用迭代法速解高考压轴题教学内容
- 格式:doc
- 大小:238.50 KB
- 文档页数:7
策略3 活用4招巧解压轴解答题两类压轴大题是导数和圆锥曲线,难度大、综合性强,取得满分不容易,但要得到尽可能多的分数还是有方法可行的.高考是选拔性的考试,同时又是一场智者的竞争,真正的高考高手是坦然的,他们懂得有舍才有得的真正道理,面对高考大题,特别是压轴题,哪些应该勇于割舍,哪些应努力争取.本讲教你四招,让你在考试中尽可能多得分、巧得分.第1招 缺步解答——化繁为简,能解多少算多少如果遇到一个很困难的问题,确实啃不动,一个聪明的解题策略是,将它们分解为一系列的步骤,或者是一个个小问题,先解决问题的一部分,能解决多少就解决多少,能演算几步就写几步,尚未成功不等于失败.特别是那些解题层次明显的题目,或者是已经程序化了的方法,每进行一步得分点的演算都可以得分,最后结论虽然未得出,但分数却已过半,这叫“大题巧拿分”.【典例1】 (12分)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的两个焦点分别为F 1(-1,0),F 2(1,0),且椭圆C 经过点P ⎝ ⎛⎭⎪⎫43,13.(1)求椭圆C 的离心率;(2)设过点A (0,2)的直线l 与椭圆C 交于M ,N 两点,点Q 是线段MN 上的点,且2|AQ |2=1|AM |2+1|AN |2,求点Q 的轨迹方程.[规范解答] (1)由椭圆定义知,2a =|PF 1|+|PF 2|=⎝ ⎛⎭⎪⎫43+12+⎝ ⎛⎭⎪⎫132+⎝ ⎛⎭⎪⎫43-12+⎝ ⎛⎭⎪⎫132=22,所以a = 2.2分 又由已知,c =1, 所以椭圆C 的离心率e =ca=12=22.4分 (2)由(1)知,椭圆C 的方程为x 22+y 2=1.设点Q 的坐标为(x ,y ),①当直线l 与x 轴垂直时,直线l 与椭圆C 交于(0,1),(0,-1)两点,此时点Q 的坐标为⎝⎛⎭⎪⎫0,2-355.6分②当直线l 与x 轴不垂直时,设直线l 的方程为y =kx +2.因为M ,N 在直线l 上,可设点M ,N 的坐标分别为(x 1,kx 1+2),(x 2,kx 2+2),则|AM |2=(1+k 2)x 21,|AN |2=(1+k 2)x 22. 又|AQ |2=x 2+(y -2)2=(1+k 2)x 2. 由2|AQ |2=1|AM |2+1|AN |2,得 2+k 2x2=1+k2x 21+1+k2x 22,即2x 2=1x 21+1x 22=x 1+x 22-2x 1x 2x 21x 22.①8分 将y =kx +2代入x 22+y 2=1中,得(2k 2+1)x 2+8kx +6=0.②由Δ=(8k )2-4×(2k 2+1)×6>0,得k 2>32.由②可知,x 1+x 2=-8k 2k 2+1,x 1x 2=62k 2+1,代入①中并化简,得x 2=1810k 2-3.③9分因为点Q 在直线y =kx +2上,所以k =y -2x,代入③中并化简, 得10(y -2)2-3x 2=18.10分由③及k 2>32,可知0<x 2<32,即x ∈⎝ ⎛⎭⎪⎫-62,0∪⎝ ⎛⎭⎪⎫0,62.又⎝ ⎛⎭⎪⎫0,2-355满足10(y -2)2-3x 2=18,故x ∈⎝ ⎛⎭⎪⎫-62,62. 由题意,Q (x ,y )在椭圆C 内,所以-1≤y ≤1,又由10(y -2)2=18+3x 2有(y -2)2∈⎣⎢⎡⎭⎪⎫95,94且-1≤y ≤1,则y ∈⎝ ⎛⎦⎥⎤12,2-355.所以点Q 的轨迹方程为10(y -2)2-3x 2=18, 其中x ∈⎝ ⎛⎭⎪⎫-62,62,y ∈⎝ ⎛⎦⎥⎤12,2-355.12分(1)本题第(1)问为已知椭圆标准方程求椭圆的离心率问题,属于容易题.(2)本题的难点在于第(2)问中确定轨迹方程及方程中各变量的取值范围,本题有一定的难度,要想拿到全分很难,这就应该学会缺步解答.首先,解决直线与圆锥曲线的位置关系问题时,若需要设直线方程,应考虑直线的斜率是否存在,因此当直线l 的斜率不存在时,求出点Q 的坐标为⎝ ⎛⎭⎪⎫0,2-355,这是每位考生都应该能做到的.其次联立直线方程与椭圆方程并设出M ,N ,Q 的坐标,通过2|AQ |2=1|AM |2+1|AN |2,得到2x 2=1x 21+1x 22=x 1+x 22-2x 1x 2x 21x 22,然后由x 1+x 2及x 1x 2联想一元二次方程根与系数的关系,将问题解决到x 2=1810k 2-3是完全可以做到的,到此已经可以得到9分.另外,考虑到点Q 在直线l 上,将点Q 坐标代入所设直线方程就能得到10(y -2)2-3x2=18,到此便可以得到10分.到此不能继续往下解时,我们也已经得到绝大部分分数了.第2招 跳步解答——左右逢源,会做哪问做哪问解题过程中卡在某一过渡环节上是常见的.这时,我们可以先承认中间结论,往后推,看能否得到结论.若题目有两问,第(1)问想不出来,可把第(1)问当作“已知”,先做第(2)问,跳一步解答.【典例2】 (12分)设函数f n (x )=x n+bx +c (n ∈N *,b ,c ∈R ).(1)设n ≥2,b =1,c =-1,证明:f n (x )在区间⎝ ⎛⎭⎪⎫12,1内存在唯一零点; (2)设n =2,若对任意x 1,x 2∈[-1,1],有|f 2(x 1)-f 2(x 2)|≤4,求b 的取值范围;(3)在(1)的条件下,设x n 是f n (x )在⎝ ⎛⎭⎪⎫12,1内的零点,判断数列x 2,x 3,…,x n ,…的增减性.[规范解答] (1)证明:b =1,c =-1,n ≥2时,f n (x )=x n+x -1.∵f n ⎝ ⎛⎭⎪⎫12f n (1)=⎝ ⎛⎭⎪⎫12n -12×1<0, ∴f n (x )在⎝ ⎛⎭⎪⎫12,1内存在零点.2分又∵当x ∈⎝ ⎛⎭⎪⎫12,1时,f ′n (x )=nx n -1+1>0,∴f n (x )在⎝ ⎛⎭⎪⎫12,1上是单调递增的. ∴f n (x )在区间⎝ ⎛⎭⎪⎫12,1内存在唯一零点.4分 (2)当n =2时,f 2(x )=x 2+bx +c .对任意x 1,x 2∈[-1,1]都有|f 2(x 1)-f 2(x 2)|≤4. 等价于f 2(x )在[-1,1]上的最大值与最小值之差M ≤4. 据此分类讨论如下:5分 ①当⎪⎪⎪⎪⎪⎪b 2>1,即|b |>2时,M =|f 2(1)-f 2(-1)|=2|b |>4,与题设矛盾.6分②当-1≤-b2<0,即0<b ≤2时,M =f 2(1)-f 2⎝ ⎛⎭⎪⎫-b 2=⎝ ⎛⎭⎪⎫b 2+12≤4恒成立.7分③当0≤-b2≤1,即-2≤b ≤0时, M =f 2(-1)-f 2⎝ ⎛⎭⎪⎫-b 2=⎝ ⎛⎭⎪⎫b 2-12≤4恒成立.综上可知,-2≤b ≤2.8分 故b 的取值范围为[-2,2].(3)法一:设x n 是f n (x )在⎝ ⎛⎭⎪⎫12,1内的唯一零点(n ≥2),f n (x n )=x nn +x n -1=0,f n +1(x n +1)=x n +1n +1+x n +1-1=0,x n +1∈⎝ ⎛⎭⎪⎫12,1,于是有f n (x n )=0=f n +1(x n +1)=x n +1n +1+x n +1-1<x nn +1+x n +1-1=f n (x n +1).又由(1)知f n (x )在⎝ ⎛⎭⎪⎫12,1上是单调递增的, 故x n <x n +1(n ≥2),所以数列x 2,x 3,…,x n ,…是递增数列.12分法二:设x n 是f n (x )在⎝ ⎛⎭⎪⎫12,1内的唯一零点, f n +1(x n )f n +1(1)=(x n +1n +x n -1)(1n +1+1-1) =x n +1n +x n -1<x nn +x n -1=0, 则f n +1(x )的零点x n +1在(x n,1)内, 故x n <x n +1(n ≥2),所以数列x 2,x 3,…,x n ,…是递增数列.12分第问可利用函数的单调性及零点存在性定理较简单解决,但第问较麻烦,很多同学不会做或耽误较长时间,从而延误了第问的解答.事实上,由题意可知,第问的解答与第问没有任何关系,但与第问是相关的,且非常容易解答,因此我们可跨过第问,先解决第问,从而增大了本题的得分率,这是解决此类题的上策之举.第3招 逆向解答——逆水行舟,往往也能解决问题对一个问题正面思考发生思维受阻时,用逆向思维的方法去探求新的解题途径,往往能得到突破性的进展.顺向推有困难就逆推,直接证有困难就反证.【典例3】 (12分)已知f (x )=x ln x ,g (x )=-x 2+ax -3. (1)求函数f (x )的最小值;(2)对一切x ∈(0,+∞),2f (x )≥g (x )恒成立,求实数a 的取值范围; (3)证明:对一切x ∈(0,+∞),都有ln x >1e x -2e x 成立.[规范解答] (1)f ′(x )=ln x +1,1分当x ∈⎝ ⎛⎭⎪⎫0,1e 时,f ′(x )<0,f (x )单调递减; 当x ∈⎝ ⎛⎭⎪⎫1e ,+∞时,f ′(x )>0,f (x )单调递增; 所以f (x )的最小值为f ⎝ ⎛⎭⎪⎫1e =-1e .3分(2)2x ln x ≥-x 2+ax -3,则a ≤2ln x +x +3x,设h (x )=2ln x +x +3x(x >0),则h ′(x )=x +x -x 2,4分①当x ∈(0,1)时,h ′(x )<0,h (x )单调递减; ②当x ∈(1,+∞)时,h ′(x )>0,h (x )单调递增,5分 所以h (x )min =h (1)=4.因为对一切x ∈(0,+∞),2f (x )≥g (x )恒成立, 所以a ≤h (x )min =4,即a 的取值范围为(-∞,4].7分(3)证明:问题等价于证明x ln x >x e x -2e(x ∈(0,+∞)).8分由(1)可知f (x )=x ln x (x ∈(0,+∞))的最小值是-1e ,当且仅当x =1e时取得.9分设m (x )=x e x -2e (x ∈(0,+∞)),则m ′(x )=1-xex ,易知m (x )max =m (1)=-1e .且两函数不会同时取得-1e.所以有x ln x >x e x -2e,11分从而对一切x ∈(0,+∞),都有ln x >1e x -2e x成立.12分.解答本题第问利用了逆向解答,把不等式ln x >1e x -2e x 巧妙地转化为x ln x >x e x -2e,不等式左边是f x ,右边看作一个新的函数m x ,只需说明f xmin>m xmax即可.第4招 退步解答——以退为进,列出相关内容也能得分“以退求进”是一个重要的解题策略.对于一个较一般的问题,如果你一时不能解决所提出的问题,那么,你可以从一般退到特殊,从抽象退到具体,从复杂退到简单,从整体退到部分,从参变量退到常量,从较强的结论退到较弱的结论.总之,退到一个你能够解决的问题,通过对“特殊”的思考与解决,启发思维,达到对“一般”的解决.【典例4】 (12分)如图,O 为坐标原点,双曲线C1:x 2a 21-y 2b 21=1(a 1>0,b 1>0)和椭圆C 2:y 2a 22+x 2b 22=1(a 2>b 2>0)均过点P ⎝ ⎛⎭⎪⎫233,1,且以C 1的两个顶点和C 2的两个焦点为顶点的四边形是面积为2的正方形.(1)求C 1,C 2的方程;(2)是否存在直线l ,使得l 与C 1交于A ,B 两点,与C 2只有一个公共点,且|OA →+OB →|=|AB →|,证明你的结论.[规范解答] (1)设C 2的焦距为2c 2,由题意知,2c 2=2,2a 1=2. 从而a 1=1,c 2=1.因为点P ⎝ ⎛⎭⎪⎫233,1在双曲线x 2-y 2b 21=1上,所以⎝⎛⎭⎪⎫2332-1b 21=1,故b 21=3.2分由椭圆的定义知 2a 2=⎝ ⎛⎭⎪⎫2332+-2+⎝ ⎛⎭⎪⎫2332++2=2 3.于是a 2=3,b 22=a 22-c 22=2. 故c 1,c 2的方程分别为x 2-y 23=1,y 23+x 22=1.4分(2)不存在符合题设条件的直线.5分①若直线l 垂直于x 轴,因为l 与C 2只有一个公共点,所以直线l 的方程为x =2或x =- 2.当x =2时,易知A (2,3),B (2,-3), 所以|OA →+OB →|=22,|AB →|=2 3. 此时,|OA →+OB →|≠|AB →|.当x =-2时,同理可知,|OA →+OB →|≠|AB →|.7分 ②若直线l 不垂直于x 轴,设l 的方程为y =kx +m .由⎩⎪⎨⎪⎧y =kx +m ,x 2-y 23=1得(3-k 2)x 2-2kmx -m 2-3=0.当l 与C 1相交于A ,B 两点时,设A (x 1,y 1),B (x 2,y 2),则x 1,x 2是上述方程的两个实根,从而x 1+x 2=2km 3-k 2,x 1x 2=m 2+3k 2-3. 于是y 1y 2=k 2x 1x 2+km (x 1+x 2)+m 2=3k 2-3m2k 2-3.9分由⎩⎪⎨⎪⎧y =kx +m ,y 23+x22=1得(2k 2+3)x 2+4kmx +2m 2-6=0.因为直线l 与C 2只有一个公共点,所以上述方程的判别式Δ=16k 2m 2-8(2k 2+3)(m 2-3)=0.化简,得m 2=2k 2+3,10分 因此OA →·OB →=x 1x 2+y 1y 2=m 2+3k 2-3+3k 2-3m 2k 2-3=-k 2-3k 2-3≠0. 于是OA →2+OB →2+2OA →·OB →≠OA →2+OB →2-2OA →·OB →, 即|OA →+OB →|2≠|OA →-OB →|2, 故|OA →+OB →|≠|AB →|.综合①②可知,不存在符合题设条件的直线.12分在求解第问时可采用退步解答,若不能正确判断其结论也应说明直线是否存在,同时应对直线垂直于x 轴时给予说明,这就是所谓的从一般到特殊.。
