[工学]第5章 模型参考自适应控制
- 格式:ppt
- 大小:826.00 KB
- 文档页数:68
自适应控制中的模型参考自适应控制算法研究在控制系统中,控制器的设计和应用都是十分重要的,并且也是十分复杂的。
自适应控制是一种在控制器中嵌入智能算法的方法,可以让控制器根据被控制系统的状态自适应地调整参数,以达到最佳控制效果。
在自适应控制中,模型参考自适应控制算法是一种常见的算法,其原理和应用将在本文中进行介绍。
一、模型参考自适应控制算法的基本原理模型参考自适应控制算法是一种基于模型的自适应控制方法,其基本思想是将被控制系统的模型和控制器的模型进行匹配,通过模型匹配的误差来适应地调整控制器的参数。
其主要流程包括:建立被控制系统的模型;建立控制器的模型;将被控制系统的模型和控制器的模型进行匹配,计算出模型匹配误差;根据模型匹配误差来自适应地调整控制器的参数。
模型参考自适应控制算法的具体实现方式可以分为直接调节法和间接调节法两种。
直接调节法是将模型参考自适应控制算法中的误差直接反馈到控制器的参数中,以达到自适应控制的目的。
间接调节法则是通过在模型参考自适应控制算法中引入额外的参数,间接地调节控制器的参数,以达到自适应控制的目的。
二、模型参考自适应控制算法的应用模型参考自适应控制算法在实际工程中有着广泛的应用。
例如,它可以用于磁浮列车的高精度控制系统中,通过模型参考自适应控制算法来适应不同运行条件下的参数,达到最优的控制效果。
另外,模型参考自适应控制算法还广泛应用于机器人控制、电力系统控制等领域,可以有效地提高控制系统的性能和稳定性。
三、模型参考自适应控制算法的优缺点模型参考自适应控制算法的主要优点是可以适应不同的被控制系统和环境条件,具有较高的适应性和鲁棒性。
另外,它具有控制精度高、响应速度快等优点。
不过,模型参考自适应控制算法也存在一些缺点,例如模型误差对控制系统的影响比较大,不易对模型参数进行优化等。
四、结论综上所述,模型参考自适应控制算法是一种重要的自适应控制方法,在实际工程中具有广泛的应用前景。
模型参考自适应控制与模型控制比较模型参考自适应控制(Model Reference Adaptive Control, MRAC)和模型控制(Model-based Control)都是现代控制理论中常用的方法。
它们在实际工程应用中具有重要意义,本文将对这两种控制方法进行比较和分析。
一、模型参考自适应控制模型参考自适应控制是一种基于模型的自适应控制方法,主要用于模型未知或参数变化的系统。
该方法基于一个参考模型,通过在线更新控制器参数以追踪参考模型的输出,从而实现对系统的控制。
在模型参考自适应控制中,首先需要建立系统的数学模型,并根据实际系统的特性选择合适的参考模型。
然后通过设计自适应控制器,利用模型参数估计器对系统的不确定性进行补偿,实现对系统输出的精确追踪。
模型参考自适应控制的优点在于其适应性强,能够处理模型未知或参数变化的系统。
它具有很好的鲁棒性,能够适应系统的不确定性,同时可以实现对参考模型的精确追踪。
然而,模型参考自适应控制也存在一些缺点,如对系统模型的要求较高,需要较为准确的模型参数估计。
二、模型控制模型控制是一种基于数学模型的控制方法,通过对系统的建模和分析,设计出合适的控制器来实现对系统的控制。
模型控制方法主要有PID控制、状态反馈控制、最优控制等。
在模型控制中,首先需要建立系统的数学模型,并对模型进行分析和优化。
然后根据系统的特性,设计合适的控制器参数。
最后,将控制器与系统进行耦合,实现对系统的控制。
模型控制的优点在于其理论基础牢固,控制效果较好。
它能够根据系统的数学模型进行精确的设计和分析,具有较高的控制精度和鲁棒性。
然而,模型控制方法在实际应用中对系统模型的要求较高,而且对系统参数变化不敏感。
三、比较与分析模型参考自适应控制与模型控制都是基于模型的控制方法,它们在实际应用中具有各自的优缺点。
相比而言,模型参考自适应控制具有更强的适应性和鲁棒性,能够处理模型未知或参数变化的系统。
第九章 模型参考自适应控制(Model Reference Adaptive Control )简称MRAC介绍另一类比较成功的自适应控制系统,已有较完整的设计理论和丰富的应用成果(驾驶仪、航天、电传动、核反应堆等等)。
§9 —1MRAC 的基本概念系统包含一个参考模型,模型动态表征了对系统动态性能的理想要求,MRAC 力求使被控系统的动态响应与模型的响应相一致。
与STR 不同之处是MRAC 没有明显的辨识部分,而是通过与参考模型的比较,察觉被控对象特性的变化,具有跟踪迅速的突出优点。
设参考模型的方程为式(9-1-1)式(9-1-2)被控系统的方程为式(9-1-3) 式(9-1-4)两者动态响应的比较结果称为广义误差,定义输出广义误差为e = y m – y s 式(9-1-5);X A X Br y CX m m m m m∙=+= X A B r y CX S S S S S∙=+=状态广义误差为ε = X m – X s 式(9-1-6)。
