一个角度看,和水面趋于平行的光,折射后进入水中一点A,它在水面下的折射角即为临界角0I 。
在以水中一点A 为锥顶,半顶角为0I 的圆锥范围内,水面上的光线可以射到A 点,所以游泳者在水中仰望天空,不能感觉整个水面都是明亮的,而只能看到一个明亮的圆,圆当然的大小当然与游泳者所在的水深有关,如图所示。
下面求出临界角I0的大小 sinI0 等于n 空与n 水的比值等于0.75设水深为H ,则明亮圆半径R=0tan H I例1-2:一速光由玻璃(n=1.5)进入水(n=1.33),若以45°角入射,试求折射角。
解:本题直接应用斯涅耳定律即可。
11sin n i =22sin n i1n = 1.5 , 2n = 1.33 , 1sin 45i =1.5sin 45°= 1.33sin 2isin 2i = 0.749I = 52.6°。
折射角为52.6度。
二.习题1-1 有时看到玻璃窗户上映射的太阳特别耀眼,这是否是由于窗玻璃表面发生了全反射?1-2 射击水底目标时,是否可以和射击地面目标一样进行瞄准?1-4 汽车驾驶室两侧和马路转弯处安装的反光镜为什么要做成凸面,而不做成平面?1-5 观察清澈见底的河床底部的卵石,看来约在水下半米深处,问实际河水比半米深还是比半米浅?1-6 人眼垂直看水池1米深处的物体,水的折射率为1.33,试问该物体的像到水面的距离是多少?1-7平行光速投射到一水槽中,光速的一部分在顶面反射而另一部分在底面反射,如图所示,试证明两束返回到入射介质的光线是平行的。
《物理光学与应用光学》习题及选解第一章习题1-1.一个线偏振光在玻璃中传播时,表示为:,试求该光的i E ))65.0(10cos(10152t cz-⨯⨯=π频率、波长,玻璃的折射率。
1-2. 已知单色平面光波的频率为,在z H 1014=νz = 0 平面上相位线性增加的情况如图所示。
求f x ,f y , f z 。
1-3. 试确定下列各组光波表示式所代表的偏振态:(1),;)sin(0kz t E E x -=ω)cos(0kz t E E y -=ω(2) ,)cos(0kz t E E x -=ω;)4cos(0πω+-=kz t E E y (3) ,。
)sin(0kz t E E x -=ω)sin(0kz t E E y --=ω1-4. 在椭圆偏振光中,设椭圆的长轴与x 轴的夹角为,椭圆的长、短轴各为2a 1、2a 2,E x 、E y 的相位差为。
求证:。
αϕϕαcos 22tan 22000y x y x E E E E -=1-5.已知冕牌玻璃对0.3988μm 波长光的折射率为n = 1.52546,,11m 1026.1/--⨯-=μλd dn 求光在该玻璃中的相速和群速。
1-6. 试计算下面两种色散规律的群速度(表示式中的v 表示是相速度):(1)电离层中的电磁波,,其中c 是真空中的光速,是介质中的电磁波波长,222λb c v +=λb 是常数。
(2)充满色散介质(,)的直波导管中的电磁波,)(ωεε=)(ωμμ=,其中c 真空中的光速,a 是与波导管截面有关的常数。
222/a c c v p -=εμωω1-7. 求从折射率n = 1.52的玻璃平板反射和折射的光的偏振度。
入射光是自然光,入射角分别为,,,,。
︒0︒20︒450456'︒︒901-8. 若入射光是线偏振的,在全反射的情况下,入射角应为多大方能使在入射面内振动和垂直入射面振动的两反射光间的相位差为极大?这个极大值等于多少?1-9.电矢量振动方向与入射面成45°的线偏振光,入射到两种透明介质的分界面上,若入射角,n 1 = 1,n 2 = 1.5,则反射光的光矢量与入射面成多大的角度?若时,该角度又︒=501θ︒=601θ1-2题用图为多大?1-10. 若要使光经红宝石(n = 1.76)表面反射后成为完全偏振光,入射角应等于多少?求在此入射角的情况下,折射光的偏振度P t 。
应用光学习题一、填空题1、光学系统中物和像具有共轭关系的原因是光路可逆。
2、发生全反射的条件是光从光密媒质射向光疏媒质,且入射角大于临界角3、像空间的介质的折射率给定后,对于一对给定的共轭面,可提出一种放大率的要求。