用迭代法速解高考压轴题高二数学专题讲座巧用迭代法速解高考压轴题高考是以知识为载体,方法为依托,能力为目标来进行考查的,命题时则是以能力为立意,以方法和知识为素材来进行命题设计的。
纵观这两年全国高考的新课程试卷中的压轴题—数列问题,背景新颖、能力要求高、内在联系密切、思维方法灵活,又由于新课程的改革中淡化了数学归纳法,无疑地迭代法成为解决这类问题的通法。
1. a n+i=pa+q(p、q为非零常数)型此类型的通项公式求法通常有两种迭代思路:一是构造新数列使其成等比数列,设原递推关系化为a n+1+ =p(a n+ ),其中为待定系数,于是有p=q,即=話,这样数列a n即为等比数列。
二是a n=pa n—i+q=p(pan—2+q)+q=p2an-2+pq+q=p2(pa n-p 13+q)+pq+q=p3a n—3+p2q+pq+q= ... =p n_1a i+p n_2q+ ....... +pq+q,它的实质下标递降,直至退至卩不同再退为止。
例1.设a>0如图,已知直线I :y=ax及曲线C:y=x2,C上的点Q i的横坐标为a i(0<a i<a),从C上的点Q n (n》1)作直线平行于x轴,交直线I于点P n+i,再从点P n+i作直线平行于y 轴,交曲线C于点Q n+i. Q n (n=1,2,3 )的横坐标构成数列a n。
(I)试求a n+i与a n的关系,并求a n 的通项公式;(ll)、(III )两题略。
分析:通过点Q n与P n+1的纵坐标关系,P n+1与Q n+1的横坐标的关系,建立a n+i与a n的递推关系,将n换成n—1,即为迭代,反复利用这种迭代的方法即可求出an o解:由点Q n在曲线C上,所以Q n的纵坐标为an2, 即卩Q n@n, a2 )。
又由于Q n与P n+1的纵坐标相等,所以,P n+1的纵坐标为a;。
而点P n+1在直线I上,所以P n+1的与a n的递推关系。
叠加、 叠乘、迭代递推、代数转化数列的递推关系式求数列的通项公式的方法大约分为两类:一类是根据前几项的特点归纳猜测出a n 的表达式,然后用数学归纳法证明;另一类是将递推关系,用代数法、迭代法、换元法,或是转化为根本数列〔等差或等比〕的方法求通项.第一类方法要求学生有一定的观察能力以与足够的结构经验,才能顺利完成,对学生要求高.第二类方法有一定的规律性,只需遵循其特有规律方可顺利求解.在教学中,我针对一些数列特有的规律总结了一些求递推数列的通项公式的解题方法.一、叠加相消.类型一:形如a 1+n =a n + f <n>, 其中f <n> 为关于n 的多项式或指数形式〔a n〕或可裂项成差的分式形式.——可移项后叠加相消.例1:数列{a n },a 1=0,n ∈N +,a 1+n =a n +〔2n -1〕,求通项公式a n . 解:∵a 1+n =a n +〔2n -1〕∴a 1+n =a n +〔2n -1〕 ∴a 2-a 1 =1 、a 3-a 2=3 、…… a n -a 1-n =2n -3 ∴a n = a 1+<a 2-a 1>+<a 3-a 2>+…+<a n -a 1-n >=0+1+3+5+…+<2n -3> =21[1+<2n -3>]< n -1>=< n -1>2n ∈N + 练习1:⑴.数列{a n },a 1=1, n ∈N +,a 1+n =a n +3 n, 求通项公式a n .⑵.数列{a n }满足a 1=3,)1(21+=-+n n a a n n ,n ∈N +,求a n .二、叠乘相约.类型二:形如)(1n f a a n n =+.其中f <n> =p pc mn b mn )()(++ 〔p ≠0,m ≠0,b –c = km,k ∈Z 〕或 n n a a 1+=kn 〔k ≠0〕或nn a a 1+= km n< k ≠ 0, 0<m 且m ≠ 1>. 例2:数列{a n }, a 1=1,a n >0,< n +1> a 1+n 2-n a n 2+a 1+n a n =0,求a n . 解:∵< n +1> a 1+n 2-n a n 2+a 1+n a n =0 ∴ [<n +1> a 1+n -na n ]<a 1+n +a n >= 0∵ a n >0 ∴ a 1+n +a n >0 ∴ <n +1> a 1+n -na n =0 ∴11+=+n n a a n n ∴nn n n n nn a a a a a a a a a a n n n n n n n 11212312111232211=⨯⨯⨯--⨯--⨯-=⨯⨯⨯⨯⨯=-----练习2:⑴数列{a n }满足S n =2na n < n ∈N *>, S n 是{ a n }的前n 项和,a 2=1,求a n . ⑵.数列{a n }满足a 1+n = 3 na n < n ∈N *>,且a 1=1,求a n . 三、逐层迭代递推.类型三:形如a 1+n = f <a n >,其中f <a n >是关于a n 的函数.——需逐层迭代、细心寻找其中规律.例3:数列{a n },a 1=1, n ∈N +,a 1+n = 2a n +3 n,求通项公式a n . 解: ∵a 1+n = 2 a n +3 n∴ a n =2 a 1-n +3 n-1=2<2 a 2-n +3n-2>+3n-1= 22<2 a 3-n +3n-3>+2·3n-2+3n-1=……=2 n-2<2 a 1+3>+2 n-3·3 2+2n-4·3 3+2n-5·3 4+…+22·3 n-3+2·3 n-2+3n-1=2n-1+2n-2·3+2n-3·3 2+2n-4·3 3+…+22·3n-3+2·3n-2+3n-1练习3:⑴.假如数列{a n }中,a 1=3,且a 1+n =a 2n 〔n ∈N +〕,求通项a n .⑵.数列{a n }的前n 项和S n 满足S n =2a n +()n1-,n ∈N +,求通项a n . 四、运用代数方法变形,转化为根本数列求解.类型四:形如1+n n a a = 1++n n qa pa ,〔pq ≠ 0〕.且0≠n a 的数列,——可通过倒数变形为根本数列问题.当p = -q 时,如此有:pa a n n 1111=-+ 转化为等差数列; 当p ≠ -q 时,如此有:ppa q a n n 111+-=+.同类型五转化为等比数列. 例4:假如数列{a n }中,a 1=1,a 1+n =22+n na a n ∈N +,求通项a n . 解: ∵221+=+n n n a a a又,011>=a ∴0>n a ,∴n n a a 12111+=+∴21111=-+n n a a ∵111=a∴数列{ a n }是首项为1,公差为21的等差数列. ∴na 1=1+()121-n ∴a n =12+n n ∈N +练习4:f <n> =x x +32,数列{ a n }满足 a 1=1,a n =23f <a 1-n >,求a n . 类型五:形如a 1+n =pa n + q ,pq ≠0 ,p 、q 为常数. 当p =1时,为等差数列;当p ≠1时,可在两边同时加上同一个数x,即a 1+n + x = pa n + q + x⇒a 1+n + x = p<a n +p x q +>, 令x =p x q +∴x =1-p q时,有a 1+n + x = p<a n + x >, 从而转化为等比数列 {a n +1-p q} 求解. 例5:数列{a n }中,a 1=1,a n =21a 1-n + 1,n= 1、2、3、…,求通项a n . 解:∵ a n = 21a 1-n + 1 ⇒ a n -2 =21<a 1-n -2>又∵a 1-2 = -1≠0 ∴数列{ a n -2}首项为-1,公比为21的等比数列.∴ a n -2 = -11)21(-⨯n 即 a n = 2 -2n-1 n ∈N +练习5:⑴. a 1=1,a n = 2 a 1-n + 3 <n = 2、3、4…> ,求数列{a n }的通项.⑵. 数列{a n }满足a 1=21,a 1+n =12+n n a a ,求a n .类型六:形如a 1+n =pa n + f <n>,p ≠0且 p 为常数,f <n>为关于n 的函数. 当p =1时,如此 a 1+n =a n + f <n> 即类型一.当p ≠1时,f <n>为关于n 的多项式或指数形式〔a n〕或指数和多项式的混合形式. ⑴假如f <n>为关于n 的多项式〔f <n> = kn + b 或kn 2+ bn + c,k 、b 、c 为常数〕,——可用待定系数法转化为等比数列.例6:数列{ a n }满足a 1=1,a 1+n = 2a n +n 2,n ∈N +求a n . 解:令a 1+n + x[a<n+1>2+ b<n+1> + c] = 2<a n + an 2+ bn + c>即 a 1+n = 2 a n + <2a –ax>n 2+ <2b -2ax – bx>n +2c –ax –bx – cx 比拟系数得:⎪⎩⎪⎨⎧=---=--=-0202212cx bx ax c bx ax b ax a ⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧-+=-=-=x bx ax c x ax b x a 22221⇒ 令x = 1,得:⎪⎩⎪⎨⎧===321c b a ∴ a 1+n + <n+1>2+2<n+1> + 3 = 2<a n + n 2+2n + 3> ∵ a 1+1+2×1+3 = 7令b n = a n + n 2+2n + 3 如此 b 1+n = 2b n b 1= 7 ∴数列{ b n }为首项为7,公比为2德等比数列∴ b n = 7× 21-n 即 a n + n 2+2n + 3 = 7× 21-n ∴ a n = 7× 21-n -< n 2+2n + 3 > n∈N +⑵假如f <n>为关于n 的指数形式〔a n〕. ①当p 不等于底数a 时,可转化为等比数列; ②当p 等于底数a 时,可转化为等差数列. 例7:〔同例3〕假如a 1=1,a n = 2 a 1-n + 31-n ,<n = 2、3、4…> ,求数列{a n }的通项a n .解: ∵ a n = 2 a 1-n + 31-n ∴ 令a n + x ×3n= 2<a 1-n +x ×31-n > 得 a n = 2 a 1-n -x ×31-n令-x ×3n= 3n⇒x = -1 ∴ a n -3n= 2<a 1-n -31-n > 又 ∵ a 1-3 = - 2∴数列{n n a 3-}是首项为-2,公比为2的等比数列. ∴n n a 3-=-2·21-n 即a n = 3n -2nn ∈N +例8:数列{ a n }中,a 1=5且a n =3a 1-n + 3n-1 <n = 2、3、4…> 试求通项a n .解: a n =3a 1-n + 3n -1 ⇒ a n +-=--)21(3211n a 3n⇒132132111+-=---n n n n a a ⇒{n n a 321-}是公差为1的等差数列.⇒nn a 321-=3211-a +<1-n > = 3215-+<1-n > = n +21 ⇒a n = <213)21+⨯+n n n ∈N +⑶假如f <n>为关于n 的多项式和指数形式〔a n 〕的混合式,如此先转换多项式形式在转换指数形式.