自适应控制的目标是使得某个与广义误差有关的自适应控制性能指标J 达到最小。
J 可有不同的定义,例如单输出系统的式(9-1-7)或多输出系统的式(9-1-8)MRAC 的设计方法目的是得出自适应控制率,即沟通广义误差与被控系统可调参数间关系的算式。
有两类设计方法:一类是“局部参数最优化设计方法”,目标是使得性能指标J 达到最优化;另一类是使得自适应控制系统能够确保稳定工作,称之为“稳定性理论的设计方法。
§9 —2 局部参数最优化的设计方法一、利用梯度法的局部参数最优化的设计方法这里要用到非线性规划最优化算法中的一种最简单的方法——J e d t=⎰20()ττJ ee d Tt=⎰()()τττ梯度法(Gradient Method )。
1.梯度法考虑一元函数f(x),当: ∂ f (x)/ ∂x = 0 ,且∂ f 2 (x) / ∂x 2 > 0 时f(x) 存在极小值。
10.自适应控制严格地说,实际过程中的控制对象自身及能所处的环境都是十分复杂的,其参数会由于种种外部与内部的原因而发生变化。
如,化学反应过程中的参数随环境温度和湿度的变化而变化(外部原因),化学反应速度随催化剂活性的衰减而变慢(内部原因),等等。
如果实际控制对象客观存在着较强的不确定,那么,前面所述的一些基于确定性模型参数来设计控制系统的方法是不适用的。
所谓自适应控制是对于系统无法预知的变化,能自动地不断使系统保持所希望的状态。
因此,一个自适应控制系统,应能在其运行过程中,通过不断地测取系统的输入、状态、输出或性能参数,逐渐地了解和掌握对象,然后根据所获得的过程信息,按一定的设计方法,作出控制决策去修正控制器的结构,参数或控制作用,以便在某种意义下,使控制效果达到最优或近似更优。
目前比较成熟的自适应控制可分为两大类:模型参考自适应控制(Model Reference Adaptive Control)和自校正控制(Self-Turning)。
10.1模型参考自适应控制10.1.1模型参考自适应控制原理模型参考自适应控制系统的基本结构与图10.1所示:10.1模型参考自适应控制系统它由两个环路组成,由控制器和受控对象组成内环,这一部分称之为可调系统,由参考模型和自适应机构组成外环。
实际上,该系统是在常规的反馈控制回路上再附加一个参考模型和控制器参数的自动调节回路而形成。
在该系统中,参考模型的输出或状态相当于给定一个动态性能指标,(通常,参考模型是一个响应比较好的模型),目标信号同时加在可调系统与参考模型上,通过比较受控对象与参考模型的输出或状态来得到两者之间的误差信息,按照一定的规律(自适应律)来修正控制器的参数(参数自适应)或产生一个辅助输入信号(信号综合自适应),从而使受控制对象的输出尽可能地跟随参考模型的输出。
在这个系统,当受控制对象由于外界或自身的原因系统的特性发生变化时,将导致受控对象输出与参考模型输出间误差的增大。
一 原理及方法模型参考自适应系统,是用理想模型代表过程期望的动态特征,可使被控系统的特征与理想模型相一致。
一般模型参考自适应控制系统的结构如图1所示。
图1 一般的模型参考自适应控制系统其工作原理为,当外界条件发生变化或出现干扰时,被控对象的特征也会产生相应的变化,通过检测出实际系统与理想模型之间的误差,由自适应机构对可调系统的参数进行调整,补偿外界环境或其他干扰对系统的影响,逐步使性能指标达到最小值。
基于这种结构的模型参考自适应控制有很多种方案,其中由麻省理工学院科研人员首先利用局部参数最优化方法设计出世界上第一个真正意义上的自适应控制律,简称为MIT 自适应控制,其结构如图2所示。
图2 MIT 控制结构图系统中,理想模型Km 为常数,由期望动态特性所得,被控系统中的增益Kp 在外界环境发生变化或有其他干扰出现时可能会受到影响而产生变化,从而使其动态特征发生偏离。
而Kp 的变化是不可测量的,但这种特性的变化会体现在广义误差e 上,为了消除或降低由于Kp 的变化造成的影响,在系统中增加一个可调增益Kc ,来补偿Kp 的变化,自适应机构的任务即是依据误差最小指标及时调整Kc ,使得Kc 与Kp 的乘积始终与理想的Km 一致,这里使用的优化方法为最优梯度法,自适应律为:⎰⨯+=tm d y e B Kc t Kc 0)0()(τYp Yme+__+R参考模型调节器被控对象适应机构可调系统———kmq(s)p(s)KcKpq(s)-----p(s)适应律Rymype+-MIT 方法的优点在于理论简单,实施方便,动态过程总偏差小,偏差消除的速率快,而且用模拟元件就可以实现;缺点是不能保证过程的稳定性,换言之,被控对象可能会发散。
二 对象及参考模型该实验中我们使用的对象为:122)()()(2++==s s s p s q K s G pp 参考模型为:121)()()(2++==s s s p s q K s G mm 用局部参数最优化方法设计一个模型参考自适应系统,设可调增益的初值Kc(0)=0.2,给定值r(t)为单位阶跃信号,即r(t)=A ×1(t)。