4、理想光学系统中,与像方焦点共轭的物点是轴上无穷远的物点。
5、物镜和目镜焦距分别为 mm f 2 ' =物和 mmf 25' =目的显微镜, 光学筒长△ = 4mm ,则该显微镜的视放大率为 -20 ,物镜的垂轴放大率为 -2 ,目镜的视放大率为 10 。
6、某物点发出的光经理想光学系统后对应的最后出射光束是会聚同心光束,则该物点所成的是实 (填“实”或“虚” ) 像。
7、人眼的调节包含视度调节和瞳孔调节。
8、复杂光学系统中设置场镜的目的是在不影响系统光学特性的的情况下改变成像光束的位置,使后面系统的通光口径不致过大。
9、要使公共垂面内的光线方向改变 60度,则双平面镜夹角应为 30 度。
10、近轴条件下,折射率为 1.4的厚为 14mm 的平行玻璃板,其等效空气层厚度为 10 mm。
11、设计反射棱镜时,应使其展开后玻璃板的两个表面平行,目的是保持系统的共轴性。
12、有效地提高显微镜分辨率的途径是提高数值孔径和减小波长。
13、近轴情况下,在空气中看到水中鱼的表观深度要比实际深度小。
二、简答题1、几何光学的基本定律及其内容是什么?答:几何光学的基本定律是直线传播定律、独立传播定律、反射定律和折射定律。
直线传播定律:光线在均匀透明介质中按直线传播。
独立传播定律:不同光源的光在通过介质某点时互不影响。
反射定律:反射光线位于入射面内;反射角等于入射角;折射定律:折射光线位于入射面内; 入射角和折射角正弦之比, 对两种一定的介质来说,是一个和入射角无关的常数 2111sin sin I n I n =。
2、如何区分实物空间、虚物空间以及实像空间和虚像空间?是否可按照空间位置来划分物空间和像空间?答:实物空间:光学系统第一个曲面前的空间。
第一章 几何光学基本原理
一.典型例题
例1 . 游泳者在水中向上仰望,能否感觉整个水面都是亮的? 解:本题是全反射现象和光路可逆现象的综合运用。
水的折射率n 水 =1.33,空气的折射率n 空 =1.当光线由水进入空气,是
由高折射率介质进入低折射率介质,可以发生全反射,即由水中发出的光线射到水面上时,如果入射角达到临界角,出射光线将掠过分界面。
换一个角度看,和水面趋于平行的光,折射后进入水中一点A,它在水面下的折射角即为临界角0I 。
在以水中一点A 为锥顶,半顶角
为0I 的圆锥范围内,水面上的光线可以射到A 点,所以游泳者在水中
仰望天空,不能感觉整个水面都是明亮的,而只能看到一个明亮的圆,圆当然的大小当然与游泳者所在的水深有关,如图所示。
下面求出临界角I0的大小 sinI0 等于n 空与n 水的比值等于0.75设水深为H ,则明亮圆半径R=0tan H I
例1-2:一速光由玻璃(n=1.5)进入水(n=1.33),若以45°角入射,试求折射角。
解:本题直接应用斯涅耳定律即可。
11sin n i =22sin n i
1n = 1.5 , 2n = 1.33 , 1sin 45i =
1.5sin 45°= 1.33sin 2i
sin 2i = 0.749
I = 52.6°。
折射角为52.6度。
二.习题
1-1 有时看到玻璃窗户上映射的太阳特别耀眼,这是否是由于窗玻璃表面发生了全反射?
1-2 射击水底目标时,是否可以和射击地面目标一样进行瞄准? 1-4 汽车驾驶室两侧和马路转弯处安装的反光镜为什么要做成凸面,而不做成平面?
1-5 观察清澈见底的河床底部的卵石,看来约在水下半米深处,问实际河水比半米深还是比半米浅?
1-6 人眼垂直看水池1米深处的物体,水的折射率为1.33,试问该物体的像到水面的距离是多少?
1-7平行光速投射到一水槽中,光速的一部分在顶面反射而另一部分在底面反射,如图所示,试证明两束返回到入
射介质的光线是平行的。
1-8 构成透镜的二表面的球心相互重合的透镜称为同心透镜,同心透镜对光束起发散作用还是会聚作用?
1-9 物体透过透镜成一虚像,用屏幕是否可以接收到这个像?如果用人眼观察,是否可以看到这个像?
1-10 共轴理想光学系统具有哪些成像性质?
1-11 光学系统第一面前面的空间为物空间,最后一面后边的空间是像空间,这种说法对吗?
1-12 什么叫理想光学系统?理想光学系统具有那些性质?
1-13什么叫理想像?理想像有何实际意义?。