例如上面的例8.练习6:⑴.数列{a n }中a 1= 1,a 1+n = 3 a n + n ,+∈N n ; 求{a n }的通项.⑵设a 0为常数,且a n = 31-n -2 a 1-n <n ∈N +且n ≥ 2 >.证明:对任意n ≥ 1,a n =51[3n + <-1>1-n 2n ] +<-1>n 2na 0. 类型七:形如a 2+n = p a 1+n + q a n < pq ≠ 0, p 、q 为常数且p 2+ 4q > 0 >,——可用待定系数法转化为等比数列.例9: 数列{a n }中a 1= 1, a 2= 2且n n n a a a 212+=++ ,+∈N n ; 求{a n }的通项. 解:令a 2+n +x a 1+n = <1+x> a 1+n + 2 a n ⇒ a 2+n +x a 1+n = <1+x>< a 1+n + x+12a n >令x =x+12⇒x 2+ x – 2 = 0 ⇒x = 1或 -2当x = 1时,a 2+n + a 1+n =2<a 1+n + a n > 从而a 2+ a 1= 1 + 2 = 3 ∴数列{ a 1+n + a n }是首项为3且公比为2的等比数列. ∴ a 1+n + a n = 312-⨯n …………①当x = - 2时, a 2+n - 2a 1+n = - <a 1+n -2a n > , 而 a 2- 2a 1= 0 ∴ a 1+n - 2a n = 0 …………② 由①、②得:a n = 21-n , +∈N n练习7:⑴: a 1= 2, a 2= 35, n n n a a a 323512-=++ ,<n = 1、2、3、……>,求数列{ a n }的通项.⑵数列:1、1、2、3、5、8、13、……,根据规律求出该数列的通项. 五、数列的简单应用.例10:设棋子在正四面体ABCD 的外表从一个顶点移向另外三个顶点时等可能的.现抛掷骰子,根据其点数决定棋子是否移动,假如投出的点数是奇数,如此棋子不动;假如投出的点数是偶数,棋子移动到另外一个顶点.假如棋子初始位置在顶点A,如此:⑴投了三次骰子,棋子恰巧在顶点B 的概率是多少? ⑵投了四次骰子,棋子都不在顶点B 的概率是多少? ⑶投了四次骰子,棋子才到达顶点B 的概率是多少? 分析:考虑最后一次投骰子分为两种情况①最后一次棋子动;②最后一次棋子不动. 解:∵ 事件投一次骰子棋子不动的概率为21;事件投一次骰子棋子动且到达顶点B 的概率为3121⨯ =61. ⑴.投了三次骰子,棋子恰巧在顶点B 分为两种情况①.最后一次棋子不动,即前一次棋子恰在顶点B ;②.最后一次棋子动,且棋子移动到B 点.设投了i 次骰子,棋子恰好在顶点B 的概率为p i ,如此棋子不在顶点B 的概率为<1- p i >.所以,投了i+1次骰子,棋子恰好在顶点B 的概率:p 1+i = p i ×21+ <1- p i >×61i = 1、2、3、4、…… ∴ p 1+i = 61 + 31×p i ∵ p 1= 3121⨯=61∴ p 2=92∴ p 3=5413⑵.投了四次骰子,棋子都不在顶点B,说明前几次棋子都不在B 点,应分为两种情况①最后一次棋子不动;②最后一次棋子动,且不到B 点.设投了i 次骰子,棋子都不在顶点B 的概率为i p ',如此投了i+1次骰子,棋子都不在顶点B 的概率为:1+'i p = i p '×21+ i p '×21×<1﹣31> i = 1、2、3、4、…… 即:1+'i p = 65i p ' 又∵1p '= 21+21×<1﹣31> = 65∴4p ' = <65>4 ⑶.投了四次骰子,棋子才到达顶点B ;说明前三次棋子都不在B 点,最后一次棋子动且 到达顶点B .设其概率为P 如此: P =3121⨯×3p ' = 61×<65>3= 1296125答:〔略〕.例11:用砖砌墙,第一层〔底层〕用去了全部砖块的一半多一块;第二层用去了剩下的一半多一块,…,依次类推,每层都用去了上层剩下的一半多一块.如果第九层恰好砖块用完,那么一共用了多少块砖?分析:此题围绕两个量即每层的砖块数ai 和剩下的砖块数bi,关键是找出ai和bi的关系式,通过方程<组>求解.解:设第i层所用的砖块数为ai ,剩下的砖块数为bi<i = 1、2、3、4、…… >如此b9=0,且设b为全部的砖块数,依题意,得a 1=21b+ 1,a2=21b1+ 1,…… ai=21b1-i+ 1 …………①又 b1-i = ai+ bi……………②联立①②得 b1-i -bi=21b1-i+ 1 即bi=21b1-i- 1∴ bi + 2 =21<b1-i+ 2> ∴ b9+2 = <21>9<b+ 2 > ∴ b+2 = 2×29∴ b= 1022练习8:⑴十级台阶,可以一步上一级,也可以一步上两级;问上完十级台阶有多少种不同走法?⑵. 三角形内有n个点,由这n个点和三角形的三个顶点,这n + 3个点可以组成多少个不重叠<任意两个三角形无重叠局部>的三角形?⑶.甲、乙、丙、丁四人传球,球从一人手中传向另外三个人是等可能的.假如开始时球在甲的手中.假如传了n次球,球在甲手中的概率为an ;球在乙手中的概率为bn.<n = 1、2、3、4、…… >.①问传了五次球,球恰巧传到甲手中的概率a5和乙手中的概率b5分别是多少?②假如传了n次球,试比拟球在甲手中的概率an 与球在乙手中的概率bn的大小.③传球次数无限多时,球在谁手中的概率大?参考答案练习1:⑴. an =21<3 n-1> ⑵. an=nn2+练习2:⑴. an= n -1 ⑵. an= 32)1(-n n练习3:⑴. an = 321-n <提示:可两边取对数> ⑵. a n=32[22-n+ <-1>1-n]练习4:an =23+n练习5:⑴ an= 21+n-3 ⑵ an=12211+--nn练习6:⑴可得a1+n +21<n+1>+41= 3<an+21n +41> 从而an=47×31-n-<21n +41> ⑵ <略>练习7:⑴an = 3 -132-nn, ⑵由得a2+n= a1+n+ an⇒ an=55[<251+>n-<251->n]练习8:⑴∵a2+n = a1+n+ an, a1= 1,a2= 2,∴a10= 89 ⑵∵a1+n= an+ 2 ,a1= 3 ∴an= 2n+1⑶①∵a1+n =31<1 - an> b1+n=31<1 - bn> a1= 0 b1=31∴a5=8120; b5=24361.②可解得an =41-41×1)31(--n bn=41+121×1)31(--n∴当n为奇数时, an <41<bn;当n为偶数时,an>41>bn③当n →∞时,an →41,bn→41故球在各人手中的概率一样大.。
1 高考数学-递推法(迭代法)求数列通项例1、设数列{}n a 是首项为1的正项数列,且()()22*11n+10n n n n a na a a n N ++-+=∈,求数列的通项公式.解:由题意知11,0n a a =>,将条件变形,得()()1110n n n n a a n a na ++++-=⎡⎤⎣⎦,又0n a >,得10n n a a ++≠,所以11n n n a a n +=+,即11n n a n a n +=+,到此可采用: 法一(递推法):121112121112n n n n n n n n a a a a n n n n n -------==⋅==⋅⋅⋅--L L ,从而1n a n =. 法二(叠成法):12121121,12n n n n a a a n n a a a n n -----⋅⋅⋅=⋅⋅⋅-L L 所以1n a n= . 法三(构造法):由11n n a n a n +=+,得()1n+11n na na +=,故{}n na 是常数列,1111,n n na a a n =⨯=∴=. 点拨:解法一是迭代法,这是通法;解法二是叠乘法,适合由条件()1n n a f n a -=求通项的题型;解法三是构造法(简单+经典),根据条件特点构造特殊数列求通项,技巧性较强,体现了转化思想.例2、已知数列}a {n 满足3a 132a 3a 1n n 1n =+⋅+=+,,求数列}a {n 的通项公式.解:由已知,得(两边除以1n 3+),得1n n n 1n 1n 31323a 3a +++++=,即1n n n 1n 1n 31323a 3a ++++=-, 故11221122111()()()333333n n n n n n n n n n a a a a a a a a a a ------=-+-++-+L 122121213()()()3333333n n -=+++++++L 1)3131313131(3)1n (222n 1n n n +++++++-=--Λ, ∴n 1n n n n 321213n 2131)31(313)1n (23a ⋅-+=+--⋅+-=-,即213213n 32a n n n -⋅+⋅⋅= 练习:已知数列{}n a 中,111,n n a a a n +=-=,求通项公式n a .(尝试叠加法)解:由已知,得()()()12112n n n a a n a n n --=+-=+-+-()()()21n n-1n n+2121122a n n -==+-+-++=+=L L .。
数学高考压轴题中高频出现的高等数学知识点及解题方法数学作为高考的一门重要科目,对考生来说带有相当的挑战性。
而在高等数学这一部分,一些特定的知识点和解题方法常常会成为高考压轴题中的热门题目。
本文将对这些高频出现的高等数学知识点以及解题方法进行梳理和总结。
一、极限与连续极限与连续是高等数学中的基础知识点,也是考查频率极高的内容。
在解题时,需要掌握极限的定义和性质,理解函数的连续性以及中值定理等概念。
对于极限的计算,可以根据函数的性质和极限的性质运用相关的定理进行判断。
而对于连续性的考查,重点在于掌握中间值定理、拉格朗日中值定理等。
二、导数与微分导数与微分是高等数学中的难点之一,但也是高考中经常出现的题型。
掌握导数的定义和性质,以及基本的求导公式非常重要。
在解题时,需要熟练运用求导法则和基本函数的导数,结合高等数学中的其他知识点,例如函数的极值点、拐点、最值等来解决问题。
三、积分与定积分积分与定积分是高等数学中必不可少的知识点。
在解题中,我们需要掌握积分的基本定义和运算法则。
对于含参变量的积分题目,需要注意积分区间的确定和参数取值范围的考虑。
此外,还需要熟练掌握换元积分法、分部积分法和定积分的性质等方法来求解积分题。
四、向量与空间解析几何向量与空间解析几何是高等数学中一些难度较大的知识点。
在解题时,需要熟练掌握向量的定义和性质,理解向量的运算法则和内积外积的概念。
对于空间解析几何,需要掌握平面方程和直线方程的求解方法,并结合向量知识来解决空间中的几何问题。
五、微分方程微分方程是高等数学中的综合应用题,也是高考压轴题中常见的题型。
在解题时,需要首先确定微分方程的类型和求解方法,例如一阶线性微分方程、二阶齐次线性微分方程等。
然后运用变量分离、常数变异法、齐次方程法等解题思路,结合初值条件进行求解。
总之,在高等数学中,有些特定的知识点和解题方法经常成为高考压轴题的热门考点。
通过对极限与连续、导数与微分、积分与定积分、向量与空间解析几何以及微分方程等知识点的理解和掌握,我们能更好地应对高考压轴题,并提高解题的准确性和速度。
压轴题型11 圆锥曲线压轴解答题的处理策略命题预测解析几何是高考数学的重要考查内容,常作为试卷的拔高与区分度大的试题,其思维要求高,计算量大.令同学们畏惧.通过对近几年高考试题与模拟试题的研究,分析归纳出以下考点:(1)解析几何通性通法研究;(2)圆锥曲线中最值、定点、定值问题;(3)解析几何中的常见模型;解析几何的核心内容概括为八个字,就是“定义、方程、位置关系”.所有的解析几何试题都是围绕这八个字的内容与三大考向展开. 高频考法(1)直线交点的轨迹问题(2)向量搭桥进行翻译(3)弦长、面积范围与最值问题(4)斜率之和差商积问题(5)定点定值问题01 直线交点的轨迹问题交轨法解决.【典例1-1】(2024·陕西安康·模拟预测)已知双曲线22:13y C x −=的左、右顶点分别是12,A A ,直线l 与C 交于,M N 两点(不与2A 重合),设直线22,,A M A N l 的斜率分别为12,,k k k ,且()126k k k +=−.(1)判断直线l 是否过x 轴上的定点.若过,求出该定点;若不过,请说明理由.(2)若,M N 分别在第一和第四象限内,证明:直线1MA 与2NA 的交点P 在定直线上.【解析】(1)由题意可知12(1,0),(1,0),0A A k −≠,设直线l 的方程为1122,(,),(,)y kx m M x y N x y =+.2024届高考数学专项练习由2213y x y kx m ⎧−=⎪⎨⎪=+⎩消去y ,可得222(3)230k x kmx m −−−−=, 则23k ≠,2212(3)0m k ∆=+−>,即223k m <+,212122223,33km m x x x x k k ++==−−−. 因为()121212*********()()211()1kx m kx m kx x m k x x m k k k k k x x x x x x ⎛⎫⎡⎤+++−+−+=+= ⎪⎢⎥−−−++⎝⎭⎣⎦222222322()2336632133m kmk m k m k k k km kmm k k k ⎡⎤⎛⎫+−+−−⎢⎥ ⎪−−⎝⎭⎢⎥===−⎢⎥++−−+⎢⎥−−⎣⎦, 所以2m k =−,故直线l 的方程为(2)y k x =−,恒过点(2,0). (2)由题可知,直线1MA 的方程为11(1)1y y x x =++,直线2NA 的方程为22(1)1yy x x =−−,因为2121121212121212(1)(2)(1)2211(1)(2)(1)22y x x x x x x x x x y x x x x x x x +−+−+−+===−−−−−−+ 1212112121()322()2x x x x x x x x x x ++−−=−+++21221269333233k x k k x k −−−−==−++− 所以12x =,故点P 在定直线12x =上.【典例1-2】(2024·江苏苏州·模拟预测)已知点(1,0)A ,(0,1)B ,(1,1)C 和动点(,)P x y 满足2y 是PA PB ⋅,PA PC⋅的等差中项.(1)求P 点的轨迹方程;(2)设P 点的轨迹为曲线1C 按向量31,416a ⎛⎫=− ⎪⎝⎭平移后得到曲线2C ,曲线2C 上不同的两点M ,N 的连线交y 轴于点(0,)Q b ,如果MON ∠(O 为坐标原点)为锐角,求实数b 的取值范围;(3)在(2)的条件下,如果2b =时,曲线2C 在点M 和N 处的切线的交点为R ,求证:R 在一条定直线上. 【解析】(1)由题意可得(1,)PA x y =−−,(,1)PB x y =−−,(1,1)PC x y =−−, 则22(1)()()(1)PA PB x x y y x y x y ⋅=−⋅−+−⋅−=+−−,22(1)(1)()(1)21PA PC x x y y x y x y ⋅=−⋅−+−⋅−=+−−+, 又2y 是PA PB ⋅,PA PC ⋅的等差中项,()()22222212x y x y x y x y y ∴+−−++−−+=,整理得点(,)P x y 的轨迹方程为23122y x x =−+.(2)由(1)知2131:22C y x x =−+,又31,416a ⎛⎫=− ⎪⎝⎭,∴平移公式为34116x x y y ⎧=−⎪⎪⎨⎪=+'⎩'⎪即34116x x y y ⎧=+⎪⎪⎨⎪=−'⎩'⎪,代入曲线1C 的方程得到曲线2C 的方程为:213331164242y x x ''⎛⎫⎛⎫−=+−++ ⎪ ⎪⎝⎭⎝⎭',即2yx .曲线2C 的方程为2yx .如图由题意可设M ,N 所在的直线方程为y kx b =+,由2y x y kx b⎧=⎨=+⎩消去y 得20x kx b −−=,令()11,M x y ,()()2212,N x y x x ≠,则1212x x kx x b+=⎧⎨=−⎩, ()()21111,,OM x y x x ∴==,()()22222,,ON x y x x ==,又MON ∠为锐角,cos 0||||OM ONMON OM ON ⋅∴∠=>⋅,即2212120||||x x x x OM ON +>⋅, 2212120x x x x ∴+>,又12x x b =−,2()0b b ∴−+−>,得0b <或1b >.(3)当2b =时,由(2)可得12122x x k x x b +=⎧⎨=−=−⎩,对2yx 求导可得2y x '=,∴抛物线2C 在点,()211,M x x ∴=,()222,N x x 处的切线的斜率分别为12M k x =,22N k x =,∴在点M ,N 处的切线方程分别为()2111:2M l y x x x x −=−,()2222:2N l y x x x x −=−, 由()()()211112222222y x x x x x x y x x x x ⎧−=−⎪≠⎨−=−⎪⎩,解得交点R 的坐标(,)x y . 满足12122x x x y x x +⎧=⎪⎨⎪=⋅⎩即22k x y ⎧=⎪⎨⎪=−⎩,R ∴点在定直线=2y −上. 【变式1-1】(2024·高三·全国·专题练习)已知椭圆C :22221x y a b +=(0a b >>)过点2,3P,且离2. (1)求椭圆C 的方程;(2)记椭圆C 的上下顶点分别为,A B ,过点()0,4斜率为k 的直线与椭圆C 交于,M N 两点,证明:直线BM 与AN 的交点G 在定直线上,并求出该定直线的方程.【解析】(1)由椭圆过点2,3P,且离心率为22,所以2222223122a b c e a a b c ⎧+=⎪⎪⎪==⎨⎪=+⎪⎪⎩,解得2284a b ⎧=⎨=⎩,故所求的椭圆方程为22184x y +=.(2)由题意得()0,2A ,()0,2B −,直线MN 的方程4y kx =+,设()()1122,,,M x y N x y ,联立224184y kx x y =+⎧⎪⎨+=⎪⎩,整理得()221216240k x kx +++=,由()22Δ25696120k k =−+>,即232k >,所以1221612kx x k −+=+,1222412x x k =+. 由求根公式可知,不妨设218246k k x −−−,228246k k x −+−= 直线AN 的方程为2222y y x x −−=,直线BM 的方程为1122y y x x ++=, 联立22112222y y x x y y xx −⎧−=⎪⎪⎨+⎪+=⎪⎩,得()()()()2121121121212222222266y x kx x kx x x y y y x kx x kx x x −++−===++++, 代入12,x x ,得222222241644628446112122324481246241246k k k y k k k k y k k k k k −−−−−−++===−+−+−−+−+, 解得1y =,即直线BM 与AN 的交点G 在定直线1y =上.【变式1-2】(2024·全国·模拟预测)已知双曲线C 的中心为坐标原点O ,C 的一个焦点坐标为()10,3F ,离3 (1)求C 的方程;(2)设C 的上、下顶点分别为1A ,2A ,若直线l 交C 于()11,M x y ,()22,N x y ,且点N 在第一象限,120y y >,直线1A M 与直线2A N 的交点P 在直线35y =上,证明:直线MN 过定点. 【解析】(1)由题意得3c =,3ca3a =2226b c a =−=, 故C 的方程为22136y x −=;(2)证明:由已知条件得直线MN 的斜率存在,设直线MN :y kx t =+,联立2226y kx t y x =+⎧⎨−=⎩,消去y 整理得,()222214260k x ktx t −++−=, 由题设条件得2210k −≠,()()2222Δ16421260k t k t =−−−>,则122412kt x x k +=−,21222621t x x k −=−.由(1)得(13A ,(20,3A −, 则直线1A M :1133y y −,直线2A N :2233y y x +=, 11223333y y y y −−=++ 因为直线1A M 与直线2A N 的交点P 在直线35y =上,所以112233353335y y −=++因为2222136y x−=2222222233312y y y x −+−==,即()2222323y y x +=−所以(11211212122233323333523335y y y y y x x y −−−===+.又((()(221212123333y y k x x k t x x t =+++,(((2222222326433212121t t ktk k t t k k k −−=⨯−+=−−−,所以33353335t t −=+,解得5t =,所以直线MN 过定点()0,5.02 向量搭桥进行翻译将向量转化为韦达定理形式求解.【典例2-1】(2024·上海普陀·二模)设椭圆222:1(1)x y a a Γ+=>,Γ2倍,直线l 交Γ于A 、B 两点,C 是Γ上异于A 、B 的一点,O 是坐标原点. (1)求椭圆Γ的方程;(2)若直线l 过Γ的右焦点F ,且CO OB =,0CF AB ⋅=,求CBFS的值;(3)设直线l 的方程为(,R)y kx m k m =+∈,且OA OB CO +=,求||AB 的取值范围. 【解析】(1)由Γ24倍,得212a −22(1)a a −=, 又1a >,则2a =故椭圆Γ的方程为2212x y +=.(2)设Γ的左焦点为1F ,连接1CF , 因为CO OB =,所以点B 、C 关于点O 对称, 又0CF AB ⋅=,则CF AB ⊥, 由椭圆Γ的对称性可得,1CF CF ⊥,且三角形1OCF 与三角形OBF 全等,则1112CBFCF FSSCF CF ==⋅,又122211224CF CF CF CF F F ⎧+=⎪⎨+==⎪⎩,化简整理得, 12CF CF ⋅=,则1CBFS=.(3)设11(,)A x y ,11(,)B x y ,00(,)C x y ,又 OA OB CO +=,则012()x x x =−+,012()y y y =−+, 由2212x y y kx m ⎧+=⎪⎨⎪=+⎩得,222(12)4220k x mkx m +++−=, 222222168(12)(1)8(21)m k k m k m ∆=−+−=−+,由韦达定理得,122412mk x x k −+=+,21222212m x x k −=+,又121222()212my y k x x m k +=++=+,则02412mkx k =+,02212m y k −=+, 因为点C 在椭圆Γ上,所以222242()2()21212mk m k k −+=++, 化简整理得,22412m k =+,此时,22222218(21)8(21)6(21)04k k m k k +∆=−+=+−=+>,则2222212121()()(1)()AB x x y y k x x =−+−=+−222224221()4()1212mk m k k k−−+−++ 226(21)1k k ++226612k k ++ 令212t k =+,即1t ≥,则(]2266333=33,612k t k t t ++=+∈+, 则AB 的取值范围是3,6.【典例2-2】(2024·贵州安顺·一模)已知双曲线2222:1(0,0)x y C a b a b−=>>的一条渐近线方程为3y x =,右焦点F 3 (1)求双曲线C 的标准方程;(2)过点F 的直线l 与双曲线C 交于,M N 两点,()1,0A −.求AM AN ⋅的值.【解析】(1)由双曲线2222:1x y C a b −=的渐近线方程为3y =,可得3b a =又由焦点(c,0)F 32233(3)1c d ==+2c =,又因为222c a b =+,可得1,3a b =2213y x −=.(2)由(1)知2c =,可得(2,0)F ,当直线l 的斜率不存在时,即:2l x =,将2x =代入2213y x −=,可得13y =或23y =−,不妨设(2,3),(2,3)M N −,又由(1,0)A −,可得(3,3),(3,3)AM AN ==−, 所以333(3)0AM AN ⋅=⨯+⨯−=; 当直线l 的斜率存在时,即:(2)l y k x =−,联立方程组22(2)13y k x y x =−⎧⎪⎨−=⎪⎩,整理得2222(3)4430k x k x k −+−−=,设1122(,),(,)M x y N x y ,则2222(4)4(3)(43)0k k k ∆=+−+>,且22121222443,33k k x x x x k k ++==−−, 则222212121212(2)(2)2()4y y k x x k x x k x x k =−−=−++,且1122(1,),(1,)AM x y AN x y =+=+,则1212121212(1)(1)()1AM AN x x y y x x x x y y ⋅=+++=++++ 22212121212()12()4x x x x k x x k x x k =++++−++2221212(12)(1)()41k x x k x x k =−+++++=2222222434(12)(1)4133k k k k k k k +=−⋅++⋅++−−242244222484343412303k k k k k k k k k −+++++−+−==−,综上可得:0AM AN ⋅=.【变式2-1】(2024·全国·模拟预测)如图,已知抛物线()2:20E y px p =>,其焦点为F ,其准线与x 轴交于点C ,以FC 为直径的圆交抛物线于点B ,连接BF 并延长交抛物线于点A ,且4AF BF −=.(1)求E 的方程.(2)过点F 作x 轴的垂线与抛物线E 在第一象限交于点P ,若抛物线E 上存在点M ,N ,使得0MP NP ⋅=.求证:直线MN 过定点.【解析】(1)根据抛物线的性质可知CF p =.设直线AB 的倾斜角为θ,则在Rt CBF △中,cos BF p θ=. 由抛物线的定义知cos AF AF p θ=+,cos BF p BF θ=−, 所以1cos p AF θ=−,cos 1cos pBF p θθ==+,所以2sin cos θθ=. 所以222sin cos p p AB AF BF θθ=+==. 由24AF BF AB BF −=−=,得221cos 2cos 224cos cos p p p p θθθθ−−=⋅==,解得2p =. 所以E 的方程为24y x =.(2)由(1)知()1,2P .设直线MN 的方程为x my n =+,()11,M x y ,()22,N x y .联立抛物线方程,得2,4.x my n y x =+⎧⎨=⎩代入并整理,得2440y my n −−=.则124y y m +=,124y y n =−,且216160m n ∆=+>. 由0MP NP ⋅=,得()()11221,21,20x y x y −−⋅−−=,则()()()()()()()()12121212112211220x x y y my n my n y y ⎡⎤⎡⎤−−+−−=−+−++−−=⎣⎦⎣⎦,得()()()22121212250m y y mn m y y n n ++−−++−+=,所以()()()221424250m n mn m m n n +⨯−+−−⨯+−+=.整理得()()22341n m −=+.当()321n m −=−+,即21n m =−+时,直线MN 的方程为()21x m y =−+,则直线MN 恒过定点()1,2P ,不符合题意.当()321n m −=+,即25n m =+时,直线MN 的方程为()25x m y =++,则直线MN 恒过定点()5,2−.【变式2-2】(2024·山东聊城·二模)已知椭圆2222:1(0)x y C a b a b +=>>的短轴长为26. (1)求C 的方程;(2)直线:(0,0)l y kx m k m =+>>与C 交于,M N 两点,与y 轴交于点A ,与x 轴交于点B ,且,AM BM AN BN λμ==. (ⅰ)当12μλ==时,求k 的值;(ⅱ)当3λμ+=时,求点(0,3到l 的距离的最大值.【解析】(1)由题意得222226b c a b a a =⎧⎪⎨−==⎪⎩13b a =⎧⎪⎨=⎪⎩ 所以C 的方程为2213x y +=.(2)(ⅰ)由题意得()0,,,0m A m B k ⎛⎫− ⎪⎝⎭,由12AM BM =,得2OM OA OB =−,即,2m M m k ⎛⎫⎪⎝⎭,由2AN BN =,得2ON OB OA =−,即2,m N m k ⎛⎫−− ⎪⎝⎭, 将,M N 的坐标分别代入C 的方程,得222413m m k +=和222413m m k+=,解得213k =,又0k >,所以3k =(ⅱ)由22,13y kx m x y =+⎧⎪⎨+=⎪⎩消去y ,得()222316330k x kmx m +++−=, 其中()()()222222Δ361231112310k m k m k m =−+−=−+>,设()()1122,,,M x y N x y ,则2121222633,3131km m x x x x k k −−+==++,由(),,0,,,0m AM BM AN BN A m B k λμ⎛⎫==− ⎪⎝⎭,得1122,m m x x x x k k λμ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭,所以121212112x x m m m m m k x x x x k k k k λμ⎛⎫ ⎪+=+=−+ ⎪ ⎪++++⎝⎭, 由3λμ+=,得()221212230k x x mk x x m +++=,即222222223312303131m k k m k m k k −−++=++, 所以222222223312930m k k m k m k m −−++=, 因此22k m =,又0,0k m >>,所以k m =. 所以l 的方程为()1y k x =+,即l 过定点()1,0−,所以点(0,3−到l 的最大距离为点(0,3−与点()1,0−的距离21(3)2d =+=, 即点(0,3−到l 的距离的最大值为2.03 弦长、面积范围与最值问题1、建立目标函数,使用函数的最值或取值范围求参数范围.2、建立目标函数,使用基本不等式求最值.【典例3-1】(2024·浙江台州·二模)已知椭圆C :229881x y +=,直线l :=1x −交椭圆于M ,N 两点,T 为椭圆的右顶点,TMN △的内切圆为圆Q . (1)求椭圆C 的焦点坐标; (2)求圆Q 的方程;(3)设点()1,3P ,过P 作圆Q 的两条切线分别交椭圆C 于点A ,B ,求PAB 的周长.【解析】(1)椭圆的标准方程为2218198x y +=,因为819988−=,所以焦点坐标为320,⎛ ⎝⎭. (2)将=1x −代入椭圆方程229881x y +=得3=±y ,由对称性不妨设()1,3M −,()1,3N −−, 直线MT 的方程为()3313y x =−−−,即3490x y +−=, 设圆Q 方程为()222x t y r −+=,由于内切圆Q 在TMN △的内部,所以1t >−, 则Q 到直线MN 和直线MT 的距离相等,即223409134t t r +⨯−+==+,解得12t =,32r =,所以圆Q 方程为221924x y ⎛⎫−+= ⎪⎝⎭.(3)显然直线PA 和直线PB 的斜率均存在, 设过P 作圆Q 的切线方程为()13y k x =−+,其中k 有两个不同的取值1k 和2k 分别为直线PA 和PB 的斜率.由圆Q 21132321k k ⎛⎫−+ ⎪⎝⎭=+,化简得:2812270k k +−=,则121232278k k k k ⎧+=−⎪⎪⎨⎪=−⎪⎩,由()122139881y k x x y ⎧=−+⎨+=⎩得()()222111119816384890k x k k x k k ++−+−−=, 可得21121848989A P A k k x x x k −−==+,所以()221111112211848924182713138989A A k k k k y k x k k k ⎛⎫−−−−+=−+=−+= ⎪++⎝⎭()()()111113271218271833271291232k k k k k −−−+−===−−+−.同理22222848989B k k x k −−=+,32B y =−,所以直线AB 的方程为32y =−, 所以AB 与圆Q 相切,将32y =−代入229881x y +=得7x =所以7AB =P 到直线AB 的距离为92,设PAB 的周长为m ,则PAB 的面积1319272222ABC S m =⨯=⨯△, 解得67m =.所以PAB 的周长为67.【典例3-2】(2024·高三·浙江金华·阶段练习)设抛物线()2:20C y px p =>,直线=1x −是抛物线C 的准线,且与x 轴交于点B ,过点B 的直线l 与抛物线C 交于不同的两点M ,N ,()1,A n 是不在直线l 上的一点,直线AM ,AN 分别与准线交于P ,Q 两点. (1)求抛物线C 的方程; (2)证明:BP BQ =:(3)记AMN △,APQ △的面积分别为1S ,2S ,若122S S =,求直线l 的方程. 【解析】(1)因为=1x −为抛物线的准线,所以12p=,即24p =, 故抛物线C 的方程为24y x = (2)如图,设l :1x ty =−,()()1122,,,M x y N x y , 联立24y x =,消去x 得2440y ty −+=,则()2Δ1610t =−>,且121244y y t y y +=⎧⎨=⎩,又AM :()1111y ny n x x −−=−−,令=1x −得()1121,1y n P n x ⎛⎫−−− ⎪−⎝⎭, 同理可得()2221,1y n Q n x ⎛⎫−−− ⎪−⎝⎭,所以()()()()12121212222221122P Q y n y n y n y n y y n n n x x ty ty ⎡⎤−−−−+=−+−=−+⎢⎥−−−−⎣⎦()()()()()()1221122222222y n ty y n ty n ty ty −−+−−=−−⋅−,()()()212122212124248882202444ty y nt y y nn nt n n t y y t y y t −−++−=−=−=−++−,故BP BQ =.(3)由(2)可得:()()1222122222221nt y n y n S PQ ty ty t −−−==−=−−−22212211141212221nt S MN d t t t nt t −==++=−−+,由122S S =,得:212t −=,解得3t = 所以直线l 的方程为310x +=.【变式3-1】(2024·上海闵行·二模)如图,已知椭圆221:14x C y +=和抛物线()22:20C x py p =>,2C 的焦点F 是1C 的上顶点,过F 的直线交2C 于M 、N 两点,连接NO 、MO 并延长之,分别交1C 于A 、B 两点,连接AB ,设OMN 、OAB 的面积分别为OMN S △、OABS.(1)求p 的值; (2)求OM ON ⋅的值; (3)求OMNOABS S 的取值范围. 【解析】(1)椭圆221:14x C y +=的上顶点坐标为()0,1,则抛物线2C 的焦点为()0,1F ,故2p =.(2)若直线MN 与y 轴重合,则该直线与抛物线2C 只有一个公共点,不符合题意, 所以直线MN 的斜率存在,设直线MN 的方程为1y kx =+,点()11,M x y 、()22,N x y ,联立214y kx x y=+⎧⎨=⎩可得2440x kx −−=,216160k ∆=+>恒成立,则124x x =−,221212121241344x x OM ON x x y y x x ⋅=+=+=−+=−.(3)设直线NO 、MO 的斜率分别为1k 、2k ,其中10k >,20k <,联立12244y k x x y =⎧⎨+=⎩可得()221414k x +=,解得2141x k =+ 点A 在第三象限,则2141A x k =+点B 在第四象限,同理可得2241B x k =+,且121212121164y y x x k k x x ===− 121222124141OMN OAB B AOM ONx x x x S S OB OA x x k k ⋅⋅⋅===⋅⋅++()()2221212114141424k k k k ++++2121124224k k ≥⋅+, 当且仅当112k =时,等号成立. OMNOABS S 的取值范围为[)2,+∞. 【变式3-2】(2024·辽宁·二模)已知点P 为双曲线22:14x E y −=上任意一点,过点P 的切线交双曲线E 的渐近线于,A B 两点. (1)证明:P 恰为AB 的中点;(2)过点P 分别作渐近线的平行线,与OA 、OB 分别交于M 、N 两点,判断PMON 的面积是否为定值,如果是,求出该定值;如果不是,请说明理由;【解析】(1)由切线不可能平行于x 轴,即切线的斜率不可能为0, 设切线方程为:l x ty m =+,联立方程组2214x ty m x y =+⎧⎪⎨−=⎪⎩,整理得222(4)240t y tmy m −−+=+, 所以()()222Δ24(4)40tm t m =−−−=,可得2240t m +−=,即224m t =−,所以22220m y tmy t −++=,即2()0my t −=,所以t y m =,则2t x m m=+,所以点2(,)t tP m m m+,又由双曲线22:14x E y −=的渐近线方程为12y x =±,联立方程组12y xx ty m⎧=⎪⎨⎪=+⎩,可得2,22m m x y t t ==−−,即2(,)22m m A t t −−, 联立方程组12y xx ty m⎧=−⎪⎨⎪=+⎩,可得2,22m m x y t t −==++,即2(,)22m m B t t −++,所以222222244422244m mm tm m tmm m t t t t m m+++−−+====−− 222224m mtm tm t t t t m m−+−+===−,所以AB 的中点坐标为4(,)t m m又因为2224t t m m m m m++==,所以4(,)t P m m ,所以点P 与AB 的中点重合.(2)由2(,)22m m A t t−−,2(,)22m mB t t −++, 可得2222225()()22(2)m m m OA t t t =+=−−−,2222225()()22(2)m m m OB t t t −=+=+++, 所以44422222425252525[(2)(2)](4)m m m OA OB t t t m ⋅====−+−,即5OA OB =, 又由22223322224m m m m m OA OB t t t t t−⋅=⨯+⨯==−+−+−,可得3cos 5OA OB AOB OA OB ⋅∠==, 所以24sin 1cos 5AOB AOB ∠=−∠=, 所以114sin 52225AOBSOA OB AOB =∠=⨯⨯=, 因为P 为AB 的中点,所以112122PMON AOBS S ==⨯=, 所以四边形PMON 的面积为定值1.04 斜率之和差商积问题1、已知00(,)P x y 是椭圆22221x y a b +=上的定点,直线l (不过P 点)与椭圆交于A ,B 两点,且0PA PBk k +=,则直线l 斜率为定值2020b x a y .2、已知00(,)P x y 是双曲线22221x y a b−=上的定点,直线l (不过P 点)与双曲线交于A ,B 两点,且0PA PBk k +=,直线l 斜率为定值2020b x a y −.3、已知00(,)P x y 是抛物线22y px =上的定点,直线l (不过P 点)与抛物线交于M ,N 两点,若0PA PB k k +=,则直线l 斜率为定值0p y −. 4、00(,)P x y 为椭圆222:x y a bΓ2+=1)0,0(a b >>上一定点,过点P 作斜率为1k ,2k 的两条直线分别与椭圆交于,M N 两点.(1)若12(0)k k λλ+=≠,则直线MN 过定点2000222(,)y b x x y aλλ−−−; (2)若2122()b k k a λλ⋅=≠,则直线MN 过定点2222002222(,)a b a b x y a b a b λλλλ++−−−.5、设00(,)P x y 是直角坐标平面内不同于原点的一定点,过P 作两条直线AB ,CD 交椭圆222:x y a b Γ2+=1)0,0(a b >>于A 、B 、C 、D ,直线AB ,CD 的斜率分别为1k ,2k ,弦AB ,CD 的中点记为M ,N .(1)若12(0)k k λλ+=≠,则直线MN 过定点2002(,)y b x x aλλ−−;(2)若2122()b k k a λλ⋅=≠,则直线MN 过定点22002222(,)a x b y a b a b λλλ−−.6、过抛物线22(0)y px p =>上任一点00(,)P x y 引两条弦PA ,PB ,直线PA ,PB 斜率存在,分别记为12,k k ,即12(0)k k λλ+=≠,则直线AB 经过定点00022(,)y px y λλ−−.【典例4-1】(2024·上海徐汇·二模)已知椭圆22:143x y C +=,12A A 、分别为椭圆C 的左、右顶点,12F F 、分别为左、右焦点,直线l 交椭圆C 于M N 、两点(l 不过点2A ).(1)若Q 为椭圆C 上(除12A A 、外)任意一点,求直线1QA 和2QA 的斜率之积; (2)若112NF F M =,求直线l 的方程;(3)若直线2MA 与直线2NA 的斜率分别是12k k 、,且1294k k =−,求证:直线l 过定点.【解析】(1)在椭圆 22:143x y C +=中,左、右顶点分别为12(2,0)(2,0)A A −、,设点()000,(2)Q x y x ≠±,则12202000220000314322444QA QA x y y y k k x x x x ⎛⎫− ⎪⎝⎭⋅=⋅===−+−−−. (2)设()()1122,,,M x y N x y ,由已知可得1(1,0)F −,122111(1,)(+1,)NF x y F M x y =−−−=,,由112NF F M =得2211(1,)2(+1,)−−−=x y x y ,化简得2121=322x x y y −−⎧⎨=−⎩代入2222143x y +=可得22114(32)(32)1−−−+=x y ,联立2211143x y +=解得117=435=x y ⎧−⎪⎪⎨⎪⎪⎩由112NF F M =得直线l 过点1(1,0)F −,73(,5)48−N , 所以,所求直线方程为5=1)y x ±+.(3)设()()3344,,,M x y N x y ,易知直线l 的斜率不为0,设其方程为x my t =+(2t ≠),联立22143x my t x y =+⎧⎪⎨+=⎪⎩,可得()2223463120m y mty t +++−=,由2222364(34)(312)0m t m t ∆=−+−>,得2234t m <+.由韦达定理,得234342263123434,−+=−=++mt t y y y y m m .1294k k =−,34349224∴⋅=−−−y y x x . 可化为()()343449220y y my t my t ++−+−=, 整理即得()()223434499(2)9(2)0my ym t y y t ++−++−=,()222223126499(2)9(2)03434t mt m m t t m m −⎛⎫∴+⨯+−−+−= ⎪++⎝⎭,由20t −≠,进一步得2222(49)(2)183(2)03434m t m tt m m ++−+−=++,化简可得16160t −=,解得1t =, 直线MN 的方程为1x my =+,恒过定点(1,0).【典例4-2】(2024·全国·模拟预测)已知椭圆2222:1(0)x y E a b a b+=>>的左、右顶点分别为()(),,2,2A B C a b D a b −,直线AC 的斜率为12,直线AC 与椭圆E 交于另一点G ,且点G 到x 轴的距离为43. (1)求椭圆E 的方程.(2)若点P 是E 上与点,A B 不重合的任意一点,直线,PC PD 与x 轴分别交于点,M N . ①设直线,PM PN 的斜率分别为12,k k ,求2112k k k k −的取值范围. ②判断22||AM BN +是否为定值.若为定值,求出该定值;若不为定值,说明理由.【解析】(1)由题意知,(),0A a −.由直线AC 的斜率为12()2012b a −=,所以2a b =. 直线AC 的方程为()12y x a =+. 设(),G s t ,则0,0s t >>.由点G 到x 轴的距离为43,得43t =. 由点G 在直线AC 上,得()4132s a =+,所以83s a =−.由点G 在椭圆E 上,得2222843312a a a⎛⎫⎛⎫− ⎪ ⎪⎝⎭⎝⎭+=,解得2a =.所以2b =.所以椭圆E 的方程为22142x y+=.(2)①设()00,P x y (020y ≤<或002y < 由(1)知,()()2,2,2,2C D −, 则00120022,22PC PD y y k k k k x x −−====−+, 所以0021121200002211442222x x k k k k k k y y y y −+−−=−=−==−−−−. 由020y −<或002y <≤得02222y −<或02222y <−≤ 所以0442222y −<−或0424222y <≤+− 故2112k k k k −的取值范围是)(422,22,422⎡−⋃+⎣. ②由①知2200142x y +=,即2220004x y y +=−.设()()12,0,,0M x N x . 因为,,P C M 三点共线, 所以00120222y x x −−=−−,得0001002422222x y x x y y −+−=+=−−.因为,,P D N 三点共线,所以00220222y x x −−=++, 得0002002422222x x y x y y −−−−=−=−−.所以()()222222000012002222222222y x x y AM BN x x y y ⎛⎫⎛⎫−−−+=++−=++−= ⎪ ⎪−−⎝⎭⎝⎭()220002008816822x y y y y +++=−−()()()()()2000220000848221616882222y y y yy y y y y −+−++=++=−−−−()0000821681622y y y y −+++=−−.故22||AM BN +为定值16.【变式4-1】(2024·高三·上海闵行·期中)已知双曲线C :()222210,0x y a b a b −=>>2()3,1−在双曲线C 上.过C 的左焦点F 作直线l 交C 的左支于A 、B 两点. (1)求双曲线C 的方程;(2)若()2,0M −,试问:是否存在直线l ,使得点M 在以AB 为直径的圆上?请说明理由.(3)点()4,2P −,直线AP 交直线2x =−于点Q .设直线QA 、QB 的斜率分别1k 、2k ,求证:12k k −为定值.【解析】(1)由双曲线2222y :1x C a b −=2,且()3,1M −在双曲线C 上,可得222229112a b c e a c a b ⎧−=⎪⎪⎪==⎨⎪=+⎪⎪⎩,解得228,8a b ==,∴双曲线的方程为22188x y −=.(2)双曲线C 的左焦点为()4,0F −,当直线l 的斜率为0时,此时直线为0y =,与双曲线C 左支只有一个交点,舍去; 当直线l 的斜率不为0时,设:4l x my =−,联立方程组2248x my x y =−⎧⎨−=⎩,消x 得()221880m y my −−+=,易得Δ0>, 设()()1122,,,A x y B x y ,则12122288,011m y y y y m m +==<−−,可得11m −<<, ∵()()11222,,2,MA x y MB x y =+=+,则()()()()211212122222MA MB x x y y my my y y ⋅=+++=−−+()()()22212122281161244411m mm y y m y y m m +=+−++=−+=−−−,即0MA MB ⋅≠,可得MA 与MB 不垂直,∴不存在直线l ,使得点M 在以AB 为直径的圆上. (3)由直线()1:24AP y k x −=+,得(12,22)Q k −+, ∴2121222222222y k y k k x my −−−−==+−,又11111224PAy y k k x my −−===+,∴()()()()12121121121212222222222y my my y k y y k k k my my my my −−−−−−−−−=−=−− ()2111112224222my y my mk y my my −−+++=−,∵1112y k my −=,∴1112k my y =−,且1212y y my y +=, ∴()()()1212121212122222m y y y y k k my my y y y −−−===−−+−,即12k k −为定值.【变式4-2】(2024·全国·模拟预测)已知双曲线2222:1(0,0)x y C a b a b−=>>的左、右焦点分别为12,F F ,从下面3个条件中选出2个作为已知条件,并回答下面的问题:①点()32,1P −在双曲线C 上;②点Q 在双曲线C 上,1290QF F ∠=︒,且113QF =;③双曲线C 的一条渐近线与直线33y x =−垂直. (1)求双曲线C 的方程;(2)设,A B 分别为双曲线C 的左、右顶点,过点()0,1−的直线l 与双曲线C 交于,M N 两点,若AMBNk a k =−,求直线l 的斜率.【解析】(1)选①②,因为点()32,1P −在双曲线C 上,所以221811a b −=, 由题意可设()1(,0),,Q F c Q c y −−,因为点Q 在双曲线C 上,所以22221Q y ca b−=,所以2Q b y a =±,又113QF =,所以213b a =,联立222181113a b b a ⎧−=⎪⎪⎨⎪=⎪⎩,所以3,1a b ==(负值舍去),故双曲线C 的方程为2219x y −=;选①③, 由①,得221811a b −=,由③,得31ba−⨯=−, 联立22181131a b b a⎧−=⎪⎪⎨⎪−⨯=−⎪⎩,解得3,1a b ==(负值舍去),故双曲线C 的方程为2219x y −=,选②③,由题意可设()1(,0),,Q F c Q c y −−,因为点Q 在双曲线C 上,所以22221Q y ca b−=,所以2Q b y a =±,又113QF =,所以213b a =,又由③,得31ba−⨯=−,联立21331b a b a⎧=⎪⎪⎨⎪−⨯=−⎪⎩,解得3,1a b ==(负值舍去),故双曲线C 的方程为2219x y −=.(2)依题意可知()()3,0,3,0A B −,易知直线l 的斜率存在,设直线l 的方程为1y kx =−,()()1122,,,M x y N x y ,联立22119y kx x y =−⎧⎪⎨−=⎪⎩,消去y 并整理,得()221918180k x kx −+−=, 由()()()222Δ(18)4191836290k k k =−−⨯−=−>,且2190k −≠,得229k <且219k ≠,所以1212221818,1919k x x x x k k +=−=−−−, 又221119x y −=,即221199x y −=,则1111339y x x y −=+, 所以()()11121122122233339933AMBNy x x x k x y y y k y y x x −−−+===−−()()()()()121212122121212393991191x x x x x x x x kx kx k x x k x x −++−++==−−⎡⎤−++⎣⎦2222222218183996119193911818911919kk k k k k k k k k −+⨯+−+−−===−−⎛⎫−++ ⎪−−⎝⎭, 整理得218310k k −−=,解得16k =−或13k =(舍去),故直线l 的斜率为16−.05 定点定值问题1、定值问题解析几何中定值问题的证明可运用函数的思想方法来解决.证明过程可总结为“变量—函数—定值”,具体操作程序如下:(1)变量----选择适当的量为变量.(2)函数----把要证明为定值的量表示成变量的函数. (3)定值----化简得到的函数解析式,消去变量得到定值. 2、求定值问题常见的方法有两种:(1)从特殊情况入手,求出定值,再证明该定值与变量无关; (2)直接推理、计算,并在计算推理过程中消去变量,从而得到定值. 3、求解直线过定点问题常用方法如下:(1)“特殊探路,一般证明”:即先通过特殊情况确定定点,再转化为有方向、有目的的一般性证明; (2)“一般推理,特殊求解”:即设出定点坐标,根据题设条件选择参数,建立一个直线系或曲线的方程,再根据参数的任意性得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即为所求点;(3)求证直线过定点()00,x y ,常利用直线的点斜式方程()00y y k x x −=−或截距式y kx b =+来证明. 一般解题步骤:①斜截式设直线方程:y kx m =+,此时引入了两个参数,需要消掉一个.②找关系:找到k 和m 的关系:m =()f k ,等式带入消参,消掉m . ③参数无关找定点:找到和k 没有关系的点.【典例5-1】(2024·全国·模拟预测)已知离心率为23的椭圆2222:1(0)x y C a b a b+=>>的左、右顶点分别为12,A A ,点P 为椭圆C 上的动点,且12A PA 面积的最大值为35():20l x my m =−≠与椭圆C 交于,A B 两点,点()1,0D −,直线,AD BD 分别交椭圆C 于,G H 两点,过点2A 作直线GH 的垂线,垂足为M . (1)求椭圆C 的方程.(2)记直线GH 的斜率为k ,证明:km 为定值.(3)试问:是否存在定点N ,使MN 为定值?若存在,求出定点N 的坐标;若不存在,说明理由. 【解析】(1)由题意,得22235,2,3,ab c a a b c ⎧=⎪⎪=⎨⎪=+⎪⎩解得2229,5,4.a b c ⎧=⎪=⎨⎪=⎩所以椭圆C 的方程为22195x y +=. (2)证明:设()()()()11223344,,,,,,,A x y B x y G x y H x y . 又()1,0D −,所以可设直线AD 的方程为1111x x y y +=−. 联立椭圆方程与直线AD 的方程,得112211,1.95x x y y x y +⎧=−⎪⎪⎨⎪+=⎪⎩ 消去x ,得()()222211111519101400x y y x y y y ⎡⎤++−+−=⎣⎦. 又2211195x y +=,所以22115945x y +=,可得()()2211115140x y x y y y +−+−=.由根与系数的关系,得2113145y y y x −=+,则13145y y x −=+,所以11131111459155x y x x y x x +−−−=⋅−=++,同理,得224422594,55x y x y x x −−−==++. 从而直线GH 的斜率()()()()()()2112214321214312212144454555595959559555y y y x y x y y x x k x x x x x x x x x x −−−+−+−++====−−−−−++−++−++()()()122112454516y x y x x x +−+−.又11222,2x my x my =−=−, 所以()()()()()1221121212434312316164y my y my y y k x x x x m +−+−===−−,即34km =,为定值. (3)由(2)可得直线GH 的方程为11114594355y x m x y x x ⎛⎫+=⋅+− ⎪++⎝⎭. 由椭圆的对称性可知,若直线GH 恒过定点,则此定点必在x 轴上, 所以令0y =,得()()()()()11111111116235916595135535353x x my x x x x x x x +−+++=−===++++.故直线GH 恒过定点T ,且点T 的坐标为1,03⎛⎫⎪⎝⎭.因为2A M GH ⊥,垂足为M ,且()23,0A ,所以点M 在以2A T 为直径的圆上运动.故存在点5,03N ⎛⎫⎪⎝⎭,使21423MN A T ==.【典例5-2】(2024·黑龙江双鸭山·模拟预测)已知双曲线2222:1(0,0)x y C a b a b −=>>的焦距为25点3)D 在C 上. (1)求C 的方程;(2)直线:1l x my =+与C 的右支交于A ,B 两点,点E 与点A 关于x 轴对称,点D 在x 轴上的投影为点G . (ⅰ)求m 的取值范围; (ⅱ)求证:直线BE 过点G .【解析】(1)由已知得222251631a b a b ⎧+=⎪⎨−=⎪⎩,解得224,1a b ==,所以C 的方程为2214x y −=.(2)(i )设()11,A x y ,()22,B x y ,则()11,E x y −,联立22144x my x y =+⎧⎨−=⎩, 消去x 得()224230m y my −+−=,则240m −≠,()()222Δ41241630m m m =+−=−>,解得||3m >||2m ≠.又l 与C 的右支交于A ,B 两点,C 的渐近线方程为12y x =±,则11||2m >,即0||2m <<, 所以|m 的取值范围为(3,2). (ii )由(i )得12224my y m +=−−,12234y y m −=−, 又点3)D 在x 轴上的投影为(4,0)G ,所以()224,GB x y =−,()114,GE x y =−−, 所以()()122144x y x y −+−()()122133my y my y =−+−()121223my y y y =−+,223223044mm m m −−=⋅−⋅=−−, 所以//GB GE ,又GB ,GE 有公共点G ,所以B ,G ,E 三点共线,所以直线BE 过点G .【变式5-1】(2024·陕西西安·一模)已知椭圆2222:1(0)x y E a b a b +=>>的左,右焦点分别为1F ,2F ,且1F ,2F 与短轴的一个端点Q 构成一个等腰直角三角形,点23P ⎝⎭在椭圆E ,过点2F 作互相垂直且与x 轴不重合的两直线AB ,CD 分别交椭圆E 于A ,B 和点C ,D ,且点M ,N 分别是弦AB ,CD 的中点.(1)求椭圆E 的标准方程;(2)若()0,1D ,求以CD 为直径的圆的方程;(3)直线MN 是否过x 轴上的一个定点?若是,求出该定点坐标;若不是,说明理由. 【解析】(1)因为椭圆2222:1(0)x y E a b a b +=>>经过点23P ⎝⎭, 且1F ,2F 与短轴的一个端点Q 构成一个等腰直角三角形, 可得b c =,则22222a b c b =+=,所以2223122b b+=⨯,解得222,1a b ==, 所以椭圆E 的标准分别为2212x y +=.(2)由(1)得1(1,0),(0,1)F D −,所以直线CD 的方程为1x y +=,联立方程组22112x y x y +=⎧⎪⎨+=⎪⎩,解得41,33x y ==−或0,1x y ==,所以41(,)33C −, 则CD 的中点为21(,)33N 且423CD =CD 为直径的圆的方程为22218()()339x y −+−=. (3)设直线AB 的方程为1x my =+,且0m ≠,则直线CD 的方程为11x y m=−+, 联立方程组22112x my x y =+⎧⎪⎨+=⎪⎩,整理得22(2)210m y my ++−=, 设1122(,),(,)A x y B x y ,则0∆>且12122221,22y y y y m m +=−=−++, 所以12121224(1)(1)()22x x my my m y y m +=+++=++=+, 由中点坐标公式得222(,)22mM m m −++, 将M 的坐标中的用1m −代换,可得CD 的中点为2222(,)2121m mN m m ++,所以232(1)MN mk m =−,所以直线MN 的方程为22232()22(1)2m m y x m m m +=−+−+,即23(1)12m y x m =−−,则直线MN 过定点2(,0)3. 【变式5-2】(2024·浙江·二模)已知双曲线()2222:10,0x y C a b a b−=>>左右焦点分别为1F ,2F ,点()3,2P 在双曲线上,且点()3,2P 到双曲线两条渐近线的距离乘积为65,过1F 分别作两条斜率存在且互相垂直的直线1l ,2l ,已知1l 与C 双曲线左支交于A ,B 两点,2l 与C 左右两支分别交于E ,F 两点. (1)求双曲线C 的方程;(2)若线段AB ,EF 的中点分别为M ,N ,求证:直线MN 恒过定点,并求出该定点坐标. 【解析】(1)设双曲线C 的两渐近线方程分别为b y x a=,by x a =−,点()3,2P 到双曲线两渐近线的距离乘积为22294323265b a b a b a ccc −−+⨯==,由题意可得:222222229465941a b c b a c a b ⎧+=⎪⎪−⎪=⎨⎪⎪−=⎪⎩,解得23a =,22b =, 所以双曲线C 的方程为22132x y −=.(2)设直线1l 的方程为(5y k x =, 由1l ,2l 互相垂直得2l 的方程(15y x k=−, 联立方程得(225132y k x x y ⎧=⎪⎨⎪−=⎩,消y 得()222223651560k x k x k −−−−=,0∆>成立,所以212352M x x k x +=,(255M M ky k x == 所以点M 坐标为23525k k ⎝⎭,联立方程得(2215132y x k x y ⎧=−⎪⎪⎨⎪−=⎪⎩,所以34352N x x x +==(1255N N k y x k −=−=, 所以点N 坐标为223525,2323k k k ⎛⎫− ⎪ ⎪−−⎝⎭,根据对称性判断知定点在x 轴上, 直线MN 的方程为()N MM M N My y y y x x x x −−=−−,则当0y =时,222223525352523232323351252525M N N M N M k k kx y x y k k k k x y y kk k −−−−−−===−−−−−−所以直线MN 恒过定点,定点坐标为()35,0−.1.已知椭圆Γ:()222210x y a b a b +=>>的上顶点为()0,1A ,离心率3e =()2,1P −的直线l 与椭圆Γ交于B ,C 两点,直线AB 、AC 分别与x 轴交于点M 、N .(1)求椭圆Γ的方程;(2)已知命题“对任意直线l ,线段MN 的中点为定点”为真命题,求AMN 的重心坐标;(3)是否存在直线l ,使得2AMN ABC S S =△△?若存在,求出所有满足条件的直线l 的方程;若不存在,请说明理由.(其中AMNS、ABCS分别表示AMN 、ABC 的面积)【解析】(1)依题意1b =,3c e a ==222c a b =−, 解得2a =,所以椭圆Γ的方程为2214x y +=;(2)因为命题“对任意直线l ,线段MN 的中点为定点”为真命题,。
用迭代法速解高考压轴题高 三 数 学专题讲座 巧用迭代法速解高考压轴题高考是以知识为载体,方法为依托,能力为目标来进行考查的,命题时则是以能力为立意,以方法和知识为素材来进行命题设计的。
纵观这两年全国高考的新课程试卷中的压轴题—数列问题,背景新颖、能力要求高、内在联系密切、思维方法灵活,又由于新课程的改革中淡化了数学归纳法,无疑地迭代法成为解决这类问题的通法。
1.a n+1=pa n +q(p 、q 为非零常数)型此类型的通项公式求法通常有两种迭代思路:一是构造新数列使其成等比数列,设原递推关系化为a n+1+λ=p(a n +λ),其中λ为待定系数,于是有p λ-λ=q ,即λ=1-p q,这样数列⎭⎬⎫⎩⎨⎧-+1p q a n 即为等比数列。
二是a n =pa n -1+q=p(pa n -2+q)+q=p 2a n -2+pq+q=p 2(pa n -3+q)+pq+q=p3a n -3+p 2q+pq+q=……=p n -1a 1+p n -2q+……+pq+q ,它的实质下标递降,直至退到不同再退为止。
例1.设a>0如图,已知直线l :y=ax 及曲线C:y=x 2,C 上的点Q 1的横坐标为a 1(0<a 1<a),从C 上的点Q n (n ≥1)作直线平行于x 轴,交直线l 于点P n+1,再从点P n+1作直线平行于y 轴,交曲线C 于点Q n+1. Q n (n=1,2,3……)的横坐标构成数列{}n a 。
(I )试求a n+1与a n 的关系,并求{}n a 的通项公式;(II )、(III )两题略。
分析:通过点Q n 与P n+1的纵坐标关系,P n+1与Q n+1的横坐标的关系,建立a n+1与a n 的递推关系,将n 换成n -1,即为迭代,反复利用这种迭代的方法即可求出a n 。
解:由点Q n 在曲线C 上,所以Q n 的纵坐标为a n 2,即Q n (a n ,a 2n )。
又由于Q n 与P n+1的纵坐标相等,所以,P n+1的纵坐标为a 2n 。
而点P n+1在直线l 上,所以P n+1的横坐标为a a n 2,即P n+1(n n a a a ,2)。
又因为P n+1与Q n+1的横坐标相同,所以a n+1=aa n2即为a n+1与a n 的递推关系。
下用迭代法求数列{}n a 的通项公式。
迭代法一(构造新数列迭代):对a n+1=aa n2两边同时取对数得:lga n+1=2lga n -lga ,所以lga n+1-lga=2(lga n -lga),反复迭代得:lga n -lga=(lga n -1-lga)=2·2(lga n -2-lga)=22(lga n -2-lga)=……=2n -1(lga 1-lga)=lg(a a 1)21-n ,所以lg a a n =lg(a a 1)21-n ,即a n =a·(aa 1)21-n 。
迭代法二(直接变形迭代):∵a n+1=a a n 2,∴221aa a a nn =+ ∴22121])[()(a a a a a a n n n -+===221221)()(a a a a n n -⨯-==[(a a n 2-)2]22=(a a n 2-)32=……=naa 21)(. ∴a n+1=a·(a a 1)2n ,即a n =a·(aa 1)21-n . [解题回顾]解决本小题的关键有两步,一是灵活运用P n+1与Q n 、Q n+1间的纵横坐标间的关系正确而迅速建立a n+1与a n 的关系式;二是巧妙运用待定系数法或同除以a 对递推关系进行变形,使递推关系进一步具体化、特征化,然后再反复迭代。
实质上,等差等比数列的通项公式就是利用这种迭代法而推导出来的。
迭代法二是变形成结构相同的式,然后进行下标递降;迭代法一也先是对递推关系式变形,化成a n+1=pa n +q 这种形式,利用待定系数法求解,也可以在此基础上直接迭代,如lga n =2lga n -1-lga=22lga n -2-2.lga -lga= (2)-1lga 1-(2n -2+2n -3+……+2+1)lga=2n -1lga 1-(2n -1-1)lga ,所以a n =122111---n n a a =a·121)(-n aa 。
从高考阅卷中可以看出,不少学生得出递推关系式后,望而却步,这足以说明学生在数学思想方法上没有受到良好的训练,平时的学习都是被动的接受,而很少有主动建构的过程。
2.a n+1=pa n +f(n)(p为常数,p ≠1,p ≠0)型。
此类型的通项公式求法常见有两种迭代方法:一是构造新数列代,即a n+1-λg(n+1)=p[a n -λg(n)],比较系数有:λg(n+1)-p λg(n)=f(n)对一切n ∈N +都成立,求出λ,则数列{})(n g a n λ-是等比数列;二是下标递降迭代,即a n →a n -1→a n -2→…→a 2→a 1.也就是a n =pa n -1+f(n -1)=p[pa n -2+f(n -2)]+f(n -1)=P 2a n -2+Pf(n -2)+f(n -1)=P 3a n -3+P 2f(n -3)+Pf(n -2)+f(n -1)=…=P n -1a 1+P n -2f(1)+…+Pf(n -2)+f(n -1),再利用求和法求出a n 。
例2.设a 0为常数,且a n =3n -1-2a n -1·(n ∈N +)。
(I )证明对任意n ≥1,a n =012)1(]2)1(3[51a n n n n n -+-+-;(II )假设对任意n ≥1有a n >a n -1,求a 0的取值范围。
分析:本题的递推关系式中3n -1是一个变量,于是我们在利用待定系数法构造新数列时要注意与类型1的区别,思路一可以设a n+1-λ·3n =-2(a n -λ·3n -1),由比较系数得λ的值,再迭代;思路二对递推关系进行等价变形,即两边同除以3n 转化为类型1的问题求解;思路三直接利用关系式迭代转化为求和问题。
解:(I )迭代法一(构造等比数列迭代)∵a n =3n -1-2a n -1, ∴nn a 3=3133211+⋅---n n a ,设可化为)3(32311k a k a n n n n -⋅-=---,展开比较系数得k=).513(32513a :,5111n n --=---n n a 即化为反复迭代有:)513()32()513(3251322211--=--=-----n n n n n na a a =…=(32-)n·(51300-a ). ∴nn n n a a )32(51)32(5130-⋅-⋅-=-, 即a n =(-2)n ·a 0+]2)1(3[51)2(])2(3[5110n n n n n n a ⋅-++⋅-=---.迭代法二.原式化为:a n -)3(2311--⋅--=⋅n n n a λλ,比较系数求得2.0-=λ,∴a n +)351(235111--⋅+-=⋅n n n a 。
反复迭代有a n +=+⋅-=+⋅-=+⋅-=⋅------)53()2()53()2()53(235133322211n n n n n n n a a a …= (-2)n·(a 5300+),即a n =(-2)n ·a 0+]2)1(3[511n n n ⋅-+-.迭代法三(下标递降)∵a n =3n -1-2a n -1=-2a n -1+3n -1=(-2)·(-2a n -2+3n -3)+(-2)·3n -2+3n -1=(-2)2·a n -2+(-2)·3n -2+3n -1=(-2)2·(-2a n -3+3n -3)+(-2)·3n -2+3n -1=(-2)3a n -3+(-2)2·3n -3+(-2)·3n -2+3n -1=…=(-2)n ·a 0+(-2)n -1·30+(-2)n -2·3+…+(-2)·3n -2+3n -1=(-2)n ·a o +3n -1[(-32)n -1+(-32)n -2+……+1]=(-2)n ·a 0+3n -1.n n)2(321)32(1-=+--·a 0+]2)1(3[511n n n ⋅-+-第(II )题(略)[解题回顾](1)本题的第(I )题是以数列背景,考查学生灵活运用数列知识,解决数列通项公式的常规方法来解问题,这无疑对学生的能力有较高的要求,也体现高考以能力为立意的命题思想,所以在平时的教学过程中要加强数学思想方法的教学和训练,只有这样学生才能实现在真正意义上的会解题,即创造性地解题。
(2)从迭代法一、二可以看出:通过适当的变形可化为a n+1=pa n +q(p 、q 为常数,P ≠0)类型问题,所以类型1是基础问题。
3.a n+2=pa n+1+qa n (p,q ≠0,p,q 为常数)型。
此类型问题关键是转化为a n+1与a n 的关系,即a n+1=ra n +s(r,s 为非零常数),于是转化为类型1问题。
例3.已知点的序列A n (x n ,0),n ∈N +,其中x 1=0,x 2=a(a>0),A 3是线段A 1A 2的中点,A 4是线段A 2A 3的中点,…,A n 是线段A n -2A n -1的中点,…,求{}n x 的通项公式。
分析:充分利用“A n 是线段A n -2A n -1的中点”这一重要信息来揭示x n 与x n -1、x n -2的递推关系,然后利用迭代法先将相邻三项递推关系转化为相邻两项的关系,即x n 与x n -1的关系,再用类型一或类型二的迭代法求解x n . 解:由A n 是线段A n -2A n -1的中点得:x n =221--+n n x x ,即2x n =x n -1+x n -2(n ≥3). 迭代法一:∵2x n =x n -1+x n -2, ∴2x n +x n -1=2x n -1+x n -2. 反复迭代有:2x n +x n -1=2x n -1+x n -2=2x n -2+x n -3=…=2x 2+x 1=2a. ∴2x n +x n -1=2a ,即x n =-a x n +-121.∴再次反复迭代得: ].)21(1[32]1)21()21[()21()21()21()21()21()21()21()21()21()21()21()21(212113211233322221-----------=+-+⋅⋅⋅+-=+-+⋅⋅⋅+-+-=⋅⋅⋅=+-+-+-=+-++--=+-+-=+--=+-=n n n n n n n n n n a a a a a x a a a x a a a x aa x a x a x x迭代法二:∵2x n =x n -1+x n -2, ∴2x n -2x n -1=-(x n -1-x n -2), 即x n -x n -1=-a x x x x x x n n n n n n ⋅-=--=⋅⋅⋅=--=-------21223221)21()()21())(21()(21. ∴x n =(x n -x n -1)+(x n -1-x n -2)+…+(x 2-x 1)+x 1=a[1+(-21)+(-21)2+…+(-21)n -2]= ])21(1[321---n a . ∴数列{}n x 的通项公式为x n =])21(1[321---n a 。